过充、过放、过流、短路解释

合集下载

锂电池二次保护芯片-概述说明以及解释

锂电池二次保护芯片-概述说明以及解释

锂电池二次保护芯片-概述说明以及解释1.引言1.1 概述概述锂电池是一种应用广泛的高能量密度电池,具有轻巧、长寿命和快速充电的特点,因此在移动设备、电动车辆和可再生能源等领域得到了广泛应用。

然而,锂电池在充放电过程中存在着一定的安全风险,如过充、过放、短路等问题,可能引发电池爆炸、火灾等危险情况。

为了保障使用者的安全和电池的稳定性,锂电池二次保护芯片应运而生。

锂电池二次保护芯片是一种重要的安全措施,用于监测和控制锂电池的充放电过程。

它具备实时监测电池状态、实现电池保护和管理的功能。

在使用过程中,二次保护芯片能够检测电池的电压、温度和电流等参数,并及时采取相应措施,如断开电池连接、降低电池输出功率等,以防止电池发生过载、过放、短路等异常情况。

二次保护芯片的出现,为锂电池的安全性能提供了重要保障。

它能够有效预防电池过充和过放,通过控制充电电压和截止电压,确保电池在安全范围内运行。

此外,二次保护芯片还能够检测电池的温度变化,并根据温度控制电池的充电和放电功率,以防止过热引发危险情况。

随着科技的不断进步和市场需求的增加,锂电池二次保护芯片的研发也在不断完善和发展。

未来,我们可以预见二次保护芯片将会更加智能化,能够通过与其他设备的连接,实现更精细化的电池管理和控制。

同时,新材料和新技术的应用也将提升二次保护芯片的性能和安全性,使其在未来的锂电池领域发挥更重要的作用。

1.2文章结构文章结构部分的内容可以如下所示:1.2 文章结构本文将按照以下几个方面进行论述锂电池二次保护芯片的相关内容:2. 正文2.1 锂电池概述首先,我们将介绍锂电池的基本原理和结构组成,包括正负极材料、电解质和隔膜等方面,以使读者对锂电池有一个综合的了解。

2.2 二次保护芯片的作用接下来,我们将详细介绍二次保护芯片在锂电池中的作用及其重要性。

通过对电池电压、温度和电流等参数的监测和控制,二次保护芯片能够保护锂电池免受过充、过放、过流和短路等异常情况的影响,从而提高锂电池的安全性和稳定性。

锂电池保护板基本知识

锂电池保护板基本知识

锂离子电池过充,过放的后果会是什么呢过充:电池内会产生大量气体,使内部压力迅速上升,倒致电池 过放:缩短电池寿命,直接损坏致电池报废.
爆炸
锂电池之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池的应用总要有一个保护电路,锂电池组件总会跟着一块精致的保护板出现。
IC
电量
过放控制
过充控制
+
-
充电
此时正常充电
IC
电量
过放控制
过充控制
+
-
充电
此时正常充电
IC
电量Biblioteka 过放控制过充控制+
-
充电
STOP
4.2-4.3V
3.8-4.1V
此时充电MOS关
2.过放电保护 电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.7V(磷酸铁锂一般为2.0-2.5V)时,其容量差不多已被完全放光,此时如果继续让电池对负载进行放电,将造成电池的永久性破坏. 在放电过程中,当控制IC检测到电池电压低于过放保护电压时,其”DO”脚将由高电压转为零电压,使MOS放电开关由导通转为断开,从切断放电回路,使电池无法对负载进行放电,起到过放电保护作用. 当各节电池电压高于过放恢复电压时,IC的”DO”脚将由零电压转为高电压,使MOS放电开关由断开转为导通,放电回路恢复正常。 过放保护电压一般设置为: 三元锰酸锂为2.7-3.0V之间.磷酸铁锂为3.65-3.9V之间
IC
电流门限
-
放电
此时正常放电
IC
过流控制
+
-
放电
电流门限
此时放电MOS管关

锂电池过充电、过放电、短路保护电路详解

锂电池过充电、过放电、短路保护电路详解

锂电池过充电、过放电、短路保护电路详解时间:2012-04-23 12:27:18来源:作者:该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N 沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。

充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。

在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。

放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。

二次锂电池的优势是什么?1. 高的能量密度2. 高的工作电压3. 无记忆效应4. 循环寿命长5. 无污染6. 重量轻7. 自放电小锂聚合物电池具有哪些优点?1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。

2. 可制成薄型电池:以3.6V400mAh的容量,其厚度可薄至0.5mm。

3. 电池可设计成多种形状4. 电池可弯曲变形:高分子电池最大可弯曲900左右5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍IEC规定锂电池标准循环寿命测试为:电池以0.2C放至3.0V/支后1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准).电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量什么是二次电池的自放电不同类型电池的自放电率是多少?自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。

锂电池保护板原理

锂电池保护板原理

锂电池保护板原理
锂电池保护板是一种电子控制装置,主要用于保护锂电池免受过充、过放、过流和短路等故障的影响,以延长锂电池的使用寿命和确保电池的安全性能。

锂电池保护板采用了一种基于微处理器或专用集成电路的智能控制技术来实现对锂电池的保护和管理。

其工作原理如下:
1. 过充保护:当锂电池充电至预设的充电终止电压时,保护板会自动切断电池与充电器之间的连接,停止充电,以防止电池过充,避免对电池造成损害。

2. 过放保护:当锂电池的电压降至预设的放电终止电压时,保护板会自动切断电池与负载之间的连接,停止放电,以避免电池过放而损坏。

3. 过流保护:当电池充电或放电过程中出现过大的电流时,保护板会立即切断电池与外部电路之间的连接,以防止电池过热、发生短路或其他故障。

4. 温度保护:保护板内置有温度传感器,当电池温度超过安全范围时,保护板会采取相应的措施,如减小充电电流或停止充放电,以防止电池过热引发安全事故。

5. 平衡充电:对于多个串联的锂电池组,保护板可以监测各个电池的电压,并在充电时自动进行均衡充电,确保各个电池之间的电压差异不会过大,以提高电池组的整体性能和寿命。

锂电池保护板的使用可以有效保护锂电池的安全性和使用寿命,防止因电池故障引发火灾、爆炸等危险情况的发生。

因此,在锂电池应用中,使用保护板是非常重要和必要的措施之一。

电池保护板

电池保护板

电池保护板:顾名思义,电池保护板主要是针对可充电(一般指锂电池)起保护作用的集成电路板。

锂电池(可充型)所以需要保护,是由它本身特性决定的。

由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块带上捷比信采样电阻的保护板和一片电流保险器出现。

锂电池的保护功能通常由保护电路板和PTC或TCO等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,即时控制电流回路的通断;PTC或TCO在高温环境下防止电池发生恶劣的损坏。

保护板通常包括控制IC、MOS开关、JEPSUN捷比信精密电阻及辅助器件NTC、ID存储器,PCB等。

其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路沟通,而当电芯电压或回路电流超过规定值时,它立刻(数十毫秒)控制MOS开关关断,保护电芯的安全。

NTC是Negative temperature coefficient的缩写,意即负温度系数,在环境温度升高时,其阻值降低,使用电设备或充电设备及时反应、控制内部中断而停止充放电。

ID 存储器常为单线接口存储器,ID是Identification 的缩写即身份识别的意思,存储电池种类、生产日期等信息。

可起到产品的可追溯和应用的限制。

PTC是英文Positive Temperature Coefficient的缩写,意思是正温度系数。

专业里面通常把正温度系数器件简称为PTC,电池产品里PTC可以防止电池高温放电和不安全的大电流的发生,根据电池的电压、电流密度特性和应用环境,对PTC有专门的要求。

PTC是电池组件产品里一个非常重要的部件,对电池的安全担负着重要使命,它本身的性能和品质也是电池组性能和品质的一个重要因数。

保护板对单一电芯保护时,保护板设计会相对简单,技术性较高的地方在于,比如对动力电池保护板设计需要注意的电压平台问题,动力电池在使用中往往被要求很大的平台电压,所以设计保护板时尽量使保护板不影响电芯放电的电压,这样对控制IC,精密电阻等元件的要求就会很高,一般国产IC能满足大多数产品要求,特殊可以采用进口产品,电流采样电阻则需要使用JEPSUN捷比信电阻,以满足高精密度,低温度系数,无感等要求。

电动车磷酸铁锂电池过充过放标准

电动车磷酸铁锂电池过充过放标准

电动车磷酸铁锂电池过充过放标准1. 引言1.1 背景介绍电动车磷酸铁锂电池作为新能源汽车的重要组成部分,具有高能量密度、长寿命、安全性高等优点,受到了广泛关注和应用。

在实际使用过程中,过充过放问题成为了电池性能和安全的主要威胁之一。

过充会导致电池内部结构的损坏,影响电池寿命,甚至引发短路、火灾等安全事故;过放则会造成电池电量急剧下降,影响车辆续航里程,甚至引发电池高温、爆炸等安全隐患。

为了规范电动车磷酸铁锂电池的使用,制定了一系列严格的过充过放标准。

这些标准包括充电截止电压、放电截止电压、过充保护电压、过放保护电压等,旨在确保电池的安全使用,延长电池寿命。

通过监测电池的电压、温度等参数,采取相应的保护措施,可以有效防止过充过放对电池的损害。

未来,随着新能源汽车的普及和电池技术的不断创新,对电动车磷酸铁锂电池过充过放标准的研究和完善将会成为重要的发展方向。

1.2 研究意义磷酸铁锂电池作为新能源电池的重要组成部分,广泛应用于电动汽车、储能系统等领域。

电动车磷酸铁锂电池存在着过充和过放的安全隐患,一旦发生这两种情况,将会导致电池性能下降、损坏甚至引发火灾等严重后果。

制定并严格执行磷酸铁锂电池过充过放标准,对于保障电动车安全运行、延长电池寿命具有重要意义。

通过深入研究电动车磷酸铁锂电池过充过放标准,可以帮助相关企业和研究机构更好地了解这些标准的重要性和必要性。

研究可以为未来相关标准的修订提供参考依据,进一步提升电动车磷酸铁锂电池的安全性和稳定性。

研究电动车磷酸铁锂电池过充过放标准具有重要的应用和推广价值,将有助于推动新能源电池技术的发展和应用。

2. 正文2.1 磷酸铁锂电池简介磷酸铁锂电池是一种新型的锂离子电池,由磷酸铁锂正极材料、石墨负极材料和电解液组成。

其具有高能量密度、长循环寿命和较高的安全性能等优点,被广泛应用于电动车、储能系统等领域。

相较于其他类型的锂离子电池,磷酸铁锂电池具有更好的热稳定性和安全性,不易发生热失控和爆炸等安全问题。

电池充电起火的原因

电池充电起火的原因

电池充电起火的原因电池充电过程中起火的原因多种多样,主要包括过充、过放、过流、充电方法不当、充电环境不当、电池质量问题以及电池保护装置失效等。

1、过充过充是电池充电过程中最常见的起火原因之一。

当电池充电电压超过其设计上限时,电池内部的电解液可能会发生分解,产生大量热量。

如果过充时间过长,电池内部的锂离子可能会形成枝晶,进而引发短路,导致电池温度和压力急剧上升,最终可能引发起火或爆炸。

2、过放与过充相对,电池过度放电同样会导致电池内部材料损坏。

虽然过放起火的情况较少,但长期过放会严重影响电池的性能和安全性能。

当电池电压低于安全阈值时,部分材料会开始被破坏,电池的充放电性能将受到损害。

3、过流过流是指充电电流过大,锂离子来不及嵌入储存格,而在极片表面形成锂金属。

这种情况可能导致正负极直接短路,引发爆炸。

虽然这种情况较少发生,但一旦发生,后果往往非常严重。

4、充电方法不当充电方法不当也是导致电池起火的重要原因。

使用不兼容的充电器或快速充电可能会导致电池内积聚过多热量,引发热失控反应。

此外,私拉乱接电线或飞线充电,线路过载也容易引发火灾。

5、充电环境不当充电环境的温度对电池安全至关重要。

在高温环境下充电或充电后未及时切断电源,可能会导致电池持续高温发热,增加起火爆炸的风险。

特别是在夏季,室外温度较高,电池在充电过程中更容易发热。

6、电池质量问题电池本身的质量也是影响充电安全的关键因素。

使用质量不合格的电池,可能存在过充电、短路保护不足等问题,增加了起火的风险。

此外,电池的制造工艺、材料选择等也会影响其安全性能。

7、电池保护装置失效电池的保护装置,如过充保护、过放保护、短路保护等,是确保电池安全的重要屏障。

如果这些保护装置失效,电池在异常情况下无法及时断电,将大大增加安全风险。

手机锂电池保护板相关知识1

手机锂电池保护板相关知识1

保护板初步知识1、保护板的由来锂电池(可充型)之所以需要保护,是由它本身特性决定的。

由于锂电池本身的材料决定了它不能被过充、过放、过流短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现.2、主要保护能能过充电保护功能过放电保护功能过电流保护电流包括过流1 过流2 短路保护3、保护板的组成和元件:保护板通常包括控制IC、开关MOS、储存电容、识别电阻及辅助器件NTC/PTC等组成。

其中控制IC在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关断开,保护电芯的安全。

PTC是正温度系数热敏电阻,NTC是负温度系数热敏电阻.PTC与NTC在应用上有不同的地方是:PTC在电路中可以做过电流保护,NTC主要是开关浪涌电流的抑制.他们也有共同的作用就是温度感测和侦测试4、原理图及元件介绍IC 它由精确的比较器来获得保护可靠的保护参数,主要参数: -过充电压 -过充恢复电压 -过放电压 -过放恢复电压 -过流检测电压 -短路保护电压 -耗电MOSFET 串在主充放电回路中,担当高速开关,执行保护动作。

我司所用的都是串在B- P-间。

MOSFET包含三个电极:漏极(D)源极(S)栅极(G);当G极为高电平时,D极与S极导通,当G极为低电平时,D极与S极断开。

主要参数: -内阻 -耐电流-耐电压 -内部是否连通 -封装FUSE PTC :二次保护器件。

原理图:正极:B+ FUSE P+负极:B- MOS(2、3)脚 MOS(1)脚接 MOS(8)脚 MOS(5、6)脚夫 P-5、功能介绍:通常状态:当电芯电压在2。

5V---4。

2V之间,IC的充电控制脚(第1脚)和放电管控制脚(第3脚)同时处于高电平,充电MOS、放电MOS同时打开,B-与P-连通,保护板有输出电压,能正常允放电.-过放状态:当电池接上手机等负载后,电芯电压渐渐降低,同时IC同部通过R1电阻实时监测电芯电压,当电芯电压降到IC的过放保护电压时,IC放电控制脚(第1脚)输出电压为0V,即低电平,放电MOS关闭,无输出电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1,过充电
锂电池芯过充到电压高于 4.2V 后,会开始产生副作用。

过充电压愈高,危险性也跟着愈高。

锂电芯电压高于 4.2V 后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。

如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。

这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。

这些锂金属结晶会穿过隔膜纸,使正负极短路。

有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。

因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。

最理想的充电电压上限为4.2V。

2,过放电
锂电芯放电时也要有电压下限。

当电芯电压低于 2.4V 时,部分材料会开始被破坏。

又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到 2.4V 才停止。

锂电池从 3.0V 放电到 2.4V 这段期间,所释放的能量只占电池容量的3%左右。

因此,3.0V 是一个理想的放电截止电压。

与过充电是一个完全相反的过程。

3,过电流
过电流通常指带保护板的情况下会过电流,由于保护板对过电流值有明确的要求,当超过某一电流值后,正常情况下,保护板会切断电路。

如果保护板末能切断电路,则电芯会持续过电流,且产生剧烈的过热反应。

电流过大时,锂离子来不及进入储存格,会聚集于材料表面。

这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。

万一电池外壳破裂,就会爆炸。

4,短路
4.1.外部短路
外部短路是指电芯的外部,包含了电池组内部绝缘设计不良等所引起的短路。

当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电池外壳撑大。

当电池内部温度高到135 ℃时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。

但是,细孔关闭率太差,或是细孔根本不会关闭的隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。

4.2.内部短路
内部短路主要是因为铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破膈膜所造成。

这些细小的针状金属,会造成微短路。

由于,针很细有一定的电阻值,因此,电流不见得会很大。

铜铝箔毛刺系在生产过程造成,可观察到的现象是电池漏电太快,多数可被电芯厂或是组装厂筛检出来。

而且,由于毛刺细小,有时会被烧断,使得电池又恢复正常。

因此,因毛刺微短路引发爆炸的机率不高。

(这样的说法,可以从各电芯厂内部都常有充电后不久,电压就偏低的不良电池,但是却鲜少发生爆炸事件,得到统计上的支持。

)因此,内部短路引发的爆炸,主要还是因为过充造成的。

因为,过充后极片上到处都是针状锂金属结晶,刺穿点到处都是,到处都在发生微短路。

因此,电池温度会逐渐升高,最后高温将电解液气体。

这种情形,不论是温度过高使材料燃烧爆炸,还是外壳先被撑破,使空气进去与锂金属发生激烈氧化,都是爆炸收场。

但是过充引发内部短路造成的这种爆炸,并不一定发生在充电的当时。

有可能电池温度还未高到让材料燃烧、产生的气体也未足以撑破电池外壳时,消费者就终止充电,带手机出门。

这时众多的微短路所产生的热,慢慢的
将电池温度提高,经过一段时间后,才发生爆炸。

(消费者多数的描述都是拿起手机时发现手机很烫,扔掉后就爆炸。

)。

相关文档
最新文档