近年高考数学全国卷试卷分析
高考数学真题试卷分析报告

高考数学真题试卷分析报告为了更好地了解高考数学真题的命题特点和考生答题情况,我们进行了一次深入的分析研究。
通过对历年高考数学真题试卷的梳理和统计,我们得出了以下报告,希望能为广大高中生在备战高考数学中提供一定的参考和帮助。
一、选择题分析高考数学试卷中的选择题一直是考生得分的重要突破口。
我们发现,选择题中以代数、函数、图形几何和概率统计为主,常规思维题和灵活应用题并重的特点依然明显。
对于代数题,考查的主要内容包括方程、不等式、函数和数列等,多为基础题型,较为简单。
而图形几何部分则主要考察平面几何和立体几何,其中涉及到的知识点较为繁多,需要考生具备较强的几何直观和分析能力。
在题量上,选择题基本上占据了试卷的一半左右,考查的知识面相对较广,但难度适中,适合考生快速把握,争取满分。
二、填空题分析填空题在高考数学试卷中也占据着一定的比重,主要考察考生对数学知识的掌握和应用能力。
填空题题目结构相对简单,通常为简单代数式的运算和变形,或者直接利用特定公式计算或推理。
这部分题目需要考生熟练掌握基础知识,灵活运用,尤其在易错题上需要注意审题和解题思路,避免低级错误导致失分。
三、解答题分析解答题在高考数学试卷中的比重相对较大,难度也相对较高。
主要考查考生的数学建模、证明推理和实际问题应用能力。
解答题覆盖了代数、几何、概率统计等多个模块,需要考生全面掌握知识,具备扎实的数学基础和逻辑推理能力。
在解答题中,常见的题型包括证明题、计算题和应用题,对于证明题需要考生灵活运用数学定理和方法,善于分析和推理;而计算题和应用题则需要考生熟练掌握计算方法,理解题意,合理建模。
四、总体分析综合分析高考数学试卷,难度适中,题目内容基本围绕高中数学课程标准,考查的知识面广,涵盖代数、几何、概率统计等多个模块。
整体来看,选择题占据试卷的主要比重,填空题和解答题相对较少,但难度更大。
考生应该在备考过程中注重加强基础知识的掌握,灵活运用所学知识解题,同时要多做真题,熟悉考题命制和命题特点,加强解题技巧和应试能力。
高考数学试卷看法分析报告

摘要:本文对2023年高考数学试卷进行了全面的分析,从试卷结构、题型、难度等方面进行了探讨,旨在为教师和学生提供有益的参考。
一、试卷结构分析2023年高考数学试卷共分为两部分,第一部分为选择题,共16题,每题5分,共80分;第二部分为解答题,共8题,每题15分,共120分。
试卷结构合理,既考查了基础知识和基本技能,又注重考查学生的思维能力和创新能力。
二、题型分析1. 选择题:选择题涵盖了集合、函数、三角函数、数列、立体几何、概率统计等知识点,题型包括单选题、多选题和填空题。
选择题难度适中,有利于考查学生的基本知识和基本技能。
2. 解答题:解答题包括常规题和创新题。
常规题主要考查学生对基础知识的掌握程度,创新题则注重考查学生的思维能力和创新能力。
解答题的题型包括计算题、证明题和应用题。
三、难度分析1. 基础题:基础题难度适中,有利于考查学生的基本知识和基本技能。
这部分题目主要涉及集合、函数、三角函数、数列等基础知识,要求学生能够熟练掌握相关概念和公式。
2. 中档题:中档题难度较大,主要考查学生的思维能力和创新能力。
这部分题目涉及多个知识点,要求学生能够灵活运用所学知识解决问题。
3. 难题:难题难度最大,主要考查学生的综合能力和创新思维。
这部分题目往往涉及多个知识点,要求学生具备较强的逻辑推理能力和创新意识。
四、试卷特点1. 注重考查基础知识:试卷内容紧密围绕高中数学课程标准,注重考查学生的基础知识,有利于引导教师和学生重视基础知识的掌握。
2. 强化思维能力:试卷中创新题比例较高,有利于考查学生的思维能力和创新能力,培养学生的综合素质。
3. 关注应用能力:试卷中的应用题紧密联系实际生活,有利于考查学生的应用能力,培养学生的实践意识。
4. 注重选拔性:试卷难度适中,有利于选拔优秀人才,为我国高等教育选拔优秀学生提供有力保障。
五、建议1. 教师应注重培养学生的基础知识和基本技能,提高学生的数学素养。
2. 学生应加强数学思维的培养,提高自己的逻辑推理能力和创新意识。
近5年高考数学全国卷23试卷分析

近5年高考数学全国卷2、3试卷分析.3试卷分析年高考全国卷2、2013----2017数 2012年云南进入新课标高考至今,已有六年时间,从可以说是我省考生最为害怕的加上难度变幻不定,学因为容易拉分,第一天下午开考的数学考得如何直接决定着考生第二天的一个学科,年全国卷数学试题从试卷的结构和试卷的难度上逐渐5考试情绪。
近趋于平稳,稳中有新,难度都属于较为稳定的状态。
选择、填空题会填空题在前选择题在前六题的位置,以基础题呈现,属于中等难度。
解答题属于中等难度,且基本定位在前三题和最后一题;二题的位置的位置。
一、近五年高考数学考点分布统计表20132014201520162017集集集集集合(交集((选择集集集集1等式等式等式元个复数复数复数、复数、选择题(性运算共轭复数、复数质及2 模运算)回归选择题向量三角向量、折线图数量方程(数恒等3变换乘、积坐标公模)式识等二框余展定选择数列式性4三概分向双函数函选择(线弦角5互三三三幂三函图图较函数选择周图6平性称性选择题框图排列圆、弦框图框图7 组合长线性导数、框图三角球、体选择题积形8 切线规划等差三视选择题表三视球、线性数列图9 面积规划图抛物抛物函数、球、体椭圆、线图像选择题线积圆、直线、10离心函立双椭圆函选择离几线命零11心定函导数立几(圆选择(取数12积值范围不二向量线线填空规展式性规13解等三双线三角填空题线函数、规划函数、数列平移最值通项14公式概率函数、二项导数、分段填空题统计单调式定奇偶函数15不等切性、求理、性(正.态分参线方式程布)数列、三角直线圆与函解答线项圆16等数解解数数数角形通项通角通解答公公余17定理项面求统线概线回概率的解答平行字体期18面线线面线面垂直解答题回归平行、角垂直、二面19线面角角椭圆、椭圆、直线抛物解答题抛物与椭线直线、圆的20线、圆圆离心半径、.圆的率方程导数函数导数函数单解解答导性式21数调选考22坐坐坐直系系坐系坐与化化化系选考度点坐度23化间值程化不等不等绝对绝对值不值不式证绝对式证选考题等式、明、基等式、值不明参数本不恒成24等式、有解范围等式分立、段函数从近五年数学试题知识点分布及分值分布统计表不难看出,试题坚持对基础知识、数学思想方法进行考查,重点考查了高中数学的主体内容,兼顾考查新课标的新增内容,在此基础上,突出了对考生数学思维能力和数学应用意识的考查,体现了新课程改革的理念。
2023高考数学全国卷试题评析

2023高考数学全国卷试题评析2023年高考数学全国卷试题评析2023年高考数学全国卷试题在难度、考查重点和形式上与往年相比有一些变化。
本文将对2023年高考数学全国卷试题进行评析,并提供一些参考内容供考生参考。
1. 选择题部分2023年数学全国卷选择题部分难度适中,考查了基本的数学概念和解题方法。
其中,对于二次函数的图像和性质的考查较多,要求考生熟练掌握二次函数的图像和相关性质。
参考内容:(1)二次函数的图像:二次函数的图像一般为抛物线,开口方向取决于二次项系数的正负。
当二次项系数大于0时,图像开口向上;当二次项系数小于0时,图像开口向下。
二次函数的图像关于抛物线的对称轴对称,对称轴的方程为$x = -\frac{b}{2a}$。
(2)二次函数的性质:对于二次函数$y = ax^2 + bx + c$,其中$a \neq 0$。
其顶点坐标为$(-\frac{b}{2a}, -\frac{D}{4a})$,其中$D = b^2 - 4ac$称为判别式。
在判别式的值不同时有以下情况:- 当$D > 0$时,函数图像与$x$轴有两个交点,开口方向向上时,对应两个实数根;开口方向向下时,对应两个实数根。
- 当$D = 0$时,函数图像与$x$轴有一个交点,开口方向向上时,对应一个重根;开口方向向下时,对应一个重根。
- 当$D < 0$时,函数图像与$x$轴没有交点,开口方向向上时,对应无实数根;开口方向向下时,对应无实数根。
2. 解答题部分2023年数学全国卷解答题部分考查了解题思路和运算的灵活应用。
其中,利用平面几何知识解决实际问题的题目较多,要求考生具备良好的几何推理能力。
参考内容:(1)平面几何相关知识:对于平面几何中的直线和平面的关系,考生需要掌握以下几个基本定理:- 平面内一点与平面上的两直线的夹角等于它们在平面内的夹角;- 过平面外一点引平行于平面的直线,与此平面所成的夹角等于其他与它相交的平面与它所成的夹角;- 若直线与一个平面垂直,则与此直线平行的任一平面都与此平面垂直。
近三年高考数学试卷分析

近三年高考数学试卷分析
近三年高考数学试卷难度整体呈现逐年上升的趋势,试题设计更加注重考查学生的综合运用能力和解决问题的能力。
以下对近三年高考数学试卷的题型和考点进行详细分析:
一、选择题部分
近三年高考数学试卷的选择题部分侧重于考查学生对基础知识的掌握和运用能力。
其中,涉及概率、统计和函数的题目较多,要求学生对基本概念和理论有清晰的认识和运用。
二、填空题部分
近三年高考数学试卷的填空题部分主要考查学生解决问题的能力和思维逻辑。
题目设计灵活多样,有的题目涉及常见数学定理和性质,有的题目需要学生具备较强的计算能力和分析能力。
三、解答题部分
近三年高考数学试卷的解答题部分设置较多的证明和实际问题,要求学生运用所学的知识解决实际问题并进行推理和论证。
这部分题目考查学生的分析和综合能力,要求学生能够灵活运用所学知识解决复杂问题。
综上所述,近三年高考数学试卷的整体难度逐年增加,对学生的综合能力提出了更高的要求。
建议考生在备考过程中,注重对基础知识的扎实掌握,注重解题方法的灵活运用,注重实际问题的解决能力培
养。
通过系统学习和不断练习,相信每位考生都能应对高考数学试卷的挑战,取得理想的成绩。
近年高考数学试题分析

近年高考数学试题分析
本文旨在分析过去几年高考数学试题的趋势和难点,提供有用
的备考参考。
考试趋势
近年来,高考数学试题主要体现以下趋势:
1. 呈现出多元化、综合性的特点,注重考查数学知识的应用能力;
2. 出现更多的跨学科、跨领域的知识点和题型,如统计、概率、二次函数等等;
3. 注重团队协作与实际应用,考查学生的综合素质。
难点分析
一般来说,近年来高考数学试题的难点主要集中在以下几个方面:
1. 组合数学和概率论;
2. 解析几何;
3. 向量;
4. 常微分方程。
需要指出的是,高考数学试题的难点不断变化,备考的关键仍在于不断跟进,掌握解题的基本方法和技巧。
题型解析
根据过去几年的趋势,高考数学试题的题型主要分为选择题和解答题两种。
选择题难度较低,但需要学生对各种知识点掌握得较为熟练;解答题难度较高,需要学生在解题方法上有较强的拓展性和应用能力。
总结
以上是本文对近年来高考数学试题的分析和总结。
备考过程中,学生需要注重掌握各种数学知识点的应用能力,把握数学试题的出
题规律和趋势,合理调配备考时间,保持研究的热情和动力。
祝愿各位考生在高考数学试题中取得优异的成绩!。
高考数学全国卷试题评析
高考数学全国卷试题评析高考数学是每年参加高考的学生必须面对的一门科目,也是考生们普遍认为难度较高的一门科目之一。
为了更好地帮助考生们备战高考数学,下面将对某年的高考数学全国卷试题进行评析,希望能对考生们有所帮助。
一、题型分析该年高考数学全国卷试题包括选择题、填空题和解答题。
选择题占据了试题的一大部分,主要考察考生对知识点的掌握和运用能力;填空题主要考察考生对知识的综合运用能力;解答题则考察考生的解题思路和推理能力。
二、难度评析1.选择题选择题是高考数学中相对较容易得分的题型,但也有一些难度较高的题目。
这些题目往往需要考生对相关知识点的理解和应用能力较高。
考生在做选择题时,应先仔细阅读题目,理解题意,然后分析选项,找出正确答案。
在解题过程中,考生要注意排除干扰项,避免被迷惑。
2.填空题填空题主要考察考生对知识点的综合运用能力。
有些填空题需要考生将多个知识点结合起来进行推理和计算。
考生在做填空题时,应先将给定的信息整理清楚,然后有条不紊地填写答案。
在填空过程中,要注意计算精度和单位的正确性,避免因为粗心导致答案错误。
3.解答题解答题是高考数学中相对较难的题型,需要考生有较强的解题思路和推理能力。
解答题的答案不唯一,但要求考生给出详细的解题步骤和推理过程。
在解答题时,考生应先分析题目,确定解题思路,然后有条不紊地进行解题。
在解答过程中,要注意合理运用已学知识,避免过度推理和漏解等错误。
三、备考建议1.掌握基本知识点高考数学试题的出题依据是教材中的基本知识点,考生要牢固掌握教材中的基本知识点,熟练运用相关的公式和定理。
通过做大量的题目,加深对知识点的理解和应用能力。
2.多做模拟试题高考数学试题的题型和难度都与模拟试题相似,因此考生在备考过程中要多做模拟试题,加深对各个题型的理解和掌握。
通过做模拟试题,考生可以了解自己的薄弱环节,并有针对性地进行复习。
3.注重解题思路解答题的解题思路和推理能力是考生得高分的关键。
2023年高考数学全国卷试题评析1
2023年高考数学全国卷试题评析一、总体评价2023年的高考数学全国卷试题总体上延续了往年命题的风格,注重基础知识的考查,强调数学思维能力的运用。
试题在难度上有所提升,更加注重对数学本质的深入挖掘和对学生综合能力的全面检测。
同时,试题设计更加贴近实际,引导学生关注数学的应用价值,促进学生数学素养的全面发展。
二、具体分析1. 知识覆盖面广,注重基础知识的考查今年的高考数学全国卷试题涉及的知识点范围广泛,涵盖了高中数学的主要内容。
试题在考查基础知识的同时,突出了对重点知识的深入挖掘,如函数与导数、解析几何、数列与不等式等。
这种考查方式有利于引导学生重视基础知识的学习,打牢数学基础。
2. 强调数学思维能力,突出数学思想方法的运用今年的高考数学全国卷试题在考查知识的同时,更加注重对学生数学思维能力的考查。
例如,通过一些复杂多变的几何图形和函数图像,考查学生的空间想象能力和逻辑推理能力。
同时,试题还突出了对数学思想方法的运用,如数形结合、化归与转化等,要求学生能够灵活运用这些思想方法解决问题。
3. 难度逐步提升,强调数学本质的深入挖掘与往年相比,今年的高考数学全国卷试题难度有所提升。
这种难度的提升不是简单的增加题目的复杂度,而是更加注重对数学本质的深入挖掘和对学生思维深度的考查。
例如,一些题目需要学生深入理解数学概念的本质属性,一些题目则需要学生灵活运用数学知识解决复杂问题。
4. 贴近实际生活,强调数学应用价值的体现今年的高考数学全国卷试题更加注重与实际生活的联系,通过设置一些与实际生活相关的情境和问题,引导学生关注数学的应用价值。
例如,一些题目涉及到了生活中的实际问题,要求学生运用数学知识进行分析和解决。
这种考查方式有利于引导学生认识到数学的实用性和重要性,激发学生学习数学的积极性。
三、教学建议基于以上分析,对于今后的数学教学,建议教师们注重以下几个方面:1. 强化基础知识的教学,帮助学生打牢数学基础。
全国卷高考数学试题分析
汇报人:
202X-12-27
目录
CONTENTS
• 引言 • 全国卷高考数学试题特点 • 历年高考数学试题分析 • 高考数学试题命题趋势 • 备考建议
01
引言
目的和背景
目的
对全国卷高考数学试题进行分析,旨在了解试题的难易程度、知识点分布、题型设计等方面,为考生提供备考指 导,并为教育工作者提供教学参考。
数学应用
高考数学试题越来越强调数学在实际 生活中的应用,通过设置实际问题的 背景,要求学生运用数学知识解决实 际问题。
实际问题解决能力
高考数学试题注重考查学生解决实际 问题的能力,要求学生能够运用所学 数学知识分析问题、建立数学模型并 求解。
创新题和开放题的增加
创新题
为了培养学生的创新思维,高考数学试题中增加了创新题的 比例,这些题目通常没有固定的解题方法,需要学生灵活运 用所学知识进行解答。
背景
随着教育改革的深入推进,高考作为高等教育入学考试,其重要性不言而喻。数学作为高考中的重要科目,其试 题的质量和水平对于考生的成绩和未来的学习发展具有重要影响。因此,对全国卷高考数学试题进行分析,对于 提高教学质量、促进教育公平具有重要意义。
高考数学试题的重要性
01 02
学业成绩
高考数学试题的难度和知识点覆盖面对于考生的数学成绩有着直接的影 响。通过对试题的分析,考生可以了解考试要求和命题趋势,从而有针 对性地进行复习和提高。
考点分布情况
01
02
03
04
函数与导数
主要涉及基本初等函数的性质 、导数的计算和应用,以及函
数图像的变换等知识点。
三角函数
主要涉及三角函数的性质、图 像和变换,以及解三角形等问
高考数学全国卷试题评析
高考数学全国卷试题评析数学学科核心素养在2023年高考数学全国卷试题中的表现限于篇幅,本文无法涵盖六大数学学科核心素养的方方面面。
这里只选取几个数学学科的核心素养进行深入分析。
(一)数学运算素养数学运算素养实际也体现逻辑推演的过程,具体表现在理解运算对象、掌握运算法则、探究运算思路、选择运算方法、设计运算程序、求得运算结果等过程中[13]。
借助运算解决实际问题,可以促进学生数学思维的发展,培养规范思考问题的品质,养成一丝不苟、严谨求实的科学精神。
以2023年数学新课标Ⅱ卷第21题为例,解析该题体现的数学运算素养。
已知双曲线C的中心为坐标原点,左焦点为(-2√5,0),离心率为√5。
(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与直线NA2交于P。
证明:点P在定直线上。
理解运算对象:这是一道解析几何题,考虑用坐标法解决。
此题涉及的关键点有:左右顶点A1、A2,交点M,N,P,对应的代数表达即为点的坐标;涉及的关键曲线有:双曲线C,直线MN、MA1、NA2,定直线,对应的代数表达是二元二次方程和二元一次方程。
探究运算思路:中学阶段的圆锥曲线问题,经常与二次曲线和直线间的几何动态变化过程有关。
第一问考查基础知识和基本运算,易得双曲线方程为X^2/4-Y^2/16=1。
第二问证明点在定直线上,也即求定直线的方程。
直接找点P的横纵坐标关系比较困难,可以先通过图像分析这条定直线的特点,例如(图1)借助对称性(直线MN,M'N'关于x轴对称),分别做出交点P,P',直观发现PP'⊥x轴,推测点P所在的定直线与x 轴垂直,证明结论转化为求点P的横坐标,结论的运算对象从二维降为一维,这是非常重要的一种探究思路。
当然,常规思路是根据已知条件,设出直线MN方程,与双曲线方程联立,并根据直线MA1、NA2相交于点P,进而探求点P横纵坐标满足的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013----2017年高考全国卷2、3试卷分析从2012年云南进入新课标高考至今,已有六年时间,数学因为容易拉分,加上难度变幻不定,可以说是我省考生最为害怕的一个学科,第一天下午开考的数学考得如何直接决定着考生第二天的考试情绪。
近5年全国卷数学试题从试卷的结构和试卷的难度上逐渐趋于平稳,稳中有新,难度都属于较为稳定的状态。
选择、填空题会以基础题呈现,属于中等难度。
选择题在前六题的位置,填空题在前二题的位置;解答题属于中等难度,且基本定位在前三题和最后一题的位置。
一、近五年高考数学考点分布统计表:从近五年数学试题知识点分布及分值分布统计表不难看出,试题坚持对基础知识、数学思想方法进行考查,重点考查了高中数学的主体内容,兼顾考查新课标的新增内容,在此基础上,突出了对考生数学思维能力和数学应用意识的考查,体现了新课程改革的理念。
具体来说几个方面:1.整体稳定,覆盖面广高考数学全国卷2、3全面考查了新课标考试说明中各部分的内容,可以说教材中各章的内容都有所涉及,如复数、旋转体、简易逻辑、概率等教学课时较少的内容,在试卷中也都有所考查。
有些内容这几年轮换考查,如统计图、线性回归、直线与圆、线性规划,理科的计数原理、二项式定理、正态分布、条件概率等。
2.重视基础,难度适中试题以考查高中基础知识为主线,在基础中考查能力。
理科前8道选择题都是考查基本概念和公式的题型,相当于课本习题的变式题型。
填空题前三题的难度相对较低,均属常规题型。
解答题的前三道题分别考查解三角形,分布列、数学期望,空间线面位置关系等基础知识,利用空间直角坐标系求二面角,属中低档难度题。
4.全面考查新增内容,体现新课改理念如定积分、函数的零点、三视图、算法框图、直方图与茎叶图、条件概率、几何概型、全称命题与特称命题等。
5.突出通性通法、理性思维和思想方法的考查数学思想方法是对数学知识的最高层次的概括与提炼,是适用于中学数学全部内容的通法,是高考考查的核心。
数形结合的思想、方程的思想、分类讨论的思想等在高考中每年都会考查。
尤其数形结合,每年还专门有一道“新函数”的大致图象问题6.注重数学的应用和创新近三年的试题加强了应用问题的考查,涉及线性规划、统计图表、线性回归等,文理科每年都有解答题考查概率统计,2009(理科)和2011年都在21题位置上设置了函数与导数的应用题。
7.注重能力考查,有效区分不同思维层次的学生鼓励考生宽口径、多角度的思考和解决问题,不拘泥于某一成法,不局限考生的思想,设置的题目尽可能让考生可以从不同角度入手,均能得出结果。
二、2017高考题师生感觉初做2017年高考试题,第一感觉是,今年的高考试题难于2016年高考数学试题。
而且,从知识点的布点来看,今年的高考题更加合理,具有较强的综合考察学生掌握知识程度的作用。
2017年高考试题保持了数学一贯的严密体系,还是把对数学基本概念的理解和把握摆在首要考察的地位,侧重于考察学生的基本知识和基本技能,达到了“考基础、考能力、考素质、考潜能”的考试目标。
今年高考题,选择题注重双基的考察,当然其中也有数学思想方法的考察,比如第11题的等价转化与化归及数形结合思想,第12题的坐标化运用等,16题,需要学生有很强的空间想象能力,而解答题特别突出计算能力,思维能力,虽然说题目不偏不怪,包括20,21都还是算常规,有一定灵活,比如选做题中,22题的参数方程求轨迹方程的问题,可以说我们平时的复习备考基本都到不了这样的高度,这也为我们以后的备考提出新的思考。
从而导致多数学生叫苦叫难的,此次数学试题稳中有变,总体较2016年有较好的区分度,试卷关注社会热点、贴近实际,充分利用数学学科特点,突出创新。
其中,立体几何题题干不常规,解析几何考查抛物线和圆,第一问就提高难度。
函数与导数大题第二问给出关于正整数命题,其实我们还真不能说不常规,我们不妨冷静的分析一下前5年我们云南省的高考题,18题,前五年就出现过两次这种概率加分段函数讨论的问题,19题,常规的锥体,没有动点,没有参数,20题,前五年就很注重抛物线与圆相结合考察的问题,对于21题就更不用说了,围绕y=lnx 和y=x-1的基本模型展开,第二问需要用第一问结论巧妙赋值即可。
但是高考,不但考知识,还考心态,谁的心态好,谁时间分配合理,就能考高分。
今年的高考仍然有特别强的延续性,常规重点仍然是反复出现,专家家从命题到应试,各个方面都非常具体到位,小题练基本功,练竞争意识。
所以平时我们非常有必要给学生总结一些常用的结论,做到省时,高效,提高竞争力。
诸如中点弦,分点弦,以及常见的切线等结论。
大题中重通法,强规范。
要说专家压中了多少题,这个还真不好判断,四、高考复习备考策略分析1.注重基础,全面复习我们的高考无论如何变化,对基础知识和基本技能的考核,永远是不会变的,注重回归课本、扎实基础,努力提高学生的能力,既要引导学生掌握好新教材中的新内容,又要引导学生掌握好旧的内容,在教学中要体现过程教学,精选习题,有效训练。
高考试题总是以重点基础知识为主线组织全卷的内容的,从今年乃至近几年甚至自高考以来, 不重视“双基”的考生,不可能取得取得高分。
每年试题的框架主体都是考查数学的基础知识,基本技能和通性通法, 如函数的单调性、奇偶性、零点、图像性质及变换;三角函数及其图像的基本性质;向量的基本运算;圆锥曲线的基本概念、性质及应用;数列的基本性质及应用;空间图形的识别及线面的位置关系(包括面积、体积和理科的夹角和距离);古典概型的方法;统计的基本方法(包括散点图、茎叶图、直方图、回归直线方程、方差、标准差)等。
2.注重思想方法,思维灵活如数形结合思想,新课程加强了和“图”有关的内容.如:三视图、统计图、程序框图、函数的图像性质及变换、空间线面位置关系、平面直线与圆锥曲线的位置关系等;函数与方程的思想方法,如函数的性质及围绕研究函数性质的相关知识和方法(导数、数列、解析几何等)、、特殊与一般的思想方法、变换的思想方法;还有数据的收集、整理、分析和应用,如统计与概率、线性规划等相关的应用问题,体现或然和必然的数学思想。
在复习过程中要熟悉知识的来龙去脉,“知其然,更要知其所以然”,克服急功近利的思想。
如对“不等式放缩法”,有一些常见的放缩技巧,但更要明白为什么要放缩,然后才是放缩技巧的问题,放缩的本质我感觉是目标逼近,根据你的需要,逐步向目标逼近。
对知识的掌握要做到策略化。
3.通法为主,变法为辅重视中学数学的通性通法,倡导举一反三、一题多解和多题一解,努力培养学生“六种能力、二个意识”.数学能力包括运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力、实践能力和创新意识.能力的分类和要求与以前有不同,必然要反映在命题中.特别应注意新增加的“数据处理能力”和“实践能力和创新意识”.前者与统计有关,后者与应用问题有关.另外,“推理论证能力”有别于先前四大能力之一的“逻辑思维能力”,逻辑思维能力注重是演绎推理,“合情推理”也应引起我们的重视,它可以有效地培养学生的创新意识,这正是我们国家现在大力提倡的.我们鼓励考生思维活跃, 提倡考生发散思维, 就应该给与特殊方法,特殊技能一定的地位, 针对具体问题, 采用具体的方法,这是很重要的处理问题的方法.我们强调通性通法的重要,并不意味着完全否定其他的特殊方法, 其他的方法也是处理问题的一个重要方面,在整个数学科的发展过程中, 也很重要的, 也应该有所体现.4.重视数学语言,提高素养.数学素养的高低在某种意义上来说就是其数学语言掌握和运用的程度的差异.因此,数学学习的过程可以理解为就是数学语言的学习过程.无论学生将来从事何种工作,经过高中(包括基础教育)阶段的数学学习,具备初步的数学语言理解、转化和表达能力是非常重要的,是一个人具备一定的数学素养的基本标志.尤其是当前高考考试形式主要考查的是书面表达能力.试卷能否得分,不唯你会做,重要的是你要准确的表达出来,卷面上的文字表述务必正确、简洁;文字书写力求工整.因此,在日常教学中要重视对学生口头和书面表述(包括作图)能力的培养,以求达到数学语言运用的准确性、逻辑性、完整性和流畅性.5.重视创新能力和应用意识的培养创新能力的培养是新课改的一个重要理念,我们的教学对象,不应该仅仅是接受知识的口袋,而更应该是创造知识的机器,我们的教学对象,是蓄势待发的火箭,他们将来应该能够独立地翱翔于知识的太空,应该能够独立的探索未知的世界,而我们,作为教师,应该像点火者一样,激发学生的能动性,赋予他们能够创新的基本知识,激活他们的创新意识,让学生能够在已有的知识基础上,探索未知的知识领域.只有这样,我们和我们的教学对象才能真正体会“生知也有涯,而知也无涯”的境界,只有这样,我们的知识水平才能不断的增加,我们的认知能力才能不断地提高,教师永远要记住:培养学生的创新能力和探索能力,永远是重要的.培养数学的应用意识也是非常重要的,数学对我们大多数人而言,应该是一个工具,是处理其它实际问题的工具,如何将已有的数学知识应用到我们面临的实际问题中,如何利用我们已掌握的数学知识,处理我们面对的实际问题,这都是很重要的,我们教育的目的,是使我们的学生将来走向生活,走向社会,并且能够适应社会,这就要求他们必须将现在的“所学”和将来的“所遇”有一个好的衔接,这样的能力不是自然产生的,需要一个培养的过程,要有意识的培养学生的数学应用意识,高考命题中很好的体现了这一点,我们的高考题中有相当数量的题目是数学的应用题,需要考生面对实际问题,将他们转化为数学问题,然后运用所学的知识,解决这个数学问题,最后再将所得到的数学结果,还原到实际背景中,并合理的解释实际的问题,这就是数学的应用过程,这就是数学的建模过程,这也是我们的教学对象,将来走向社会后,需要面对和解决问题的主要过程,培养学生适应这个解决问题的方法和过程是非常重要的.。