RLC串、并联谐振回路的基本特性

合集下载

串联谐振与并联谐振的电路特点及产生条件详解

串联谐振与并联谐振的电路特点及产生条件详解

串联谐振与并联谐振的电路特点及产生条件详解串联谐振和并联谐振是电路中常见的两种特殊情况。

串联谐振是指电路中电感和电容串联时出现的谐振现象,而并联谐振是指电路中电感和电容并联时出现的谐振现象。

本文将详细介绍串联谐振和并联谐振的电路特点以及产生条件。

一、串联谐振的电路特点及产生条件1.电路特点:(1)频率选择性:在谐振频率附近,串联谐振电路呈现出较大的阻抗,且相位接近零,并且通过电阻的电流达到最大。

(2)谐振电压:在串联谐振频率附近,谐振电路的电压达到最大值。

(3)频率响应曲线:在谐振频率附近,串联谐振电路的电流和电压呈现出明显的峰值。

(4)频率扩展性:在谐振频率附近,串联谐振电路的频带宽度相对较窄。

2.产生条件:(1)经过电感的电流和经过电容的电压相位差为零。

(2)电感和电容串联电阻的并联等于零。

(3)串联谐振频率可通过以下公式计算:f=1/(2π√(LC)),其中f为谐振频率,L为电感值,C为电容值。

二、并联谐振的电路特点及产生条件1.电路特点:(1)频率选择性:在谐振频率附近,并联谐振电路呈现出较小的阻抗,且相位接近零,并且通过电容的电流达到最大。

(2)谐振电流:在并联谐振频率附近,谐振电路的电流达到最大值。

(3)频率响应曲线:在谐振频率附近,并联谐振电路的电流和电压呈现出明显的峰值。

(4)频率扩展性:在谐振频率附近,并联谐振电路的频带宽度相对较宽。

2.产生条件:(1)通过电感的电压和通过电容的电流相位差为零。

(2)电感和电容并联电阻的串联等于零。

(3)并联谐振频率可通过以下公式计算:f=1/(2π√(LC)),其中f为谐振频率,L为电感值,C为电容值。

总结:串联谐振和并联谐振分别是电路中电感和电容串联和并联时出现的特殊谐振现象。

串联谐振的特点是频率选择性强,有较大的阻抗和谐振电压;并联谐振的特点是频率选择性弱,有较小的阻抗和谐振电流。

产生串联谐振和并联谐振的条件分别是电感和电容串联时电流与电压相位差为零,而并联时电压与电流相位差为零。

rlc串联并联谐振电路特点

rlc串联并联谐振电路特点

rlc串联并联谐振电路特点串联并联谐振电路特点及其应用串联谐振电路是由电感、电容和电阻元件组成的。

当电感、电容和电阻元件串联形成的电路中谐振频率与输入信号频率相匹配时,电路会表现出特殊的特点。

首先,串联谐振电路具有频率选择性。

当输入信号频率接近谐振频率时,电路中的电感和电容元件形成回路,实现能量的存储与释放,从而增强了电路的响应。

而在其他频率下,电路中的电感和电容元件起到阻抗的作用,导致电压幅度减小,电路的响应则减弱。

其次,串联谐振电路具有阻抗最小的特点。

在谐振频率时,电感和电容元件的阻抗对消,电路中总的阻抗最小。

这导致电路对输入信号的阻抗较低,使得电路能够吸收更多的能量,从而达到最大的电流和电压响应。

另外,串联谐振电路还具有相位特性。

在电路的谐振频率时,电阻元件的电压与电流处于同相位,而电感元件的电压与电流处于相位滞后90度,电容元件的电压与电流处于相位超前90度。

这种相位特性可以被用来滤波和频率选择的应用。

并联谐振电路与串联谐振电路类似,只是电感和电容元件是并联连接的。

并联谐振电路具有的特点与串联谐振电路类似,但其频率选择性与阻抗最小点的位置相反。

在并联谐振电路中,电路在谐振频率时具有最大的阻抗,而在其他频率下阻抗较低。

串联和并联谐振电路在实际应用中具有广泛的用途。

它们可以作为滤波器、频率选择器和信号调节器使用。

谐振电路也常用于无线传输系统、天线系统、音频放大器以及其他需要特定频率响应的电子设备中。

总之,串联和并联谐振电路具有频率选择性、阻抗最小的特点,并且可以应用于多种电子设备中。

通过合理设计和搭建谐振电路,可以实现各种功能的电路响应。

实验五RLC串联电路的幅频特性与谐振现象

实验五RLC串联电路的幅频特性与谐振现象

电路分析》实验实验一简单万用表线路计算和校验一、实验目的1.了解万用表电流档、电压档及欧姆档电路的原理与设计方法。

2.了解欧姆档的使用方法。

3.了解校验电表的方法。

二、实验说明万用表是测量工作中最常见的电表之一,用它可以进行电压、电流和电阻等多种物理量的测量,每种测量还有几个不同的量程。

万用表的内部组成从原理上分为两部分:即表头和测量电路。

表头通常是一个直流微安表,它的工作原理可归纳为:“表头指针的偏转角与流过表头的电流成正比”。

在设计电路时,只考虑表头的“满偏电流Im”和“内阻Ri”值就够了。

满偏电流是指表针偏转满刻度时流过表头的电流值,内阻则是表头线圈的铜线电阻。

表头与各种测量电路连接就可以进行多种电量的测量。

通常借助于转换开关可以将表头与这些测量电路分别连接起来,就可以组成一个万用表。

本实验分别研究这些实验。

1.直流电流档多量程的分流器有两种电路。

图1-1的电路是利用转换开关分别接入不同阻值的分流器来改变它的电流量程的。

这种电路计算简单,缺点是可能由于开关接触不太好致使测量不准。

最坏情况(在开关接触不通或带电转换量程时有可能发生)是开关断路,这时全部被测电流都流过表头造成严重过载(甚至损坏)。

因此多量程分流器都采用图1-2的电路,以避免上述缺点。

计算时按表头支路总电阻r0’=2250Ω来设计,其中r’是一个“补足”电阻,数值视r0大小而定。

图1-1 利用转换开关的分流器图1-2 常用的多量程分流器电路图1-3 实验用万用表直流电流档电路给定表头参数:Ω='μ=2250r A 100I 0m , 由图1-3得知:1m 10m R )I I (r I -=' 1110m R I )R r (I =+' 1101m I )R r (R I +'=同理,可推得:2102m I )R r (R I +'=合并上两式1101I )R r (R +'=2102I )R r (R +'将10R r +'消去有:2211R I R I = 现将已知数据代入计算如下:)I I (r I R m 10m 1-'=Ω==-⨯⨯=---250922501010225010100R 4361 2211R I R I =1212R I I R =Ω=⨯=5025051R 2 Ω==Ω=50R r 200r 221,2.直流电压档图1-4为实验用万用表直流电压档线路,给定表头参数同上。

rlc串联谐振电路总结

rlc串联谐振电路总结

rlc串联谐振电路总结RLC串联谐振电路总结引言RLC串联谐振电路是一种基础的电路,广泛应用于各个领域,如通信、电力系统、医疗设备等。

本文将详细介绍RLC串联谐振电路的基本原理、特性以及应用,并结合实际案例进行分析和讨论。

一、RLC串联谐振电路的基本原理1.1 RLC电路元件介绍RLC电路由电阻(R)、电感(L)和电容(C)组成。

电阻是消耗电能的元件,电感是储存电能的元件,电容是储存电能的元件。

1.2 谐振的概念谐振是指电路中某些电压或电流的幅度具有最大值的现象。

RLC串联电路中,当电感、电容和电阻的参数选择合适时,可以实现谐振。

1.3 LRC电路的阻抗RLC串联电路的总阻抗可表示为Z = R + j(Xl - Xc),其中R是电阻,j是虚数单位,Xl是电感的感抗(即感性阻抗),Xc是电容的容抗(即容性阻抗)。

感抗和容抗在不同频率下具有不同的大小和方向。

1.4 谐振频率谐振频率是指电路中感抗和容抗大小相等,阻抗最小的频率。

谐振频率可通过求解总阻抗为实数的频率得出。

二、RLC串联谐振电路的特性2.1 幅频特性幅频特性是指在不同频率下电压或电流的大小变化规律。

RLC串联电路在谐振频率附近,电压或电流的幅度较大,达到最大值;而在谐振频率之外,幅度逐渐减小。

2.2 相频特性相频特性是指在不同频率下电压或电流的相位差变化规律。

在谐振频率附近,电压与电流的相位差为0,即电压和电流完全同相;而在谐振频率之外,相位差逐渐增大。

2.3 幅相特性幅相特性是指在不同频率下电压或电流的幅值与相位差的关系。

在RLC串联电路中,幅值与相位差之间存在一定的关系,通常在Bode图中表示。

三、RLC串联谐振电路的应用3.1 通信领域RLC串联谐振电路在通信领域中被广泛应用于滤波器、调谐器等电路中。

通过合理选择电阻、电感和电容参数,可以实现滤波、频率选择功能。

3.2 电力系统RLC串联谐振电路在电力系统中用于电力因数校正、电力滤波等应用。

rlc并联谐振电路阻抗的特点

rlc并联谐振电路阻抗的特点

rlc并联谐振电路阻抗的特点【主题介绍】在电路中,RLC并联谐振电路是一种具有特殊频率响应的电路。

它由电感(L)、电阻(R)和电容(C)三个元件组成,能够在特定频率下表现出较低的阻抗。

本文将深入探讨RLC并联谐振电路的阻抗特点,并分享对该电路的观点和理解。

【1. RLC并联谐振电路简介】RLC并联谐振电路由电阻元件、电感元件和电容元件并联连接而成。

在电路中,电感元件储存电能,电容元件储存电荷,而电阻元件对电流产生阻碍。

当电路中的频率等于谐振频率时,电感和电容的阻抗相互抵消,使得电路整体的阻抗具有最小值,这就是并联谐振电路的特点所在。

【2. RL并联谐振电路的阻抗特点】在RLC并联谐振电路中,阻抗以复数形式呈现,由实部和虚部组成。

实部代表电路的有源部分,而虚部则代表电路的无源部分。

2.1 低阻抗:RLC并联谐振电路在谐振频率附近表现出较低的阻抗。

当电路的频率等于谐振频率时,电感和电容的阻抗相互抵消,整个电路的阻抗呈现最小值。

这种低阻抗特点使得电路在谐振频率附近对电流更加敏感,电信号可以更轻松地通过电路,实现有效的能量传输。

2.2 频率选择性:RLC并联谐振电路在谐振频率附近表现出较高的频率选择性。

谐振频率附近,电感和电容的阻抗值会急剧变化,对其他频率的电信号产生较高的阻碍。

这种频率选择性让电路能够选择通过特定频率的信号,抑制其他频率的干扰信号,从而实现滤波的功能。

2.3 相位角特性:RLC并联谐振电路的阻抗特点还表现在相位角上。

在谐振频率附近,电路中的电感和电容的阻抗几乎相等,且互相抵消,导致电路的相位角接近零。

而在谐振频率两侧,相位角逐渐增大,表现出较大的相位差。

这种相位角特性可以用来调节信号的相位,对于某些特定应用具有重要意义。

【3. RLC并联谐振电路的观点和理解】RLC并联谐振电路是一种常用的电路结构,具有诸多特点和应用。

以下是对该电路的观点和理解:3.1 实用性:RLC并联谐振电路的低阻抗特点使其在实际应用中具有广泛用途。

rlc并联谐振电路实验报告

rlc并联谐振电路实验报告

rlc并联谐振电路实验报告一、实验目的二、实验原理三、实验器材和仪器四、实验步骤五、实验结果分析六、实验结论一、实验目的本次实验旨在掌握并理解RLC并联谐振电路的基本原理及其特性,通过对电路参数的调整和观察,加深对谐振电路的认识和理解。

二、实验原理1. RLC并联谐振电路的基本原理RLC并联谐振电路由一个电感L、一个电容C和一个固定阻值R组成。

当该电路被接到交流源上时,如果交流源频率等于该电路的共振频率,则该电路会出现共振现象。

此时,整个电路中流动的电流将达到最大值,并且在L和C之间形成一个高阻抗区域。

2. 共振频率计算公式RLC并联谐振电路的共振频率f0可以通过以下公式进行计算:f0 = 1 / (2π√LC)3. 实验器材和仪器本次实验所需器材和仪器如下:- RLC并联谐振电路板- 信号发生器- 示波器- 万用表四、实验步骤1. 连接电路将RLC并联谐振电路板、信号发生器和示波器进行连接。

具体连接方式如下:- 将信号发生器的正极接到电路板上的“+”端口,负极接到“-”端口。

- 将示波器的探头分别接到电路板上的“Vout”和“GND”端口。

2. 测量电路参数使用万用表测量电路板上的电感L、电容C和阻值R,并记录下来。

3. 调节信号发生器频率将信号发生器输出频率调整为从几百Hz开始逐渐增加,直到观察到示波器上出现共振现象为止。

记录下此时的频率f0。

4. 观察示波器曲线观察示波器上的曲线,包括幅度和相位。

通过调整信号发生器频率,观察曲线幅度和相位随着频率变化而变化的情况。

5. 改变电路参数改变电路板上的L、C或R值,再次进行步骤3和4,并记录下观察结果。

五、实验结果分析在本次实验中,我们成功地制作了一个RLC并联谐振电路,并通过实验观察到了电路的共振现象。

通过调整信号发生器频率,我们成功地找到了该电路的共振频率f0,并观察到了示波器上的曲线幅度和相位随着频率变化而变化的情况。

在改变电路参数后,我们发现电路的共振频率和曲线幅度、相位等特性会发生变化。

RLC串联谐振特性


Q1: RLC串联电路作用
在无线电接收设备中用来选择接收信号 电路对非谐振频率的信号衰减作用大,广播电台以不同频率的电
磁波向空间发射自己的讯号,调节收音机中谐振电路的可变电容, 可将不同频率的各个电台分别接收。
在电子技术中用来获取高频高压 对于一般实用的串联谐振电路,R很小且常用L的电阻(即电感线圈
并联时,负载电压只有一个,电流回路有两个,电压与电源相同, 电容电流与电感电流的差值等于电源电流。因此这是电流谐振。
Q3:
在串联谐振发生时,电容或电感上的电压约等于外加电压的Q倍。但 是当你将负载并联到电容或电感上时,电路的Q值将大大下降,这时 在电路中计算时就不能用原来的空载Q值,而要用“有载Q值”,有 载Q可能小于1! 在串联谐振电路中,电感和电容的电压数值相等,方向相反。 理论上是无穷大,不过实际中由于二极管的压降,共频和负载等原因会 使其电压大大缩减, 变压器的基本原理是电磁感应原理,在初级线圈上加一交流电压,在 次级线圈两端就会产生感应电动势。当N2>N1 时,其感应电动势要 比初级所加的电压还要高,这种变压器称为升压变压器:当N2<N1 时,其感应电动势低于初级电压,这种变压器称为降变压器。初级次 级电压和线圈圈数间具有下列关系。 式中n 称为电压比(圈数比) 。 当n<1 时,则N1>N2 ,V1>V2 ,该变压器为降压变压器。反之则 为升压变压器
(5) 功率
+
P=RI02=U2/R,电阻功率达最大。

Q QL QC 0,
U
即QLL与Cω交0换LI能02量, ,Q与C 电源间ω无10C能量I02交换。
_

IR
+
_

+

rlc并联谐振电路

rlc并联谐振电路rlc并联谐振电路是一种重要的电路结构,它由电阻(R)、电感(L)和电容(C)三个元件组成,并且这三个元件是并联连接的。

在这篇文章中,我们将详细介绍rlc并联谐振电路的基本原理、特性以及应用。

我们来了解一下rlc并联谐振电路的基本原理。

在电路中,电感元件会产生感抗,电容元件会产生容抗,而电阻元件会产生电阻。

当这三个元件并联连接时,它们共同决定了电路的特性。

当电路中加入交流电源时,rlc并联谐振电路的电阻、电感和电容将产生对电流的不同阻碍。

当频率为特定值时,电路的阻抗将达到最小值,这就是谐振频率。

在谐振频率下,电路中的电感和电容元件将形成一个共振回路,电流将达到最大值。

接下来,我们来讨论一下rlc并联谐振电路的特性。

首先是谐振频率。

谐振频率可以通过以下公式计算得出:f = 1 / (2π√(LC))其中,f为谐振频率,L为电感的值,C为电容的值,π为圆周率。

其次是谐振的带宽。

带宽是指在谐振频率附近,电路的阻抗仍然很小的一段频率范围。

带宽可以通过以下公式计算得出:BW = f2 - f1其中,BW为带宽,f1和f2分别为电路阻抗为谐振阻抗的两个频率。

rlc并联谐振电路还具有选择性增强的特性。

在谐振频率附近,电路对特定频率的信号具有较大增益,而对其他频率的信号则具有较小增益。

这种特性使得rlc并联谐振电路在通信领域中有着重要的应用,例如用于选择性放大特定频率的信号。

除了在通信领域中的应用外,rlc并联谐振电路还广泛应用于许多其他领域。

例如,在音频设备中,它可以用于音频滤波器的设计。

在电力系统中,它可以用于电力因数校正和电力滤波器的设计。

在电子设备中,它可以用于频率选择性放大器的设计。

rlc并联谐振电路是一种重要的电路结构,具有谐振频率、带宽和选择性增强等特性。

它在通信、音频、电力和电子等领域中有着广泛的应用。

通过深入理解rlc并联谐振电路的原理和特性,我们可以更好地应用它,并且为各种应用提供更好的解决方案。

RLC串联谐振电路特性研究

RLC串联谐振电路特性研究RLC串联谐振电路是一种电路,由电感(L)、电容(C)和电阻(R)组成。

在谐振频率下,电路中的电感、电容和电阻之间会产生共振,使电压和电流达到最大值。

本文将从谐振频率、幅频特性和相频特性三个方面介绍RLC串联谐振电路的特性。

首先,RLC串联谐振电路的谐振频率可以通过以下公式计算:f=1/(2π√(LC))其中,f为谐振频率,L为电感的感值,C为电容的容值。

根据该公式,可以知道谐振频率与电感和电容的值有关,当电感或电容的值变化时,谐振频率也会相应变化。

而当电感和电容的值确定时,可以通过改变电阻的值来调节谐振频率。

其次,RLC串联谐振电路的幅频特性表明了在不同频率下电路的电压和电流的幅值变化。

在谐振频率下,电压和电流的幅值最大,此时电路具有最大的共振效应。

而在谐振频率上方和下方,幅值逐渐减小。

在谐振频率附近,幅频特性呈现出一个尖峰,该尖峰的带宽与电路的品质因数Q有关。

当电路具有较高的品质因数时,幅频特性的尖峰较窄,电路具有较窄的带宽。

反之,品质因数较低时,幅频特性的尖峰较宽,电路具有较宽的带宽。

最后,RLC串联谐振电路的相频特性表明了在不同频率下电路中电压和电流之间的相位差。

在谐振频率下,电压和电流之间的相位差为零,即二者完全同相。

而在谐振频率附近的上下方,相位差逐渐增大。

在谐振频率下方,电压超前电流;在谐振频率上方,电压滞后电流。

相频特性的斜率越大,相位差的变化越快。

综上所述,RLC串联谐振电路具有很多特性,包括谐振频率、幅频特性和相频特性。

谐振频率取决于电感和电容的数值,可以通过改变电阻值来调节。

幅频特性和相频特性描述了电压和电流在不同频率下的变化情况,以及它们之间的相位差。

这些特性对于理解和分析RLC串联谐振电路的工作原理和性能非常重要。

rlc串联谐振电路特点

rlc串联谐振电路特点RLC串联谐振电路是一种基本的电路结构,它由一个电感、一个电容和一个电阻组成。

在这个电路中,电感和电容组成了谐振回路,电阻则是负责消耗电路中的能量。

当电路中的电感和电容的值恰好满足一定条件时,电路会出现共振现象,这种现象被称为谐振。

在这篇文章中,我们将探讨RLC串联谐振电路的特点。

1.频率选择性RLC串联谐振电路具有很强的频率选择性。

当电路中的电感和电容的值符合一定条件时,电路会在特定的频率下出现共振。

在共振频率下,电路的阻抗达到最小值,电路中的电流和电压达到最大值。

在其他频率下,电路的阻抗会增大,电流和电压也会降低。

因此,RLC串联谐振电路可以用来选择特定的频率信号。

2.相位差在RLC串联谐振电路中,电感和电容会引起电压和电流之间的相位差。

在共振频率下,电路中的电流和电压是同相的,而在其他频率下,电流和电压之间会出现相位差。

这种相位差可以用来将信号进行相位移动,因此RLC串联谐振电路也可以用来作为相移电路。

3.电路品质因数电路品质因数是衡量电路的谐振特性的一个重要参数。

在RLC 串联谐振电路中,品质因数越高,电路的谐振特性就越好。

品质因数可以通过电路中的电阻、电感和电容值来计算。

在实际应用中,我们需要选择合适的电阻、电感和电容值来提高电路的品质因数。

4.电路稳定性RLC串联谐振电路的稳定性取决于电路中的元件的质量和工作条件。

在实际应用中,电路中的元件可能会受到温度、湿度等环境因素的影响,从而导致电路的性能发生变化。

因此,我们需要选择高品质的电路元件,并且在设计电路时要考虑到环境因素对电路的影响。

5.应用广泛RLC串联谐振电路在电子工程中应用广泛。

例如,在收音机中,RLC串联谐振电路被用来选择特定的频率信号。

在滤波器中,RLC串联谐振电路被用来滤除或增强特定频率的信号。

在发生器中,RLC串联谐振电路被用来产生特定频率的信号。

总结RLC串联谐振电路是一种基本的电路结构,具有很强的频率选择性、相位差、电路品质因数、电路稳定性和广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RLC串、并联谐振回路的基本特性
老师网 时间:2008-09-22 15:57:24
LC 串并联谐振回路特性实验
一、实验目的
1、掌握LC 振荡回路的谐振原理。

2、掌握LC 串并联谐振回路的谐振特性。

3、掌握LC 串并联谐振回路的选频特性。

二、实验内容
测量LC 串并联谐振回路的电压增益和通频带,判断选择性优劣。

三、实验仪器
1、扫频仪一台
2、20MHz 模拟示波器一台
3、数字万用表一块
4、调试工具一套
四、实验原理
(一)基本原理
在高频电子线路中,用选频网络选出我们所需的频率和滤除不需要的频率成分。


常,在高频电子线路中应用的选频网络分为两类。

第一类是由电感和电容元件组成的振
荡回路(也称谐振回路),它又可以分为单振荡回路以及耦合振荡回路;第二类是各种
滤波器,如LC 滤波器,石英晶体滤波器、陶瓷滤波器和声表面滤波器等。

本实验主要
介绍第一类振荡回路。

1、串联谐振回路
信号源与电容和电感串联,就构成串联振荡回路。

电感的感抗值( wL )随信号频
率的升高而增大,电容的容抗值(
wC
1
)则随信号频率的升高而减小。

与感抗或容抗的
变化规律不同,串联振荡回路的阻抗在某一特定频率上具有最小值,而偏离特定频率时
的阻抗将迅速增大,单振荡回路的这种特性为谐振特性,这特定的频率称为谐振频率。

图2-1 所示为电感L、电容C 和外加电压Vs 组成的串联谐振回路。

图中R 通常是
电感线圈损耗的等效电阻,电容损耗很小,一般可以忽略。

图2-1 串联振荡回路
保持电路参数R、L、C 值不变,改变外加电压Vs 的频率,或保持Vs 的频率不变,
而改变L 或C 的数值,都能使电路发生谐振(回路中的电流的幅度达到最大值)。

在某一特定角频率 w0 时,若回路电抗满足如下条件:
(2-1)
则电流为最大值,回路发生谐振。

上式称为串联谐振回路的谐振条件。

回路发生串联谐振的角频率w0 和频率f0 分别为:
(2-2)
将式(2-2)代入式(2-1)得
(2-3)
我们把谐振时的回路感抗值(或容抗值)与回路电阻R 的比值称为回路的品质因数,
以Q 表示,简称Q 值,则得
(2-4)
若考虑信号源内阻Rs 和负载RL 后,串联回路的电路如图2-2 所示。

由于Rs 和RL
的接入使回路Q 值下降,串联回路谐振时的等效品质因数 QL 为
图2-3 为串联振荡回路的谐振曲线,由图可见,回路的Q 值越高,谐振曲线越尖锐,
对外加电压的选频作用愈显著,回路的选择性就愈好。

因此,Q 值的大小可说明回路选
择性的好坏。

当回路的外加信号电压的幅值保持不变,频率改变为w = w1 或2 w = w 时,此时回
路电流等于谐振值的倍,如图2-4 所示。

w2 − w 1称为回路的通频带,其绝对值为
(2-5)
式中 w1 和 w 2为通频带的边界角频率。

在通频带的边界角频率 w1 和 w 2上,。

这时,回路所损耗的功率为谐振时的一半,所以这两个特定的边界频率又
称为半功率点。

2、并联谐振回路
串联谐振回路适用于信号源内阻等于零或很小的情况(恨压源),如果信号源内阻
很大,采用串联谐振回路将严重降低回路的品质因数,使串联谐振回路的选择性
显著变
坏(通频带过宽)。

在这种情况下,宜采用并联谐振回路。

并联谐振回路是指电感线圈L、电容器C 与外加信号源相互并联的振荡电路,如图
2-5 所示。

由于电容器的损耗很小,可以认为损耗电阻集中在电感之路中。

图2-5 并联振荡回路
并联振荡回路两端间的阻抗为:
(2-6)
在实际应用中通常满足wl 〉〉R 的条件,因此
(2-7)
并联谐振回路的导纳Y=1/Z,由式(2-7)得
(2-8)
式中,G=CR/L 为电导,B=(wC-1/wL)为电纳。

因此,并联振荡回路电压的幅值为
(2-9)
由式2-9 可见,当回路导纳B=0 时,回路电压V0 与电流Is 同相。


们把并联振荡回路的这种状态叫做并联回路对外加信号源频率发生并联谐振。

由并联振荡回路导纳的并联谐振条件,可以导出并联回路角
频率p w 和谐振频率p f 分别为:
(2-10)
同样的
若考虑信号源内阻Rs 和负载RL 后回路Q 值下降。

和串联回路一样,Qp 愈高,谐振曲线愈尖锐,回路的选择性愈好,但通频带愈窄。

高频电子线路实验指导书
五、实验步骤
参考实验箱附带的接收模块上印刷的原理图G2。

1、在主箱上正确插好接收模块,按照电路原理图G2,正确连接电路电源线,+12V
孔接+12V,+5V 孔接+5V,GND 接GND(从电源部分+12V 和+5V 插孔用连接线接入),
接上电源通电,并拨动开关K1 (若正确连接了,扩展板上的电源指示灯将会亮)。

2、将跳线JA1 连接好,JAB 断开,组成LC 串联回路,输入频率为10.7MHz 的高频
信号(参考高频信号源的使用),观察电路起振情况,记录输入、输出电压值。

3、电压增益AV0
可以由示波器直接测量。

方法如下:
用示波器测输入信号的峰峰值,记为Ui。

测输出信号的峰峰值记为Uo。

则小信

放大的电压放大倍数为Uo/Ui。

同学们也可以换用扫频仪测试AV0 。

4、测量通频带BW
用逐点法测量BW。

先调谐LC 谐振回路使其谐振o f =10.7MHz,记下此时的电压放大
倍数vo A ,然后改变高频信号发生器的频率(保持其输出电压uS 不变),并测出对应的
电压放大倍数vo A ,多测几点。

用扫频仪测量BW。

同学们自行测试,并比较结果。

5、放大器的选择性
放大器选择性的优劣可用放大器谐振曲线的矩形系数Kr0.1 表示,用(4)中同样的
方法测出B0.1 即可得:
6、将跳线JA1 连接好,JAB 断开,组成LC 并联回路,做上面同样的步骤。

六、实验报告
1、整理好实验数据,并以表格形式记录。

2、在坐标纸上绘出LC 串并联回路不同Q 值的谐振曲线。

3、在坐标纸上绘出LC 串并联回路的通频带,指出截止频率。

相关文档
最新文档