高中数学“四种条件”的判断方法专题辅导

高中数学“四种条件”的判断方法专题辅导
高中数学“四种条件”的判断方法专题辅导

高中数学“四种条件”的判断方法

要判断条件p 是结论q 的充分必要条件,或必要不充分条件,或充分不必要条件,或既不充分也不必要条件,除要对命题“若p 则q ”和“若q 则p ”的真假进行正确判断之外,还要掌握一些常用的方法与技巧。对初学者来说有些条件的判断是有一定难度的,本文谈谈四种条件的判断应用,供大家参考。

一、定义法

由“四种条件”的定义可知:判断条件p 是结论q 的什么条件,实际上就是判断q p ?或p q ?的正确与否。只要运用题目中所给的条件和相关的数学知识加以判断即可。而对于抽象命题的判断,则只有将题中所给的逻辑关系画出示意图,再利用定义进行判断。 例1 “2x 2x 21>>且”是“4x x 4x x 2121>>+且”的( )

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

解析:命题中条件p 是“2x 2x 21>>且”,结论q 是“4x x 4x x 2121>>+且”。若2x 2x 21>>且,则422x x 21=+>+且422x x 21=?>(即q p ?),这说明“2x 1>且2x 2>”是“4x x 4x x 2121>>+且”的充分条件。

若4x x 4x x 2121>>+且,则1x 1=,5x 2=适合上式,但2x 1<,可见由4x x 21>+且4x x 21>推不出)p q (2x 2x 21?/>>即且,这说明“2x 2x 21>>且”不是“4x x 21>+且4x x 21>”的必要条件。故应选A 。

点评:“若p 则q ”是原命题,可知:①原命题真而逆命题不真,则p 是q 的充分不必要条件;②原命题不真而逆命题真,则p 是q 的必要不充分条件;③原命题、逆命题都真,则p 是q 的充要条件;④原命题、逆命题都不真,则p 是q 的既不充分也不必要条件。

二、集合法

如果从命题的条件和结论之间的关系来判断有困难时,有时可以从集合的角度来考虑,尤其是所研究的条件p 与q 表示两数集时,这种方法就更显优越性。记条件p 、q 对应的集合为A 、B ,即:)}x (p |x {A =,)}x (q |x {B =。

①若B A ?,则p 是q 的充分条件,q 是p 的必要条件;②若B A ≠?,则p 是q 的充分不必要条件,q 是p 的必要不充分条件;③若A=B ,则p 是q 的充要条件;④若B A ?/,且A B ?/,则p 是q 的既不充分也不必要条件。

上述命题的逆命题也是正确的。 例2 是否存在实数m ,使“0m x 4<+”是“02x x 2>--”的充分条件?如果存在,求出m 的取值范围。是否存在实数m ,使“0m x 4<+”是“02x x 2>--”的必要条件?如果存在,求出m 的取值范围。

解析:设p :0m x 4<+,q :02x x 2>--。 条件p 对应的集合}4

m x |x {}0m x 4|x {A -<=<+=,条件q 对应的集合B={x|x x 2--2>0}=}1x 2x |x {-<>或。

若q p ?成立,则必有B A ?,在数轴上表示两集合的关系易知14

m -≤-,可得4m ≥。于是4m ≥时,B A ?,即q p ?。故存在4m ≥,使“0m x 4<+”是“02x x 2>--”的充分条件。

若p 是q 的必要条件,则必有p q ?成立,即要A B ?,这样不可能。

故不存在实数m ,使“0m x 4<+”是“02x x 2>--”的必要条件。 点评:充要条件反映了命题间相互推导的逻辑关系,同时也是集合之间关系的一种反

映。如B A ?,则A 中的元素是属于B 的充分条件,B 中的元素是属于A 的必要条件。本题将“若p 则q ”的判断转换成两集合之间的一种包含关系,从而使问题便于判断。

三、等价法

利用q p ?与p q ???;q p p q ????与;p q q p ????与的等价关系,对于条件或结论是不等关系(否定式)的命题,一般运用等价法。

例3 已知p :2|3

1x 1|≤--,q :0m 1x 2x 22≤-+-(m>0),且?p 是?q 的必要不充分条件,求实数m 的取值范围。

解析:由?p 是?q 的必要不充分条件,即q p p q ??/????且,可得p q q p ?/?且。

可知q 是p 的必要不充分条件,则p 是q 的充分不必要条件。

由0m 1x 2x 22≤-+-,得m 1x m 1+≤≤-(m>0)。

∴q :}m 1x m 1|x {B +≤≤-= 又由2|31x 1|≤--

,得10x 2≤≤-。

∴p :}10x 2|x {A ≤≤-=。 又p 是q 的充分不必要条件,知B A ≠?

∴?????>≥+-≤-0m 10m 12m 1,解得不等式组的解为9m ≥ 故所求实数m 的取值范围是),9[+∞。

点评:本题充分利用互为逆否的两个命题的等价性进行转换,从而得到q 是p 的必要不充分条件,又根据“四种条件”的定义将其转化为p 是q 的充分不必要条件,再利用集合关系顺利求解。

高中数学解题基本方法 换元法

高中数学解题基本方法--换元法 高中数学解题基本方法--换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4+2-2≥0,先变形为设2=t(t 0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=+

的值域时,易发现x∈[0,1],设x=sinα,α∈[0,],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x+y=r(r 0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t 0和α∈[0,]。 Ⅰ、再现性题组: 1.y=sinx??cosx+sinx+cosx的最大值是_________。 2.设 f x+1 =log 4-x (a 1),则 f x 的值域是_______________。 3.已知数列 a 中,a=-1,a??a=a-a,则数列通项a=___________。 4.设实数x、y满足x+2xy-1=0,则x+y的取值范围是___________。 5.方程=3的解是_______________。 6.不等式log 2-1 ??log 2-2 〈2的解集是_______________。 【简解】1小题:设sinx+cosx=t∈[-,],则y=+t-,对称轴t=-1,当t=,y=+; 2小题:设x+1=t t≥1 ,则f t =log[- t-1 +4],所以值域为-∞,log4];

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 2018-12-26 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路 ?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路??????→不等式思想与方法欲求范围字母的不等式或不等式组

高中数学四大思想

高中数学四大思想 1.数形结合思想 数形结合,“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 实质:将抽象的数学语言与直观图形结合起来;将抽象思维和形象思维结合起来。抽象问题具体化,复杂问题简单化。 应用数形结合的思想,应注意以下数与形的转化: (1)集合的运算及韦恩图; (2)函数及其图象; (3)数列通项及求和公式的函数特征及函数图象; (4)方程(多指二元方程)及方程的曲线. 以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法. 以数助形常用有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合. 2.分类讨论思想 分类讨论思想,即根据所研究对象的性质差异,分各种不同的情况予以分析解决. 原则:化整为零,各个击破。无重复、无遗漏、最简。 步骤: 1)明确讨论对象,确定对象范围; 2)确定分类标准,进行合理分类,做到不重不漏; 3)逐类讨论,获得阶段性结果; 4)归纳总结,得出结论。 常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.

3.函数与方程思想 函数思想,即将所研究的问题借助建立函数关系式或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; 方程思想,即将问题中的数量关系运用数学语言转化为方程模型加以解决. 运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到: (1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质。 (2)密切注意一元二次函数、一元二次方程、一元二次不等式等问题;掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略。 4.转化与化归思想 转化与化归思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想。 转化,是将数学命题由一种形式向另一种形式的变换过程; 化归,是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转化有等价转化与不等价转化。等价转化后的新问题与原问题实质是一样的;不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正。 原则:化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有:正与反的转化、数与数的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学解题基本方法--参数法 大全

高中数学解题基本方法--参数法 参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。 辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。 参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。 Ⅰ、再现性题组: 1. 设2x=3y=5z>1,则2x、3y、5z从小到大排列是________________。 2. (理)直线 x t y t =-- =+ ? ? ? ?? 22 32 上与点A(-2,3)的距离等于2的点的坐标是________。 (文)若k<-1,则圆锥曲线x2-ky2=1的离心率是_________。 3. 点Z的虚轴上移动,则复数C=z2+1+2i在复平面上对应的轨迹图像为 ____________________。 4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。 5. 设函数f(x)对任意的x、y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)的R上是______函数。(填“增”或“减”) 6. 椭圆x2 16 + y2 4 =1上的点到直线x+2y-2=0的最大距离是_____。 A. 3 B. 11 C. 10 D. 22 【简解】1小题:设2x=3y=5z=t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y<2x<5z; 2小题:(理)A(-2,3)为t=0时,所求点为t=±2时,即(-4,5)或(0,1);(文)已 知曲线为椭圆,a=1,c=1 1 + k ,所以e=- 1 k k k 2+; 3小题:设z=bi,则C=1-b2+2i,所以图像为:从(1,2)出发平行于x轴向右的射线; 4小题:设三条侧棱x、y、z,则1 2 xy=6、 1 2 yz=4、 1 2 xz=3,所以xyz=24,体积为4。 5小题:f(0)=0,f(0)=f(x)+f(-x),所以f(x)是奇函数,答案:减;

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

数学七大思想方法

数学七大思想方法 1 函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础。高考把函数与方程思想作为七种重要思想方法重点来考查。 2 数形结合思想 (1)数学研究的对象是数量关系和空间形式,即数与形两个方面。 (2)在一维空间,实数与数轴上的点建立一一对应关系; 在二维空间,实数对与坐标平面上的点建立一一对应关系。 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。 3 分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法。 (2)从具体出发,选取适当的分类标准。 (3)划分只是手段,分类研究才是目的。 (4)有分有合,先分后合,是分类整合思想的本质属性。 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性。 4 化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题。 (2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。 5 特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识。 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论。 (3)由特殊到一般,再由一般到特殊的反复认识过程。 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程。 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向。 6 有限与无限的思想 (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路。 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向。 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用。 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查。 7 或然与必然的思想 (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性。 (2)偶然中找必然,再用必然规律解决偶然。 (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学解题思想之等价变换思想.

等价转化思想方法 等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。 转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。 著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。 等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。 在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。 Ⅰ、再现性题组: 1. f(x是R上的奇函数,f(x+2=f(x,当0≤x≤1时,f(x=x,则f(7.5等 于_____。 A. 0.5 B. -0.5 C. 1.5 D. -1.5

高中数学常见思想方法总结

高中常见数学思想方法 方法一 函数与方程的思想方法 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解. 函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的. 【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><. (1)求公差d 的取值范围; (2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由. 【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题. 【解】(1) 由3a =12a d +=12,得到1a =12-2d , 所以12S =121a +66d =12(12-2d )+66d =144+42d >0, 13S =131a +78d =13(12-2d )+78d =156+52d <0. 解得:2437 d -<<-. (2)解法一:(函数的思想) n S =21115(1)(12)222 na n n d dn d n ++=+- =22 124124552222d d n d d ????????---- ? ????????????? 因为0d <,故212452n d ????-- ???????最小时,n S 最大.

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

高中数学解题基本方法之配方法

配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如: a2+b2=(a+b)2-2ab=(a-b)2+2ab; a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b 2 )2+( 3 2 b)2; a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα)2; x2+1 2 x =(x+ 1 x )2-2=(x- 1 x )2+2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n }中,a 1 ?a 5 +2a 3 ?a 5 +a 3 ?a 7 =25,则 a 3 +a 5 =_______。 2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k=1 4 或k=1 3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log 1 (-2x2+5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [5 4 ,+∞) C. (-1 2 ,5 4 ] D. [5 4 ,3) 5. 已知方程x2+(a-2)x+a-1=0的两根x 1、x 2 ,则点P(x 1 ,x 2 )在圆x2+y2=4上,则 实数a=_____。

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

(完整版)高中数学四大思想方法

高中数学四大思想方法 ————读《什么是数学》笔记 《什么是数学》这本书是一本数学经典名著,它收集了许多闪光的数学珍品。它的目标之一是反击这样的思想:"数学不是别的东西,而只是从定义和公理推导出来的一组结论,而这些定义和命题除了必须不矛盾外,可以由数学家根据他们的意志随意创造。"简言之,这本书想把真实的意义放回数学中去。但这是与物质现实非常不同的那种意义。数学对象的意义说的是"数学上'不加定义的对象'之间的相互关系以及它们所遵循的运算法则"。数学对象是什么并不重要,重要的是做了什么。这样,数学就艰难地徘徊在现实与非现实之间;它的意义不存在于形式的抽象中,也不存在于具体的实物中。对喜欢梳理概念的哲学家,这可能是个问题,但却是数学的巨大力量所在--我们称它为,所谓的"非现实的现实性"。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。我根据自己在数学方面的兴趣,基于已有的数学背景知识,选取一部分和高中有关的内容进行舒心愉快的阅读。重新总结了高中数学中的数学四大思想方法:函数与方程、转化与化归、分类讨论、数形结合;函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。 等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范

高中最全数学解题的思维策略资料全

一、《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,
昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们
下午物理上完之后再给大家补课,再给大家补 5 天的课程,
去年高考难,很多学生数学考得也很不错,,很多人可能会问补课
有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留
学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,
补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高
考中分数的重要性,,我姐是个老师,我姐经常说孩子们考好了,
家长就说,,考不好,家长就说老师和郭师哥教的不好,实际上主
体还是我们学生,次要的才是老师,家长,环境,据去年那批学生
反映最后对我们 3 个教的还不错,
我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点
基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多
好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家
讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下
一些英语,语文和其他科目的技巧。


数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效
的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻
牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分
钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填
空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道

高中数学解题基本方法--待定系数法

高中数学解题基本方法--待定系数法 要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)≡g(x)的充要条件是:对于一个任意的a值,都有f(a)≡g(a);或者两个多项式各同类项的系数对应相等。 待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。 使用待定系数法,它解题的基本步骤是: 第一步,确定所求问题含有待定系数的解析式; 第二步,根据恒等的条件,列出一组含待定系数的方程; 第三步,解方程组或者消去待定系数,从而使问题得到解决。 如何列出一组含待定系数的方程,主要从以下几方面着手分析: ①利用对应系数相等列方程; ②由恒等的概念用数值代入法列方程; ③利用定义本身的属性列方程; ④利用几何条件列方程。 比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。 Ⅰ、再现性题组: 1.设f(x)=x 2 +m,f(x)的反函数f-1(x)=nx-5,那么m、n的值依次为_____。 A. 5 2 , -2 B. - 5 2 , 2 C. 5 2 , 2 D. - 5 2 ,-2 2.二次不等式ax2+bx+2>0的解集是(-1 2 , 1 3 ),则a+b的值是_____。 A. 10 B. -10 C. 14 D. -14 3.在(1-x3)(1+x)10的展开式中,x5的系数是_____。 A. -297 B.-252 C. 297 D. 207 4.函数y=a-bcos3x (b<0)的最大值为3 2 ,最小值为- 1 2 ,则y=-4asin3bx的最小 正周期是_____。 5.与直线L:2x+3y+5=0平行且过点A(1,-4)的直线L’的方程是_______________。 6.与双曲线x2-y2 4 =1有共同的渐近线,且过点(2,2)的双曲线的方程是 ____________。

相关文档
最新文档