机械原理课程设计压床机构
机械原理课程设计压床机构分析 设计说明书

尺寸标注:准确、清晰、完 整
装配关系:明确各部件之间 的装配关系,如螺栓、螺母、
轴承等
安全要求:考虑安全因素, 如防护罩、安全开关等
设计说明:对设计进行说明, 如设计思路、设计目的、设 计特点等
设计图纸的说明及标注
设计图纸包括:机构图、零件图、装配图等 机构图:表示机构各部分之间的相对位置和运动关系 零件图:表示零件的形状、尺寸、材料、加工方法等 装配图:表示各零件之间的装配关系和连接方式 标注:包括尺寸、公差、技术要求等,用于指导生产和检验
设计图纸的审核与修改
审核标准:是否符合设计要求,是否满足使用需求 审核内容:图纸的完整性、准确性、清晰度、规范性 修改建议:根据审核结果,提出修改意见和建议 修改流程:根据修改建议,进行图纸的修改和完善 审核确认:修改后的图纸再次进行审核,确认无误后提交使用
07 总结与展望
总结本次设计的主要内容与成果
压床机构的基本组成
压床机构主要由压床、压板、压杆、弹簧、螺栓等部件组成。
压床机构通过压床、压板、压杆等部件的配合,实现对工件的压紧和松 开。 弹簧和螺栓等部件用于调节压床机构的压力和行程,保证压床机构能够 稳定、准确地工作。
压床机构还配有安全装置,如限位开关、安全阀等,以确保操作安全。
03 压床机构的工作原理
压床机构的优化方法
提高压床机构的稳 定性:通过优化设 计,提高压床机构 的稳定性,减少振 动和噪音。
提高压床机构的效 率:通过优化设计, 提高压床机构的工 作效率,减少能耗。
提高压床机构的精 度:通过优化设计 ,提高压床机构的 精度,减少误差。
提高压床机构的安 全性:通过优化设 计,提高压床机构 的安全性,减少事 故发生。
机械原理课程设计压床机构说明书

机械原理课程设计压床机构说明书机械原理课程设计压床机构是一种用于金属冲压加工的机械装置。
它由床身、滑块、曲柄连杆机构、压力系统和控制系统等部分组成。
其基本工作原理是利用电机的动力通过曲柄连杆机构将旋转运动转化为直线往复运动,从而实现金属工件的冲压加工。
床身是压床机构的主体部分,它提供了稳定的工作平台和支撑结构。
滑块是压床机构的工作部件,用于施加压力并实现冲压加工。
滑块通过曲柄连杆机构与电机相连,其往复运动的速度和行程可以根据工件的要求进行调节。
曲柄连杆机构是压床机构的核心部件,通过它可以将电机的旋转运动转化为滑块的直线往复运动。
曲柄连杆机构由曲轴、连杆和滑块组成。
曲轴是通过电机的旋转运动带动的零件,连杆将曲轴的旋转运动转化为滑块的往复运动。
滑块在运动时,通过压力系统施加一定的压力,将工件与模具进行配合,并实现冲压加工。
压力系统是压床机构的重要组成部分,它提供了所需的压力力量。
压力系统由液压缸、液压油箱、油泵等部分组成。
液压油泵通过机械装置提供压力力量,将压力传送到液压缸中,使其产生往复运动,并通过连接杆将压力传递给滑块,实现金属工件的冲压加工。
控制系统是压床机构的智能化部分,它通过传感器、执行器和控制器等系统实现对压床机构运行的监测和控制。
传感器可以实时感知工件的位置、压力和温度等参数,并将其传输给控制器。
控制器根据接收到的参数信号,通过执行器对压床机构的运行状态进行调节和控制,以实现精确的冲压加工效果。
总之,机械原理课程设计压床机构是一种利用曲柄连杆机构将电机的旋转运动转化为滑块的直线往复运动,通过压力系统施加压力进行金属冲压加工的机械装置。
它具有结构简单、操作方便、冲压加工精度高等特点,广泛应用于金属制造行业。
机械原理课程设计----压床机构

03
优点:
载荷能力强、适用范围广、可扩展性强
各优缺点分析方案
优点:
该机构能够完成压床所需要的工序,且在普通
四杆机构的基础上添加了一个固定杆件,并通
过杆件将冲头移动夫设置成不需要机架,大大
提高了机械的传动效率,机构更加稳定
缺点:
缺点:杆件
运动工程压
力角较大,
实际பைடு நூலகம்功较
小
04
各优缺点分析方案
●
柄轴上装有大齿轮6 并起飞轮的
作用。在曲柄轴的另一端装有油
泵凸轮,驱动油泵向连杆机构的
供油。
压床机构设计数据
压床机构简介
02
创新方案介绍
各方案优缺点分析
优点:该机构在设计上不存在影响机构运动的死角,机构在运转工
程中不会因为机构本身的问题而突然停下来。机构使用凸轮和连
杆机构,设计简单,维修、检测都很方便。该机构使用的连杆和
3.计算方法差异:图解法通常是通过几何关系和运动学原理进行计算,而软件进行运动
仿真分析时,可能采用了更为复杂的数值计算方法,例如有限元法、牛顿-欧拉法等。
这些计算方法的差异可能导致图解法和仿真分析得出的数据存在一定的差异。
4.模型精度:软件进行运动仿真分析时,需要建立模型来描述系统的运动规律。模型的
精度和准确性会直接影响仿真分析的结果。如果模型的参数、约束条件等设置不准确,
或者模型本身存在一定的误差,那么得出的数据与实际情况可能存在偏差。
我的收获
◂ 创新设计的能力
◂ 团队合作的能力
◂ 查阅资料的能力
◂ 短时间内解决问题的能力
◂ 自主学习的能力
后记
THANKS!
1、采用曲柄摇杆结构,制造工艺简单,
机械原理课程设计之压床机构

机械原理课程设计说明书设计题目:学院:班级:设计者:学号:指导老师:目录一、机构简介与设计数据.机构简介图示为压床机构简图,其中六杆机构为主体机构。
图中电动机经联轴器带动三对齿轮将转速降低,然后带动曲柄1转动,再经六杆机构使滑块5克服工作阻力rF而运动。
为了减少主轴的速度波动,在曲柄轴A 上装有大齿轮6z并起飞轮的作用。
在曲柄轴的另一端装有油泵凸轮,驱动油泵向连杆机构的供油。
(a)压床机构及传动系统机构的动态静力分析已知:各构件的重量G及其对质心轴的转动惯量Js(曲柄1和连杆4的重力和转动惯量(略去不计),阻力线图(图9—7)以及连杆机构设计和运动分析中所得的结果。
要求:确定机构一个位置的各运动副中的反作用力及加于曲柄上的平衡力矩。
作图部分亦画在运动分析的图样上。
凸轮机构构设计已知:从动件冲程H,许用压力角[α].推程角δ。
,远休止角δ,回程角δ',从动件的运动规律见表9-5,凸轮与曲柄共轴。
要求:按[α]确定凸轮机构的基本尺寸.求出理论廓线外凸曲线的最小曲率半径ρ。
选取滚子半径r,绘制凸轮实际廓线。
以上内容作在2号图纸上.设计数据设计内容连杆机构的设计及运动分析符号单位mm 度mm r/min数据I 50 140 220 60 1201501/2 1/4 100 1/2 1/2 II 60 170 260 60 1201801/2 1/4 90 1/2 1/2 III 70 200 310 60 120 210 1/2 1/4 90 1/2 1/2 连杆机构的动态静力分析及飞轮转动惯量的确定[δ] G2 G3 G5N1/30 660 440 300 4000 1/30 1060 720 550 7000 1/30 1600 1040 840 11000凸轮机构设计[a]ΦΦS Φˊ0mm 016 120 40 80 20 7518 130 38 75 20 9018 135 42 65 20 75二、压床机构的设计.传动方案设计2.1.1.基于摆杆的传动方案2.1.2.六杆机构A 2.1.3.六杆机构B 优点:结构紧凑,在C点处,力的方向与速度方向相同,所以传动角90γ=︒,传动效果最好;满足急回运动要求;缺点:有死点,造成运动的不确定,需要加飞轮,用惯性通过;优点:能满足要求,以小的力获得很好的效果;缺点:结构过于分散:综合分析:以上三个方案,各有千秋,为了保证传动的准确性,并且以满足要求为目的,我们选择方案三。
机械原理课程设计压床机构说明书

机械原理课程设计压床机构说明书一、设计目标及任务本次课程设计的目标是设计一种能够满足工业生产需求的压床机构。
通过对压床机构的设计,学生需要掌握机械原理的基本知识和设计方法,并能够应用这些知识和方法解决实际工程问题。
设计任务包括:1.压床机构的结构设计,包括压床的底座、上压板、滑块等主要零部件的设计。
2.压床机构的运动学分析,包括底座和上压板的运动关系、滑块的运动方式等。
3.压床机构的动力学分析,包括对驱动机构和压力传感器的选型和设计等。
4.压床机构的强度和刚度分析,包括对底座和上压板的刚度和强度进行计算和验证。
二、压床机构的结构设计压床的底座是整个机构的支撑结构,其设计应考虑到机械的稳定性和强度要求。
底座的形状和材料选用应根据实际情况进行确定。
上压板是压床机构的主要工作部件,其设计应考虑到压力传递、工作平稳性和刚度等要求。
上压板可以采用整体结构或分段结构,根据具体需求选择材料和加工工艺。
滑块是实现上压板运动的关键组成部分,其设计应满足工作平稳、拆装方便和耐磨损等要求。
滑块的材料可以选择高强度合金钢或铸铁等。
三、压床机构的运动学分析压床机构的运动学分析主要研究底座和上压板之间的相对运动关系,以及滑块的运动方式。
通过分析运动学特性,可以确定机构的工作行程、机械转换原理和机构的运动速度等参数。
四、压床机构的动力学分析压床机构的动力学分析主要研究驱动机构和压力传感器的设计和选型。
驱动机构可以选择液压或气动驱动,根据工作要求确定驱动力和行程。
压力传感器的选型需根据工作负荷大小和精度要求进行选择。
五、压床机构的强度和刚度分析压床机构的强度和刚度分析主要研究底座和上压板的刚度和强度。
通过计算和验证,确定机构在工作过程中不会发生变形或断裂,且能够承受工作负荷。
六、总结通过机械原理课程设计压床机构,学生能够综合运用所学的机械原理知识和设计方法,掌握机械结构设计的基本原理和方法。
在整个设计过程中,学生需要注意结构的稳定性、强度和刚度,以及机械的工作平稳性和精度要求。
机械原理压床机构课程设计

机械原理压床机构课程设计一、引言机械压床是一种常见的金属加工设备,广泛应用于工业生产中。
机械压床的核心组成部分是压床机构,它通过机械原理实现对工件的加工压制。
本文将对机械原理压床机构进行课程设计,通过对机械原理的应用以及压床机构的设计,实现对工件的精确加工。
二、机械原理在压床机构中的应用1.杠杆原理机械压床中常用的杠杆原理是通过杠杆的杠杆比来实现对工件的压制。
杠杆原理是基于力的平衡条件,根据力的平衡方程可以得到压床的设计参数。
通过合理选择杠杆的长度和角度,可以实现不同大小的力对工件的施加。
2.滑块与曲柄机构滑块与曲柄机构是一种常见的压床机构,通过曲柄的旋转带动滑块上下运动,从而实现对工件的压制。
这种机构利用了曲柄的旋转运动转化为滑块的直线运动,使得压床的压制效果更加稳定和精确。
3.齿轮传动齿轮传动是一种常见的机械传动方式,广泛应用于机械压床中。
通过合理选择齿轮的齿数和模数,可以实现不同的传动比例,从而调节压床的工作速度和力度。
齿轮传动在机械压床中起到了重要的作用,使得压床机构的工作更加稳定和可靠。
三、机械原理压床机构的设计1.机械压床的结构设计机械压床的结构设计应考虑到工作台面的稳定性和工作台的移动性。
一般情况下,机械压床的结构包括机床床身、工作台、滑块等部分。
机床床身应具有足够的刚性和稳定性,以保证压床机构的精确加工。
工作台应具备足够的移动性,以适应不同尺寸的工件加工需求。
2.机械压床的动力系统设计机械压床的动力系统设计应考虑到工件加工的力度和速度。
一般情况下,机械压床的动力系统包括电机、离合器、齿轮传动等部分。
电机提供动力,离合器控制电机的启停,齿轮传动调节压床的工作速度和力度。
3.机械压床的控制系统设计机械压床的控制系统设计应考虑到工件加工的精度和自动化程度。
一般情况下,机械压床的控制系统包括控制柜、按钮、传感器等部分。
控制柜集成了机械压床的各个控制元件,按钮用于操作控制柜,传感器用于监测工件的加工状态。
机械原理课程设计压床机构说明书

机械原理课程设计压床机构说明书机械原理课程设计是机械工程专业的重要课程之一,旨在培养学生运用机械原理、机构设计等知识解决实际工程问题的能力。
压床机构是机械工程领域中一种常见的基本机构,用于对工件进行压制、成型、冲裁等工艺操作。
本文将详细介绍压床机构的设计原理和相关参考内容。
一、设计原理:压床机构的设计原理是将电机的旋转运动转化为线性压力,通过压床机构的设计,可以将电机的高速旋转运动转化为工作台的上下运动,从而实现对工件的压制、冲裁等工艺操作。
二、设计要求:1.设计压床机构时,需要考虑压力传递的稳定性和可靠性,确保能够传递足够的压力给工件。
2.设计要满足工艺要求,确保能够对工件进行准确的压制、成型或冲裁操作。
3.设计要尽量简化结构,减少零部件数量,提高生产效率和降低成本。
4.设计要考虑机械安全性,确保操作员的人身安全。
三、设计步骤:1.确定需求:根据实际工艺需求确定机床的规格和性能参数,例如压力、行程等。
2.选择电机:根据需求选择合适的电机,一般会选择步进电机或伺服电机,需要考虑转速、转矩等参数。
3.确定传动方式:根据转动运动转化为线性运动的需求选择适当的传动方式,可以采用滚珠丝杆传动或链条传动等。
4.确定机构类型:根据工艺要求选择压床机构的类型,例如C型压床、H型压床等。
5.绘制机床图纸:根据选定的机构类型和传动方式绘制机床的三维图纸,要确保各部件之间的配合和运动正常。
6.进行运动学分析:利用机械原理中的运动学知识对机床进行分析,包括位置分析、速度分析和加速度分析等。
7.进行强度分析:通过强度学分析,对机床的各个部件进行强度校核,确保机床的使用安全性。
8.选择材料和加工工艺:根据强度分析的结果选择合适的材料和加工工艺,确保机床的质量和使用寿命。
四、参考内容:1.陈静、马乔. 《机械原理及机械设计基础》. 机械工业出版社, 2017.2.邹柏青,马编宏,战士,邢悦. 《机械原理与设计》. 清华大学出版社,2015.3.林杰,张兆龙. 《机构学与机械原理》.北京大学出版社,2013.4.陈锐. 《机械原理》. 清华大学出版社,2014.5.朱斌. 《机械原理》. 清华大学出版社,2012.通过以上参考内容,可以系统地学习和研究机械原理和机构设计的相关知识,为压床机构的设计提供了理论基础和实践指导。
机械原理课程设计压床机构

机械原理课程设计压床机构机械原理课程设计说明书姓名:***学号:班级:指导老师:成绩:XXX2017年12月8日目录一、机构简介与设计数据1.1 机构简介本文介绍的机构是一个压床机构,用于压制金属材料。
该机构由凸轮机构和传动机构组成。
1.2 机构的动态静力分析在设计机构之前,需要进行动态静力分析,以确保机构的稳定性和可靠性。
1.3 凸轮机构构设计凸轮机构是压床机构的核心部分,它通过旋转运动来驱动压床。
在设计凸轮机构时,需要考虑凸轮的形状、尺寸和旋转速度等因素。
1.4 设计数据在设计压床机构时,需要确定各种参数,包括压力、速度、功率等。
这些参数将直接影响到机构的性能和效率。
二、压床机构的设计2.1 确定传动机构各杆的长度传动机构是指将凸轮机构的旋转运动转化为压床的线性运动的机构。
在设计传动机构时,需要确定各杆的长度,以确保机构的稳定性和准确性。
三、传动机构运动分析3.1 速度分析传动机构的速度分析是指对各杆的速度进行计算和分析。
这将有助于确定机构的速度和加速度。
3.1.1 确定凸轮的旋转速度凸轮的旋转速度是传动机构速度分析的重要参数。
在确定凸轮的旋转速度时,需要考虑机构的稳定性和效率。
3.1.2 确定压床的运动速度压床的运动速度是压床机构的重要参数之一。
在确定压床的运动速度时,需要考虑机构的稳定性和准确性。
3.2 加速度分析传动机构的加速度分析是指对各杆的加速度进行计算和分析。
这将有助于确定机构的加速度和动态性能。
EFDE14BS2BC12DS31DE2根据三角函数可得:$DF=\frac{y}{\sin\angle DFE}$,$FE=\frac{DF}{\tan\angle DFE}$,$DE=DF+FE$。
代入已知数值,计算得到$DF=230.94mm$,$FE=133.74mm$,$DE=364.68mm$。
因此,传动机构各杆的长度为:$AB=60mm$,$BC=182.26mm$,$CD=91.13mm$,$DE=364.68mm$,$EF=91.17mm$,$FG=170mm$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械原理课程设计说明书设计题目:学院:班级:设计者:学号:指导老师:目录目录 (2)一、机构简介与设计数据 (3)1.1.机构简介 (3)1.2机构的动态静力分析 (3)1.3凸轮机构构设计 (3)1.4.设计数据 (4)二、压床机构的设计 (5)2.1.传动方案设计 (5)2.1.1.基于摆杆的传动方案 (5)2.1.2.六杆机构A (5)2.1.3.六杆机构B (6)2.2.确定传动机构各杆的长度 (6)三.传动机构运动分析 (8)3.1.速度分析 (8)3.2.加速度分析 (10)3.3. 机构动态静力分析 (11)3.4.基于soildworks环境下受力模拟分析: (14)四、凸轮机构设计 (17)五、齿轮设计 (19)5.1.全部原始数据 (19)5.2.设计方法及原理 (19)5.3.设计及计算过程 (19)参考文献 (21)一、机构简介与设计数据1.1.机构简介图示为压床机构简图,其中六杆机构为主体机构。
图中电动机经联轴器带动三对齿轮将转速降低,然后带动曲柄1转动,再经六杆机构使滑块5克服工作阻力F而运动。
为了减少主轴rz并起飞轮的作用。
在曲柄轴的另一端装有油泵凸轮,的速度波动,在曲柄轴A 上装有大齿轮6驱动油泵向连杆机构的供油。
(a)压床机构及传动系统1.2机构的动态静力分析已知:各构件的重量G及其对质心轴的转动惯量Js(曲柄1和连杆4的重力和转动惯量(略去不计),阻力线图(图9—7)以及连杆机构设计和运动分析中所得的结果。
要求:确定机构一个位置的各运动副中的反作用力及加于曲柄上的平衡力矩。
作图部分亦画在运动分析的图样上。
1.3凸轮机构构设计已知:从动件冲程H,许用压力角[α ].推程角δ。
,远休止角δı,回程角δ',从动件的运动规律见表9-5,凸轮与曲柄共轴。
要求:按[α]确定凸轮机构的基本尺寸.求出理论廓线外凸曲线的最小曲率半径ρ。
选取滚子半径r,绘制凸轮实际廓线。
以上内容作在2号图纸上1.4.设计数据2m0.0850.20.39Φˊ二、压床机构的设计2.1.传动方案设计2.1.1.基于摆杆的传动方案2.1.2.六杆机构A 优点:结构紧凑,在C点处,力的方向与速度方向相同,所以传动角90γ=︒,传动效果最好;满足急回运动要求;缺点:有死点,造成运动的不确定,需要加飞轮,用惯性通过;优点:能满足要求,以小的力获得很好的效果;缺点:结构过于分散:2.1.3.六杆机构 B综合分析:以上三个方案,各有千秋,为了保证传动的准确性,并且以满足要求为目的,我们选择方案三。
2.2.确定传动机构各杆的长度已知:mm h mm h mm h 2203,1402,501=== , '360ϕ=︒,''3120ϕ=︒,1180,,2CE H mm CD == 32111,,.422DS EF BS DE BC DE === 如右图所示,为处于两个极限位置时的状态。
根据已知条件可得:︒=⇒==8.122205021tan θθh h︒=︒-︒=-=2.478.1260'θαα︒=︒-︒=-=2.1078.12120''θαβmmh h h h AD 61.225220*22050*503*31*1=+=+=mmEF mm CE mm CD mm DE mm H EF 5.37,50,100150150'===⇒=⇒== 在三角形ACD 和'AC D 中用余弦公式有:mm AC ADDC ACAC AD AD CD CD 9.173**2***cos =⇒-+=β ADCD AC AD DC '**2''cos 222-+=αmm AC 5.272'=⇒优点:结构紧凑,满足急回运动要求; 缺点:机械本身不可避免的问题存在。
{mmAC AC AB mm ACAC BC 3.492'2.2232'=-==+=2131.9,BS =390;DS =由上分析计算可得各杆长度分别为:三.传动机构运动分析项目 AB lBC lDE lEF l2BS l 3DS l CD l数值 3.492.2231505.37 131.990100单位mm3.1.速度分析已知:m in /1001r n =s rad n w /467.1060100260211=⨯==ππ,逆时针; s m w l w r v AB B /516.0467.100493.01=⨯=⋅=⋅=CBCB V V V =+;FEFE V V V =+大小 0.577 ? ? √ ?方向 CD ⊥ AB ⊥ BC ⊥ 铅垂 √ EF ⊥选取比例尺mmsm u v /0105.0=,作速度多边形如图所示;由图分析得:pcu v v c ⋅==0.004×18.71=0.07484m/sbcu v v CB ⋅==0.004×121.5=0.486m/speu v v E ⋅==0.004×28.06=0.11224m/spf u v v F ⋅==0.004×20.7=0.0828m/s efu v v FE ⋅==0.004×14.36=0.05744m/s22ps u v v s ⋅==0.004×69.32mm =0.27728m/s33ps u v v s ⋅==0.004×14.03mm =0.05612m/s∴2 =BCCBl v =0.486/0.223185=2.178rad/s (顺时针)ω3=CDC l v =0.07484/0.1=0.7484rad/s (逆时针) ω4=EFFE l v =0.05744/0.0375=1.532rad/s (顺时针)速度分析图:项目 B VC VE VF V2S V 3S V1ω2ω3ω4ω数值 516.0075.0112.0 083.0 277.0 056.0467.102.1780.7481.532单位 /m s /rad s3.2.加速度分析=⋅=AB B l w a 2110.4722×0.049285=5.405m/s 2BC n BC l w a ⋅=22=2.1782×0.223185=1.059m/s 2 CD n CD l w a ⋅=23=0.7482×0.1=0.056m/s 2EFn EFl w a ⋅=24=1.5322×0.0375=0.088m/s 2c a= a n CD + a t CD = a B + a t CB + a n CB大小: ? √ ? √ ? √ 方向: ? C →D ⊥CD B →A ⊥BC C →B 选取比例尺μa=0.04(m/s 2)/mm,作加速度多边形图''c p u a a c ⋅==0.04×113.53=4.5412m/s 2''e p u a a E ⋅==0.04×170.29=6.8116m/s2''c b u a a tCB ⋅==0.04×61.3=2.452 m/s 2''c n u a a tCD ⋅==0.04×113.52=4.5408 m/s 2a F = a E + a n FE + a t FE大小: √ ? √ ? 方向: √ ↑ F →E ⊥FE''f p u a a F ⋅==0.04×129.42=5.1768 m/s 2'2'2s p u a a s ⋅==0.04×120.97=4.8388m/s 2'3'3s p u a a s ⋅==0.04×85.15= 3.406m/s 2''f p u a a F ⋅==0.04×129.42= 5.1768m/s 2CB t CBl a =2α=2.452/0.223185=10.986 m/s 2 (逆时针) CD t CDl a =3α=4.5408/0.1=45.408 m/s 2 (顺时针)项目 aBaCaEF a2S a3S aα2α3数值 5.405 4.541 6.812 5.177 4.839 3.406 10.986 45.408单位m/s 2rad/s 23.3. 机构动态静力分析G 2 G 3 G 5F rmax J s2 J s3 方案I 660 440 30040000.28 0.085单位N Kg.m 21.各构件的惯性力,惯性力矩:g a G a m F s s s g 22222⋅=⋅==660×4.839/9.8=325.892N (与2s a 方向相同) g aG a m F s s g 33333⋅=⋅==440×3.406/9.8=152.922N (与3s a 方向相反)gaG a m F F F g ⋅=⋅=555=300×5.177/9.8=158.480N (与F a 方向相反)10max r r FF ==4000/10=400N222α⋅=s I J M =0.28×10.986=3.076N.m (顺时针) 333α⋅=s I J M =0.085×45.408=3.860N.m (逆时针)222g I g F M h ==3.076/325.892=9.439mm 333g I g F M h ==3.860/152.922=25.242mm2.计算各运动副的反作用力 (1)分析构件5对构件5进行力的分析,选取比例尺,/10mm N u F =作其受力图构件5力平衡: 0456555=+++R R G F g 则4545l u R F ⋅-==-10×47.44=-474.4N 4543R R -==474.4NN l u R F 8.12118.12106565=⨯=⋅=(2)分析构件2、3 单独对构件2分析:杆2对C 点求力矩,可得:0222212=⋅-⋅-⋅Fg g G BC tl F l G l R 096.0892.32538.1966019.22312=⨯-⨯-⨯t R N R t 711.5812=单独对构件3分析: 杆3对C 点求矩得: 03343433363=⋅+⋅+⋅-⋅Fg g R G CD t h F h R h G l R 024.0922.15265.354.47473.2144010063=⨯+⨯+⨯-⨯t R解得: N R t103.26563=对杆组2、3进行分析:R 43+F g3+G 3+R t 63+ F g2+G 2+R t 12+R n 12+R n63=0 大小:√ √ √ √ √ √ √ ? ? 方向:√ √ √ √ √ √ √ √ √ 选取比例尺μF =10N/mm ,作其受力图则 R n 12=10×156.8=1568N ; R n63=10×49.28=492.8N.(3)求作用在曲柄AB 上的平衡力矩Mb :m N l F M R b ⋅=⨯⨯=⋅=416.1300855.01091.1562121 N R R 1.15691091.1562161=⨯==项目 F g2 F g3 F g5 M I2 M I3 M bR n 63 R t 63 数值 325.89 152.92 158.48 3.08 3.86 13.42 492.8 265.10 单位 N N.m N项目 R n 12 R t12R 34 R 45 R 56 R 61 数值 1568.00 58.71 474.4 474.4 121.8 1569.1 单位 N3.4.基于soildworks环境下受力模拟分析:装配体环境下的各零件受力分析Soild works为用户提供了初步的应力分析工具————simulation,利用它可以帮助用户判断目前设计的零件是否能够承受实际工作环境下的载荷,它是COMOSWorks产品的一部分。