硫磺回收工艺介绍

合集下载

硫磺回收工艺原理

硫磺回收工艺原理

段,过程气中的硫蒸汽也将影响转化效率。
应当指出,分流工艺中由于部分酸气不经燃烧炉
即进入催化转化段,当酸气中含有重烃、尤其是
芳烃时,它们可能在催化剂上裂解结碳,对催化
剂的活性有重要的不良影响。

(三)直接氧化法

进料气中H2S含量在5%-10%时推荐采用此法。它是将进
料气预热后和空气混合至适当温度,直接进入转化器内进 行催化反应。进入转化器的空气量仍按进料气中1/3体积的
分均与分流法相似。
第四节 克劳斯延伸工艺 尾气处理

在常规克劳斯工艺的基础上,为了进一步 提高装置的硫收率或装置产能或扩展应用范 围,开发了多种克劳斯延伸工艺,包括克劳 斯组合工艺和克劳斯变体工艺。


由于“独立”的尾气处理装置对回收硫 的贡献不过4%~5%,从经济上的角度而言, 它是产出远远不抵投入的装置,这是人类为 维护自身生存环境而要求企业付出的代价。 因此,千方百计降低这方面的投入成为追求 的目标,将常规克劳斯与尾气处理合为一体 可降低投资操作费用,克劳斯组合工艺应运 而生。


二、克劳斯装置工艺流程
(一)直流法

直流法也称直通法、单流法或部分燃烧法,在通常
情况下,当酸气H2S浓度高于50%时可采用此种工艺。

(我公司现采用的为此种工艺)
直流法的主要特点是全部酸气与按需要配入的空气一起 进入燃烧炉反应,再经过余热锅炉(也称废热锅炉)、 经捕集硫磺后尾气或灼烧排空或进入尾气处理装置。
两级或更多的催化转化反应器与相应的硫磺冷凝冷却器,
采用直流工艺,燃烧炉内即有60%-70%的元素硫生
成,这就大大减轻了催化段的转化负荷而有助于提高
硫收率,因此直流工艺是首选工艺;其限制因素是酸 气H2S浓度不应低于50%,究其实质则是酸气与空气 燃烧的反应热应足以维持炉膛温度不低于927℃,一 般认为此温度是燃烧炉内火焰处于稳定状态而能够有

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势1. 克劳斯法硫磺回收原理克劳斯法是一种将含硫污水中的硫酸盐还原成硫磺的化学过程。

其原理是通过还原反应,使硫酸盐转化为硫醇,并进一步转化为元素硫。

克劳斯法将含硫污水中的硫酸盐转化为硫磺,同时释放出二氧化碳和水。

这种方法简单、原理清晰,对硫磺回收效果良好。

目前,克劳斯法硫磺回收工艺技术在化工、冶金等行业得到了广泛应用。

在化肥生产过程中,硫磺是必不可少的原料,而化肥生产废水中常含有大量硫酸盐,采用克劳斯法可以将硫酸盐回收为硫磺,节约了资源并减少了对环境的污染。

在冶金行业,由于冶炼过程中废气中含有大量硫化氢,采用克劳斯法可以将硫化氢转化为硫磺,实现了硫磺的回收。

克劳斯法硫磺回收工艺技术具有技术成熟、工艺简单、回收效率高的特点。

在实际应用中,该技术被广泛应用,并取得了显著的经济和环保效益。

克劳斯法硫磺回收工艺技术成为了当前硫磺回收的主要技术之一。

1. 技术改进方向目前,虽然克劳斯法硫磺回收工艺技术已经相对成熟,但仍然存在一些问题亟待解决。

现有的克劳斯法硫磺回收工艺技术存在能耗高、产物纯度较低、设备运行稳定性等方面的问题。

未来的发展方向主要包括降低能耗、提高产物纯度、改善设备运行稳定性等方面。

2. 配套设备的研发克劳斯法硫磺回收工艺技术需要配套的设备进行生产实施,例如还原反应器、脱硫器、结晶器等。

未来的发展趋势是研发更加高效、节能、环保的配套设备,以满足克劳斯法硫磺回收工艺技术的需求。

3. 与其他技术的结合应用随着科学技术的不断发展,克劳斯法硫磺回收工艺技术将与其他技术相结合,以期达到更好的效果。

可以将克劳斯法与生物技术相结合,利用微生物对硫酸盐进行生物降解,进而进一步提高硫磺回收效率。

还可以将克劳斯法与化学物理技术相结合,以达到降低产物纯度、提高能效等方面的目标。

4. 环保化发展随着社会对环保意识的不断提高,环保化已成为各行业的发展趋势。

克劳斯法硫磺回收工艺技术的发展趋势将更加注重环保化,努力达到减少废物排放、减少资源消耗等目标。

硫磺回收生产工艺

硫磺回收生产工艺

硫磺回收生产工艺硫磺是一种重要的化工原料,广泛应用于橡胶、纸张、颜料、化肥等行业。

然而,硫磺的生产和使用过程中会产生大量的废气、废水和废渣,对环境造成了严重的污染。

为了减少对环境的影响,硫磺回收生产工艺应运而生。

硫磺回收生产工艺主要包括废气脱硫、废水处理、废渣处理三个环节。

首先,废气脱硫是硫磺回收生产工艺中的一个重要环节。

硫磺生产过程中,废气中含有大量的二氧化硫,对环境产生严重污染。

废气脱硫通过使用脱硫剂将废气中的二氧化硫转化为硫酸,然后将硫酸用作制造硫酸肥料或其他化工产品。

此外,还可以使用吸附剂将废气中的二氧化硫吸附下来,然后重复使用吸附剂,大大节约了资源和成本。

其次,废水处理是硫磺回收生产工艺中的另一个重要环节。

硫磺生产过程中的废水含有大量的硫酸、硫酸盐、硫化物等有害物质。

在废水处理中,首先将废水中的固体杂质进行沉淀或过滤处理,然后使用生物法或化学法将废水中的有机物和无机物进行分解和降解,最后对废水进行沉淀和过滤处理,使水质达到国家排放标准,可以直接排入环境或循环使用。

最后,废渣处理是硫磺回收生产工艺中的最后一个环节。

硫磺生产过程中会产生大量的废渣,其中主要包括硫酸晶体、石膏、过滤渣等。

这些废渣中含有大量的硫酸、硫化物等有害物质,对土壤和地下水造成潜在威胁。

废渣处理主要通过高温焙烧、酸洗、过滤等工艺将废渣中的有害物质转化为可利用的产品或安全无害的物质,同时对废渣进行资源化利用,降低废渣对环境的危害。

总的来说,硫磺回收生产工艺是一种有效的减少硫磺生产过程中的污染排放、降低资源消耗和实现资源回收利用的方法。

硫磺回收生产工艺可以实现废气中二氧化硫的回收利用、废水的处理和废渣的处理,大大减少对环境的影响,保护了生态环境。

通过不断优化和创新硫磺回收生产工艺,我们可以更好地推动环境保护和可持续发展。

硫磺回收工艺比较

硫磺回收工艺比较

部分燃烧四级转化及过程气催化氧化脱硫工艺简述一、工艺技术概况炼油厂含H2S酸性气硫磺回收技术经过几十年的发展,已经非常成熟,目前我国石化和天然气工业主要采用克劳斯法回收硫磺,并配以适宜的尾气处理工艺以达到越来越严格的环境排放要求。

炼油厂加工过程中产生的含H2S酸性气均含有不同浓度的烃类、氨以及较多的CO2气体。

在石油化工企业中一般均采用工艺路线成熟的高温热反应和两级催化反应的克劳斯硫回收工艺,根据酸性气中H2S含量不同,通常采用部分燃烧法和分流法,部分燃烧法是将全部原料气引入制硫燃烧炉,在炉中按制硫所需的O2量严格控制配风比,使H2S在炉中约65%发生高温反应生成气态硫磺。

未反应的H2S和SO2再经过转化器,在催化剂的作用下,进一步完成制硫过程。

对于含有少量NH3及烃类的原料气,用部分燃烧法可将NH3及烃类完全燃烧分解为N2、CO2和H2O,使产品硫磺的质量得到保证。

部分燃烧法工艺成熟可靠,操作控制简单,能耗低,是目前国内外广泛采用的制硫方法。

制硫催化剂的选用是提高转化率的关键。

目前国内外均使用人工合成制硫催化剂,山东讯达化工集团有限公司开发的QS系列人工合成制硫催化剂的性能已达到了目前国外同类催化剂的水平,已在国内石化企业硫磺回收装置上广泛使用。

由于制硫催化剂的性能要求,进入转化器的过程气温度需要控制在220~260℃左右,而经冷凝冷却回收液态硫后的过程气温度为160℃,需提高温度后方可在催化剂作用下完成转化过程。

采用制硫燃烧炉后高温气掺合提高反应温度,方法简单易行,温度控制准确。

为了追求较高的H2S转化率和硫的总回收率,在原来燃烧炉加二级转化的基础上,又发展了三级转化甚至四级转化技术。

研究指出,理论上硫的露点对H2S平衡转化率起决定作用。

因此,H2S所能达到的总转化率取决于最后一个反应器出口过程气的温度。

近代发展的亚露点法(MCRC)和超级克劳斯法(super claus)就是在这一思想支持下发展起来的。

硫磺回收工艺流程说明

硫磺回收工艺流程说明

硫磺回收工艺流程说明下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!硫磺回收工艺流程。

1. 脱硫。

脱硫器将烟气中的硫氧化物(SOx)与吸收液(如石灰浆)混合,形成硫酸盐。

硫磺回收工艺

硫磺回收工艺

硫磺回收工艺硫磺回收装置包括硫磺回收、尾气处理、尾气焚烧、液硫脱气和液硫成型五个部分,处理溶剂再生和酸性水汽提来的酸性气。

1、制硫部分自酸性水汽提及溶剂再生装置来的酸性气经酸性气分液罐分液后进入酸性气燃烧炉。

酸性气分液罐排出的酸性液,自流至酸性液压送罐,经酸性水泵送到装置外(酸性水汽提装置)处理。

在炉内,根据制硫反应需氧量,通过比值调节严格控制进炉空气量,使进炉酸性气中的H2S约有65%直接生成元素硫,过程气经制硫余热锅炉发生1.2MPa(g)蒸汽回收余热,再经一级冷凝器发生0.4MPa低压蒸汽,同时将过程气中的元素硫冷凝为液态并分出进入液硫池。

根据反应温度要求,一级冷凝器后的过程气与制硫燃烧炉后的高温气流通过高温掺合阀,按要求混合后进入一级转化器,在催化剂的作用下,过程气中的H2S和SO2进一步转化为元素硫,自一转出来的高温过程气进入过程气换热器,与自二冷出来的过程气换热后,再进入二级冷凝器,过程气经二级冷凝器发生0.4MPa蒸汽并使元素硫凝为液态,液硫捕集分离后进入液硫池;由二级冷凝器出来的过程气再经过程气换热器加热后进入二级转化器,使过程气中剩余的H2S和SO2进一步发生催化转化,二转出口过程气经三级冷凝器发生0.4MPa蒸汽并使元素硫凝为液态,液硫被捕集分离进入液硫池,尾气经尾气分液罐分液后进入尾气处理部分。

液硫池的液硫,经脱气处理,液硫中的有毒气体被分出,送至尾气焚烧炉焚烧。

脱气后的液硫用泵送至液硫成型或至液硫装车。

2、尾气处理部分以焦化干气作燃料,在还原炉的燃烧室内进行次化学当量燃烧,产生还原性气体(H2、CO),自制硫尾气分液罐出来的制硫尾气,与该还原气在混合室内混合,被加热到300℃左右进入加氢反应器,在加氢催化剂的作用下进行加氢水解反应,将SO2、S X、CS2、COS等还原为H2S。

从尾气加氢反应器出来的气流经蒸汽发生器发生0.4MPa蒸汽回收热量后进入尾气急冷塔,与急冷水直接接触降温。

硫磺回收工艺流程

硫磺回收工艺流程

硫磺回收工艺流程硫磺回收工艺流程主要是将含有硫磺的废气或废水进行处理,将其中的硫磺分离出来,以减少环境污染并实现资源的回收利用。

下面是一个具体的硫磺回收工艺流程的简要介绍。

首先,硫磺回收工艺的第一步是收集含有硫磺的废气或废水。

这些废气通常是工业生产过程中产生的尾气,而废水则是工厂或化工厂排放出来的废水。

这些废气或废水经过合适的收集系统进行收集,并送入下一步的处理过程。

第二步是对废气或废水进行预处理。

预处理的目的是去除废气或废水中的杂质和污染物,使其更适合后续的硫磺分离过程。

预处理可以采用各种方法,如过滤、沉淀、吸附等。

接下来的第三步是硫磺分离。

这一步通常采用蒸馏或溶剂萃取的方法。

在蒸馏过程中,废气或废水中的硫磺在高温下蒸发,然后通过冷凝,使其凝结回到液体状态。

而溶剂萃取则是用一种溶剂将硫磺从废气或废水中提取出来。

第四步是对硫磺进行精制处理。

在这一步中,硫磺经过过滤、洗涤等处理,去除其中的杂质,得到纯净的硫磺。

这些纯净的硫磺可以用于再生利用或者销售给其他行业。

最后一步是对废气或废水进行尾气处理。

在处理完硫磺后,剩下的废气或废水中可能还存在一些有害污染物,需要进行进一步的处理以符合环保标准。

尾气处理可以采用各种方法,如吸附、催化、洗涤等,以去除废气或废水中的有害物质,使其达到环保要求。

以上就是一个典型的硫磺回收工艺流程的简要介绍。

在实际应用中,硫磺回收工艺可以根据具体情况进行调整和优化,以提高回收效率和降低成本。

硫磺回收工艺的应用可以减少硫磺资源的浪费,减轻环境污染,同时也有经济效益和社会效益。

硫磺回收工艺原理

硫磺回收工艺原理
❖ H2S+O2 ==SO2+H2O + 518.9 KJ/mol (2-2) ❖ H2S+SO2 ==S2+H2O – 42.1KJ/mol (2-3)
(四)硫循环法
当进料气中H2S含量在5%-10%甚至更低时可考虑采 用此法。它是将一部分液硫产品返回反应炉内,在另 一个专门的燃烧器中使其燃烧生成SO2,并使过程气 中H2S与SO2摩尔比为2。除此之外,流程中其它部 分均与分流法相似。
第一节硫磺介绍
❖ 一、概述
❖ 煤气中的H2S对合成触媒有着极大的危 害,严重影响触媒使用寿命,故需采取 措施脱除其中的H2S。此外,从煤气中 脱除的H2S又是生产硫磺的重要原料。 这样做,既可使宝贵的硫资源得到综合 利用,又可防止环境污染。
大约直到70年代初,主要只是从经济上 考虑是否需要进行硫磺回收。如果在经济上 可行,那就建设硫磺回收装置;如果在经济 上不可行,就把脱除的酸气燃烧后放空。但 是随着世界各国对环境保护的要求日益严格, 当前把煤气中脱除下来的H2S转化成硫磺, 不只是从经济上考虑,更重要的是出于环境 保护的需要。
第三节 工艺方法及流程
一、工艺方法选择 通常,克劳斯装置包括热反应、余热回收、硫冷凝、再 热及催化反应等部分。由这些部分可以组成各种不同的 克劳斯硫磺回收工艺,从而处理不同H2S含量的进料气。 目前,常用的工艺方法有直流法(部分燃烧法)、分流 法、硫循环法及直接氧化法等。不同工艺方法的区别在 于保持热平衡的方法不同。在这几种工艺方法的基础上, 又根据预热、补充燃料气等措施不同,派生出各种不同 的变型工艺方法,其适用范围见表3-1。
脱硫溶液再生所析出的含H2S酸气,大多进入克劳斯装置 回收硫磺。在酸气H2S浓度较低且硫量不大的情况下,也 可采用直接转化法在液相中将H2S氧化为元素硫。除此之 外,还可利用其生产一些硫的化工产品;将H2S转化为元 素硫及氢气具有更高的技术经济价值,因此其研究开发颇
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章总论 (3)1.1项目背景 (3)1.2硫磺性质及用途 (4)第二章工艺技术选择 (4)2.1克劳斯工艺 (4)2.1.1MCRC工艺 (4)2.1.2CPS硫横回收工艺 (5)2.1.3超级克劳斯工艺 (6)2.1.4三级克劳斯工艺 (9)2.2尾气处理工艺 (9)2.2.1碱洗尾气处理工艺 (9)2.2.2加氢还原吸收工艺 (13)2.3尾气焚烧部分 (13)2.4液硫脱气 (14)第三章超级克劳斯硫磺回收工艺 (15)3.1工艺方案 (15)3.2工艺技术特点 (15)3.3工艺流程叙述 (15)3.3.1制硫部分 (15)3.3.2催化反应段 (15)3.3.3部分氧化反应段 (16)3.3.4碱洗尾气处理工艺 (17)3.3.5工艺流程图 (17)3.4反应原理 (18)3.4.2制硫部分一、二级转化器内发生的反应: (18)3.4.3尾气处理系统中 (18)3.5物料平衡 (19)3.6克劳斯催化剂 (19)3.6.1催化剂的发展 (19)3.6.2催化剂的选择 (21)3.7主要设备 (21)3.7.1反应器 (21)3.7.2硫冷凝器 (21)3.7.3主火嘴及反应炉 (22)3.7.4焚烧炉 (22)3.7.5废热锅炉 (22)3.7.6酸性气分液罐 (22)3.8影响Claus硫磺回收装置操作的主要因素 (23)3.9影响克劳斯反应的因素 (24)第四章工艺过程中出现的故障及措施 (26)4.1酸性气含烃超标 (26)4.2系统压降升高 (27)4.3阀门易坏 (28)4.4设备腐蚀严重 (28)第一章总论1.1项目背景自从本世纪30年代改良克劳斯法实现工业化以后,以含H2S酸性气为原料的回收硫生产得到了迅速发展,特别是50年代以来开采和加工了大量的含硫原油和天然气,工业上普遍采用克劳斯过程回收元素硫。

经近半个世纪的演变,克劳斯法在催化剂研制、自控仪表应用、材质和防腐技术改善等方面取得了很大的进展,但在工艺技术方面,基本设计变化不大,普遍采用的仍然是直流式或分流式工艺。

由于受反应温度下化学反应平衡的限制,即使在设备和操作条件良好的情况下,使用活性好的催化剂和三级转化工艺,克劳斯法硫的回收率最高也只能达到97%左右,其余的H2S、气态硫和硫化物即相当于装置处理量的3%~4%的硫,最后都以SO的形式排入大气,严重地污染了环境。

2随着社会经济的不断发展,世界可供原油正在重质化,高含硫、高含金属原油所占份额也越来越大,迫使炼油厂商不断地开发新的技术,对重质原油进行深度加工。

然而原油的深度加工和生产低硫油品必然会使炼油厂副产大量H2S气体。

传统上含H2S的酸性气都采用克劳斯法回收硫磺,随着各国对环境保护日益重视,制定了更加严格的环保法规,迫使炼油工作者不断改进工艺,提高装置效能,降低尾气排硫量。

因此硫回收技术发展很快,近十几年来出现了许多新工艺、新技术,使硫回收技术提高到一个新水平。

1.2硫磺性质及用途硫的物理性质1bar下沸点444.6℃熔点(纯S)120℃比重 2.06燃点232℃闪点207℃溶解性单质硫不溶于H2O,微溶于C2H6O、C4H10O,溶于CS2。

形状黄色晶体,有一种特殊气味。

化学性质化学性质活泼能和大多数元素发生化学反应,生成相应的硫化物。

用途主要用于制造生产各种染料,多功能药剂,火柴,炸药,橡胶产品等。

危险性其硫蒸汽和硫燃烧生成的SO2对人的身体有毒并造成伤害。

第二章工艺技术选择硫磺回收装置由四部分组成,它们分别是 Claus 硫磺回收部分、尾气回收处理部分、尾气脱氢燃烧部分、液硫脱气部分等四部分组成。

2.1克劳斯工艺2.1.1MCRC工艺MCRC亚露点硫横回收工艺是由加拿大矿物和化学资源公司提出的一种把硫磺回收装置和尾气处理装置结合成一体的新技术,它将克劳斯反应扩展至硫露点以下、凝固点以上的低温(130-150℃)条件下,使克劳斯反应进行的更完全,在1976年实现工业化。

MCRC的工艺特点是:1、前半段与常规克劳斯回收工艺流程相同,后半段为两级交替处于吸附状态的MCRC催化反应段。

过程气切换阀自动程序控制,切换灵敏,操作过程平稳可靠;2、再生热源为上游克劳斯反应段经分硫和再热后的过程气本身,无需单独的再生系统和补充再生能量;3、过程气的再热方式为高温惨合和通过气气换热器再热,流程简单,占地面积小,操作和维修简便,4、由于应用了低温克劳斯技术,最后一级转化器中过程气是在硫蒸汽露点温度下反应,使实际转化率能够接近理论值。

MCRC过程最大特点之一是采取在线再生方式。

故具有占地少、能耗低、投资省、收率高、操作方便等优点,将常规克劳斯装置与尾气处理装置结合为一体,得到广泛的应用。

2.1.2CPS硫横回收工艺CPS硫横回收工艺是酸性气田天然气净化处理的关键配套技术,属于克劳斯延伸类硫横回收工艺,该工艺根据硫化氢与氧气反应生成单质硫和水的化学反应为可逆、放热反应的机理,在流程上创新性地增加了再生态切换前的预冷工艺,降低催化剂反应温度;创新性地増加了再生前的冷凝去硫工艺,降低单质硫分压值;创新性地回收焚烧炉排放烟气余热用于催化剂再热工艺,确保再生温度稳定,同时对废热进行充分回收利用等。

与国际同类硫磺回收工艺相等污染物排放少、适应性强的优比,具有投资省、硫横收率高、能耗低、SO2点。

CPS工艺由一床克劳斯反应段和三个后续的低温克劳斯反应段组成,主要特点有:1、装置应用低温克劳斯技术。

先对催化剂再生后的反应器进行预冷,待再生态的反应器过渡到低温吸附态时,下一个反应器才切换至再生状态,全过程中始终有两个反应器处于低温吸附状态,有效避免了同类工艺不经预冷就切换,从而导致切换期间硫磺回收率降低和SO2峰值排放的问题,确保了装置高的硫磺回收率。

2、装置先将热段冷凝器出来的过程气与余热锅炉出来的小部分650℃过程气经高温惨和阀混合至273°C,进入克劳斯反应器,气流中的H2S和SO2在催化剂床层上反应生成元素硫。

出克劳斯反应器的过程气温度升至344℃左右,经克劳斯硫磺冷凝器冷却至127°C,分离出其中绝大部分硫蒸汽后,再利用气/气换热器加热至再生需要的温度后进入再生反应器。

进入再生反应器中的硫蒸汽含量低,不仅有利于Claus反应向生成元素硫的方向进行,最大限度地提高硫回收率,而且解决了过程气也S/SO2比值在线分析仪的堵塞问题。

可确保在线分析仪长期可靠运行。

3、过程气切换采用特制夹套三通阀自动程序控制,切换灵敏,切换时间短,操作过程平稳可靠。

2.1.3超级克劳斯工艺超级克劳斯工艺特点是在前面的两级或三级反应器为常规克劳斯,但在富硫化氢的条件下(H2S/SO2>2)运行,以保证进入选择性氧化反应器的过程气H2S/SO2比略大于10。

配入适当高于化学当量的空气使硫化氨在催化剂上选择性氧化为硫。

较高的H2S/SO2比可得到较高的硫收率,但是过高的H2S/SO2比值必然使二段出口的硫化氢浓度升高,同时氧化选择性氧化段进料硫化氢浓度高将使催化剂床层产生大的温升,这是需要严格控制的,所以通常控制二段出口H2S/SO2比值在10左右,H2S浓度低于1.5%。

超级克劳斯工艺的关键步骤是选择氧化段,所选用的选择性催化剂只是将硫化氨氧化为元素硫,即使氧化过剩也不会产生S〇2和S〇3,也不催化H2S与S〇2的反应。

装置的工艺特点:1.非精确H2S/SO2的2:1控制。

超级克劳斯工艺通过调节风气比使进入超级克劳斯反应器中的H2S浓度适当,在克劳斯段采用H2S过量操作,使离开末级克劳斯反应器的尾气中含有0.2%-1.5%的H2S。

2、灵活简便的操作性。

超级克劳斯工艺克劳斯段采用过量的硫化氢操作,尾气硫化氨浓度允许在化0.2%-1.5%范围波动。

在超级克劳斯段采用前馈控制,进入超级克劳斯反应器前测定硫化氯的含量,计算出所需空气,在配加0.1%-1.0%的过量空气,从而使得超级克劳斯工艺操作具有很大的灵活性、简便性。

3、高效的超级克劳斯催化剂。

超级克劳斯催化剂能够将85%以上的硫化氢转化为硫。

并且,催化剂对过量的氧气和高浓度的水不敏感,不发生克劳斯反应和CO/H2的氧化反应,不生成COS及CS2。

这种选择性强的催化剂使得高硫回收率成为可能。

4、硫回收率高。

超级克劳斯工艺中克劳斯段H2S过量会抑制S〇2的浓度,通常低于0.1%;同时,在超级克劳斯段硫化氨的转化率超过90%,加上装置易于控制,其总硫收率超过99.2%。

2.1.3.1富氨酸性气燃烧技术制约反应炉和烧氨发生反应的因素为 3T,即 : 停留时间、温度和混合程度。

在酸性气燃烧炉火焰温度保持在 1300 摄氏度左右、保持时间 1.5秒以上,且使用高温稳定火嘴可使得残留氨浓度小于 50ppm。

同时,国外多套装置的运行证明,过程气残留氨浓度小于 150ppm 的情况下,对系统没有任何影响。

但要使氨气充分反应,在富氨酸性气回收硫磺过程中不堵塞,游离 NH3 必须达到 50ppm 一下的标准即可。

富氨酸性气回收硫磺的燃烧炉有两种是市场上应用最为广泛的,它们是:I:单火嘴/双区燃烧炉。

单火嘴/双区燃烧是通过控制二区旁路再生酸性进气量大小来实现对炉温度的控制,使进入火嘴的含氨和可再生的酸性气在高温条件下完成燃烧。

II:单火嘴/单区燃烧炉。

这一方案是在涡流型燃烧器中燃烧含氨和可再生的混合酸性气体,通过风箱(烧嘴外壳)的叶片产生旋流,使含氨和可再生的混合酸性气体充分混合,这样就能保证即使缺氧只要有高温的火焰(大于 1250℃),氨气就能被完全燃烧,因此,该方案可以作为 25%(v)以下的氨气处理,且投资少,设备简单,流程简短。

2.1.3.2过程气再热方式过程气再热方式主要包括中压蒸汽加热、电加热、气-气换热构成的间接方法、热气旁通的直接加热法、进气再热炉和焚烧气再热炉构成的再热炉加热法。

间接方法包括气换热和高温蒸汽预热,气换热也可以实现预热,但操作弹性小,不适合工厂加工原油多变的情况。

利用中压蒸汽加热法操作简单、弹性大、但投资偏大,对大中型硫磺回收装置则是合适的。

针对联合装置内有大量需求低压蒸汽的酸性水汽提及溶剂再生用户,正常操作时酸性气一、二、三级冷凝器产生低压蒸汽经济性最好。

再热炉加热无论是采用酸性气还是采用烃类作燃料,对操作控制要求都十分严格,若燃料气的组成波动较大,须增加燃料气密度仪,操作控制更为复杂,否则会因床层积碳而引起催化剂失活,增加系统压降,甚至出现黑硫磺。

热气旁通法(高温掺合)虽然与间接加热方式比较,Claus 段总硫回收率降低0.3%~0.5%。

比较适用于中小型硫磺回收装置过程气的加热。

由以上分析比较,此次采用自产中压蒸汽加热方式。

2.1.4三级克劳斯工艺三级克劳斯工艺包含一个高温反应段和三个催化反应段,废热锅炉的过程气被冷凝后,将过程气的硫分压降低,通过加热器加热到克劳斯反应温度,在克劳斯转化器内进行克劳斯反应,通过三级的克劳斯反应,最终尾气通过尾气灼烧炉燃烧后排放大气,其硫横回收效率最高只能达到98%。

相关文档
最新文档