DSP定点运算-Q格式
DSP的定点运算

DSP的定点运算DSP的定点运算技术2007-06-29 09:45:14阅读82评论0字号:大中小许DSP芯片只支持整数运算,如果现在这些芯片上进行小数运算的话,定点小数运算应该是最佳选择了,此外即使芯片支持浮点数,定点小数运算也是最佳的速度选择。
在DSP世界中,由于DSP芯片的限制,经常使用定点小数运算。
所谓定点小数,实际上就是用整数来进行小数运算。
下面先介绍定点小数的一些理论知识,然后以C语言为例,介绍一下定点小数运算的方法。
在TI C5000 DSP系列中使用16比特为最小的储存单位,所以我们就用16比特的整数来进行定点小数运算。
先从整数开始,16比特的储存单位最多可以表示0x0000到0xffff,65536种状态,如果它表示C语言中的无符号整数的话,就是从0到65535。
如果需要表示负数的话,那么最高位就是符号位,而剩下的15位可以表示32768种状态。
这里可以看出,对于计算机或者DSP芯片来说,符号并没有什么特殊的储存方式,其实是和数字一起储存的。
为了使得无论是无符号数还是符号数,都可以使用同样的加法减法规则,符号数中的负数用正数的补码表示。
我们都知道-1+1=0,而0x0001表示1,那么-1用什么来表示才能使得-1+1=0呢?答案很简单:0xffff。
现在就可以打开Windows的计算器,用16进制计算一下0xffff+0x0001,结果是0x10000。
那么0x10000和0x0000等价么,我们刚才说过用16比特来表达整数,最高位的1是第17位,这一位是溢出位,在运算寄存器中没有储存这一位,所以结果是低16位,也就是0x0000。
现在我们知道负数的表达方式了。
举个例子:-100。
首先我们需要知道100的16进制,用计算器转换一下,可以知道是0x0064,那么-100就是0x10000-0x0064,用计算器算一下得0xff9c。
还有一种简单的转换符号的方法,就是取反加一:把数x写成二进制格式,每位0变1,1变0,最后把结果加1就是-x了。
DSP芯片的定点运算

浮点数 x=0.5,定标 Q=15, 则定点数=0.5*32768=16384
SuQian College
Q表示、S表示及数值范围
QHale Waihona Puke 示 Q15 Q14. . . . . .
Q1 Q0
S表示 S0.15 S1.14
. . . . . .
S14.1 S15.0
十进制数表示范围 -1≤X≤0.9999695 -2≤X≤1.9999390
. . . . . .
-16384≤X≤16383.5 -32768≤X≤32767
1 定点的基本概念
SuQian College
1、数的定标
在定点DSP芯片中,采用定点数进行数值运算, 其操作数一般采用整型数来表示
DSP芯片的数以2的补码形式表示 数的定标:Q表示法和S表示法 对定点数而言,数值范围与精度是一对矛盾, 一个变量要想能够表示比较大的数值范围,必须 以牺牲精度为代价。
SuQian College
Q表示法16进制数2000H
Q0表示为8192
SuQian College
0010000000000000
符
号 位 Q15表示为0.25
小数点的位置
0010000000000000
小数点的位置
浮点数与定点数的转换关系
浮点数转换为定点数
xq int x 2Q
定点数转换为浮点数
Q格式运算讲解

第3章 DSP 芯片的定点运算3.1 数 的 定 标在定点DSP 芯片中,采用定点数进行数值运算,其操作数一般采用整型数来表示。
一个整型数的最大表示范围取决于DSP 芯片所给定的字长,一般为16位或24位。
显然,字长越长,所能表示的数的范围越大,精度也越高。
如无特别说明,本书均以16位字长为例。
DSP 芯片的数以2的补码形式表示。
每个16位数用一个符号位来表示数的正负,0表示数值为正,1则表示数值为负。
其余15位表示数值的大小。
因此二进制数0010000000000011b =8195 二进制数1111111111111100b =-4对DSP 芯片而言,参与数值运算的数就是16位的整型数。
但在许多情况下,数学运算过程中的数不一定都是整数。
那么,DSP 芯片是如何处理小数的呢?应该说,DSP 芯片本身无能为力。
那么是不是说DSP 芯片就不能处理各种小数呢?当然不是。
这其中的关键就是由程序员来确定一个数的小数点处于16位中的哪一位。
这就是数的定标。
通过设定小数点在16位数中的不同位置,就可以表示不同大小和不同精度的小数了。
数的定标有Q 表示法和S 表示法两种。
表3.1列出了一个16位数的16种Q 表示、S 表示及它们所能表示的十进制数值范围。
从表3.1可以看出,同样一个16位数,若小数点设定的位置不同,它所表示的数也就不同。
例如:16进制数2000H =8192,用Q0表示 16进制数2000H =0.25,用Q15表示但对于DSP 芯片来说,处理方法是完全相同的。
从表3.1还可以看出,不同的Q 所表示的数不仅范围不同,而且精度也不相同。
Q 越大,数值范围越小,但精度越高;相反,Q 越小,数值范围越大,但精度就越低。
例如,Q0的数值范围是-32768到+32767,其精度为1,而Q15的数值范围为-1到0.9999695,精度为 1/32768 = 0.00003051。
因此,对定点数而言,数值范围与精度是一对矛盾,一个变量要想能够表示比较大的数值范围,必须以牺牲精度为代价;而想提高精度,则数的表示范围就相应地减小。
一种新的定点DSP Q格式数乘法运算方法

Q=L×,y×3276辫‘×g+‘×Q+(Q×g)>>15
=3 10743=0x0004BDD'/
Z=(float)(Q:X 2‘15)=9.483124
(1善xl。)<215
214
213
故只要保证
= +
用该方法处理Q15
格式的乘法,其计算结果基本正确。 该方法与将石和),按比例缩小或使用定标数小于15 的Q格式算法相比,该方法精度更高,并且可以从 根本上解决乘法运算的溢出问题。
f
x▲l恸
= +
5结论
f
y▲I恸
本文运用乘法运算和加法运算结合使用,Q0 格式和Q15格式整型数结合使用的方法提出一种新
(天津理工大学自动化学院
摘要TI公司最新推出了32位定点DSPTMS320F2812,并提出一种将浮点数转换成为Q格 式定标整型数进行运算的算法,解决了定点DSP无法直接处理浮点数的问题,提高了DSP运算 的速度.通常使用QO和Q15格式,但Q15格式数据阋的乘法运算极容易发生结果溢出的问题, 使得运算结果不准确.本文针对此问题提出一种新的Q15乘法运算算法,该算法从根本上解决了 Q15格式整型数相乘结果溢出的问题. 关键词:定点DSP A New Compute Q格式 结果溢出 of
该方法可以从根本上防止乘法运算时的溢出问 题,如上例,
y=2.57=3+0.57 Z=xxy=9.4833 ,,=2 y=3.69=3+0.69 【6】 【5】
苏奎峰.吕强.耿庆锋等.TMS320F2812原理与开 发.北京:电子工业出版社,2005 李其林.基于DSP的电机故障监测与数据传输技术. 天津理工大学.2006
212
2)变量定义为整型变量类型(int和long型), 采用放大若干倍数来表示小数。比如要表达精度达 到O.01Hz的频率变量f,就将变量f放大100,一 个初级程序员常常这样做,但这是一个比较僵硬的 做法。例如,当频率精度重新定义为O.001Hz时, 整个程序要全部重新编写,以防止溢出。 3)变量仍定义为整型变量类型(int和long型), 采用定标法来确定小数。整数定标本质上并不复 杂,简单而言,就是通过假定小数点位于哪一位, 从而确定小数的精度。 常用Q格式来表示数的定标。当假定小数点位 于第0位的右侧时,为Qo:当把小数点定位于第 15位的右侧时,为Q15,例如: 16进制数2000h=8192,用QO表示。 16进制数2000h=O.25,用Q15表示。 浮点数和定点数之间的转换公式如下: 浮点数xf转换为定点数xq时,
一DSP定点算数运算 1 数的定标 在定点DSP芯片中,采用...

一DSP定点算数运算1 数的定标在定点DSP芯片中,采用定点数进行数值运算,其操作数一般采用整型数来表示。
一个整型数的最大表示范围取决于DSP芯片所给定的字长,一般为16位或24位。
显然,字长越长,所能表示的数的范围越大,精度也越高。
如无特别说明,本书均以16位字长为例。
DSP芯片的数以2的补码形式表示。
每个16位数用一个符号位来表示数的正负,0表示数值为正,l则表示数值为负。
其余15位表示数值的大小。
因此,二进制数0010000000000011b=8195 二进制数1111111111111100b= -4 对DSP芯片而言,参与数值运算的数就是16位的整型数。
但在许多情况下,数学运算过程中的数不一定都是整数。
那么,DSP芯片是如何处理小数的呢?应该说,DSP芯片本身无能为力。
那么是不是说DSP芯片就不能处理各种小数呢?当然不是。
这其中的关键就是由程序员来确定一个数的小数点处于16位中的哪一位。
这就是数的定标。
通过设定小数点在16位数中的不同位置,就可以表示不同大小和不同精度的小数了。
数的定标有Q表示法和S表示法两种。
表1.1列出了一个16位数的16种Q表示、S表示及它们所能表示的十进制数值范围。
从表1.1可以看出,同样一个16位数,若小数点设定的位置不同,它所表示的数也就不同。
例如,16进制数2000H=8192,用Q0表示16进制数2000H=0.25,用Q15表示但对于DSP芯片来说,处理方法是完全相同的。
从表1.1还可以看出,不同的Q所表示的数不仅范围不同,而且精度也不相同。
Q越大,数值范围越小,但精度越高;相反,Q越小,数值范围越大,但精度就越低。
例如,Q0 的数值范围是一32768到+32767,其精度为1,而Q15的数值范围为-1到0.9999695,精度为1/32768=0.00003051。
因此,对定点数而言,数值范围与精度是一对矛盾,一个变量要想能够表示比较大的数值范围,必须以牺牲精度为代价;而想精度提高,则数的表示范围就相应地减小。
DSP与Q格式

DSP_Q 格式
1、Q 格式
就是将一个小数放大若干倍后,用整数来表示小数。
用这个放大的整数来进行中间过程的计算,最后把计算得出的结果又移位缩小为 原本的小数。
具体的Q 值是指小数点位于内存存储单元的第几位的右侧,把存储 单元分成整数和小数两部分。
2、Q 格式的定标
在定点DSP 处理器中,其数据结构一般用整型来表示,用定点的方式进行各种运 算,整型变量在内存中所占的自己数根据平台的不同而不同,一般情况下整型变 量占4个字节的存储单元。
如果我们要在定点DSP 中处理浮点数,那么我们就需要 通过Q 格式把浮点数表示成整型进行运算。
浮点数在内存单元中时分部存储,分 成符号位、数字、指数三个部分。
通过整型来表示浮点数进行存储,就是在内存 单元中利用小数点的位置将内存单元划分为两个部分,来分别表示整数和小数部 分。
这就是嵌入式浮点处理中所谓的数的定标。
3、Q 格式的运算
1> 定点加减法:须转换成相同的Q 格式才能加减
2> 定点乘法:不同Q 格式的数据相乘,相当于Q 值相加
3> 定点除法:不同Q 格式的数据相除,相当于Q 值相减
4> 定点左移:左移相当于Q 值增加
5> 定点右移:右移相当于Q 减少
4、Q 值的确定
设变量的绝对值的最大值为|max|,注意|max|必须小于或等于32767。
取一个整 数n ,使满足
12max 2n n -<<则有
2-Q=2-15*2n=2-(15-n)
Q=15-n
例如,某变量的值在-1至+1之间,即|max|<1,因此n=0,Q=15-n=15。
DSP-定点和浮点数格式解析

① 小数乘小数(n、m≠0,m≤ n) ② 整数乘小数(n≠0、m=0) ③ 整数乘整数(n=m=0)
① 小数乘小数(n、m≠0,m≤ n)
例:两个8位数相加,有溢出 进位位与最高位(MSB)不同 运算结果发生溢出,8位字长已不能正确地表示结果
10110000b( -80) + 10111111b( -65) 非饱和模式:101101111bቤተ መጻሕፍቲ ባይዱ-145)
00101001b( 41) + 01110011b(115) 非饱和模式:010011100b(156)
2)数值范围与精度
给定字长N,采用Qn格式表示小数
2 N 1 2 N 1 1 数值范围: n ~ 2 2n
精
度:
1
2n
16位字长Qn格式的数值范围与精度
Qn格式 Q15 数值范围 -1~0.999969482421875 精度 0.000030517578125
Q14
饱和模式:110000000b(-128)
饱和模式:001111111b(127)
溢出是由于字长有限,运算结果超出数值的表示范围引 起的
饱和模式
定点数减法运算的原理与加法运算相同
2)定点数的乘法运算
DSP处理器都有硬件乘法器和乘法指令,可实现单周期乘 法运算 二进制乘法运算包含一系列的移位和加法运算 定点数乘法运算不要求相乘数有相同的Qn格式 两个相乘数分别为Qn和Qm格式,字长为N,结果为 Q(n+m)格式,字长为2N 根据n和m的不同取值,定点数乘法运算可以分成三种情况
DSP 运算基础
• 1、 DSP的数据表示
• 2、定点数的格式与运算 • 3、浮点数的格式与运算
DSP的Q定标

一DSP定点算数运算1 数的定标在定点DSP芯片中,采用定点数进行数值运算,其操作数一般采用整型数来表示。
一个整型数的最大表示范围取决于DSP芯片所给定的字长,一般为16位或24位。
显然,字长越长,所能表示的数的范围越大,精度也越高。
如无特别说明,本书均以16位字长为例。
DSP芯片的数以2的补码形式表示。
每个16位数用一个符号位来表示数的正负,0表示数值为正,l则表示数值为负。
其余15位表示数值的大小。
因此,二进制数0010000000000011b=8195二进制数1111111111111100b= -4对DSP芯片而言,参与数值运算的数就是16位的整型数。
但在许多情况下,数学运算过程中的数不一定都是整数。
那么,DSP芯片是如何处理小数的呢?应该说,DSP芯片本身无能为力。
那么是不是说DSP芯片就不能处理各种小数呢?当然不是。
这其中的关键就是由程序员来确定一个数的小数点处于16位中的哪一位。
这就是数的定标。
通过设定小数点在16位数中的不同位置,就可以表示不同大小和不同精度的小数了。
数的定标有Q表示法和S表示法两种。
表1.1列出了一个16位数的16种Q 表示、S表示及它们所能表示的十进制数值范围。
从表1.1可以看出,同样一个16位数,若小数点设定的位置不同,它所表示的数也就不同。
例如,16进制数2000H=8192,用Q0表示16进制数2000H=0.25,用Q15表示但对于DSP芯片来说,处理方法是完全相同的。
从表1.1还可以看出,不同的Q所表示的数不仅范围不同,而且精度也不相同。
Q越大,数值范围越小,但精度越高;相反,Q越小,数值范围越大,但精度就越低。
例如,Q0 的数值范围是-32768到+32767,其精度为1,而Q15的数值范围为-1到0.9999695,精度为1/32768=0.00003051。
因此,对定点数而言,数值范围与精度是一对矛盾,一个变量要想能够表示比较大的数值范围,必须以牺牲精度为代价;而想精度提高,则数的表示范围就相应地减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DSP芯片的定点运算---Q格式(转)
2008-09-03 15:47
DSP芯片的定点运算
1.数据的溢出:
1>溢出分类:
上溢(overflow):
下溢(underflow)
2>溢出的结果:
Max
Min
上溢在圆圈上按数据逆时针移动;下溢在圆圈上顺时钟移动。
例:signed int :32767+1=-32768;-32768-1=32767
unsigned char:255+1=0;0-1=255
3>为了避免溢出的发生,一般在DSP中可以设置溢出保护功能。
当发生溢出时,自动将结果设置为最大值或最小值。
2.定点处理器对浮点数的处理:
1>定义变量为浮点型(float,double),用C语言抹平定点处理器和浮点处理器
的区别,但是程序的代码庞大,运算速度也慢。
2>放大若干倍表示小数。
比如要表示精度为0.01的变量,放大100倍去运算,
运算完成后再转化。
但是这个做法比较僵硬,如要将上面的变量重新定义成
0.001精度,又需要放大1000倍,且要重新编写整个程序,考虑溢出等问题。
3>定标法:Q格式:通过假定小数点位于哪一位的右侧,从而确定小数的精度。
Q0:小数点在第0位的后面,即我们一般采用的方法
Q15 小数点在第15位的后面,0~14位都是小数位。
转化公式:Q=(int)(F×pow(2,q))
F=(float)(Q×pow(2,-q))
3.Q格式的运算
1>定点加减法:须转换成相同的Q格式才能加减
2>定点乘法:不同Q格式的数据相乘,相当于Q值相加
3>定点除法:不同Q格式的数据相除,相当于Q值相减
4>定点左移:左移相当于Q值增加
5>定点右移:右移相当于Q减少
4.Q格式的应用格式
实际应用中,浮点运算大都时候都是既有整数部分,也有小数部分的。
所以要选择
一个适当的定标格式才能更好的处理运算。
一般用如下两种方法:
1>使用时使用适中的定标,既可以表示一定的整数复位也可以表示小数复位,如
对于2812的32位系统,使用Q15格式,可表示-65536.0~65535.999969482
区间内的数据。
2>全部采用小数,这样因为小数之间相乘永远是小数,永远不会溢出。
取一个极
限最大值(最好使用2的n次幂),转换成x/Max的小数(如果Max是取的2的n次幂,就可以使用移位代替除法)。
5.Ti的qmath.lib库说明:
见TI的文档C28x IQMath Library (SPRC087a).zip的详细说明。
TI公司给出了一个Q格式的数学库qmath.lib
注意Q格式函数使用的时序和空间要求,尽量避重就轻。