材料成形数值模拟

合集下载

复合材料成型数值模拟及其应用

复合材料成型数值模拟及其应用

复合材料成型数值模拟及其应用复合材料在现代工业中应用广泛,具有轻质、高强度、高刚度和优异的耐久性等特点。

然而,复合材料的成型过程可谓是一门艺术和技术的结合,需要大量的工程经验,试错和大量的实验验证。

随着计算机技术的不断进步,数值模拟成为一种有效的预测和分析复合材料成型过程的方法。

本文将从数值模拟的角度出发,探讨复合材料在制造过程中的应用。

一、复合材料成型的基本过程复合材料的成型过程一般分为模具设计、预浸料制备、预浸料浸渍、层叠和压缩这几个步骤。

1. 模具设计模具是决定复合材料成型特性的关键因素之一。

合理的模具设计可以提高复合材料的成型质量和生产效率。

目前,常用的模具包括手工模具、金属模具和树脂模具等。

2. 预浸料制备复合材料一般采用热固性环氧树脂作为基体材料,预浸料是将纤维预先浸润在树脂中的半成品材料。

预浸料的制备是浸渍复合材料的基础,质量的高低直接影响到成品的质量。

3. 预浸料浸渍浸渍是将预浸料浸润在纤维上的过程,纤维的含量、树脂的流动性和浸渍过程的参数都是影响浸渍质量的重要因素。

4. 层叠和压缩将浸渍好的纤维层叠起来并进行压缩,以使树脂浸润在纤维之间,形成复合材料。

二、复合材料成型数值模拟的概述数值模拟是一种通过计算机模拟实际过程的方法,可以在虚拟环境中预测实际过程的结果。

数值模拟可以显著缩短调试时间和成本,减少实验次数和避免安全事故的发生。

复合材料成型数值模拟的基础是复合材料的力学行为和传热学理论。

主要包括有限元分析、流体力学分析、热传分析和材料模拟等方法。

可采用数值模拟技术模拟复合材料的成型过程及其过程参数和材料物性对成型过程的影响。

数值模拟可以分为几个步骤:模型的建立、边界条件的确定、求解方案的选择、数值计算和结果的分析等。

模型的建立是数值模拟的基础,复合材料成型过程的模型建立对数值模拟的精度有很大的影响。

应该综合考虑成型过程的物理和化学特性,设计实用、精确、高效、可靠的数值模拟模型。

材料成型数值模拟设计实验

材料成型数值模拟设计实验

学生学号实验课成绩学生实验报告书实验课程名称材料成型数值模拟设计实验开课学院材料学院指导教师姓名学生姓名学生专业班级成型1001班2012-- 2013学年第二学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。

为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。

1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。

2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。

3、实验报告应由实验预习、实验过程、结果分析三大部分组成。

每部分均在实验成绩中占一定比例。

各部分成绩的观测点、考核目标、所占比例可参考附表执行。

各专业也可以根据具体情况,调整考核内容和评分标准。

4、学生必须在完成实验预习内容的前提下进行实验。

教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。

5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。

在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。

6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。

附表:实验考核参考内容及标准观测点考核目标成绩组成实验预习1.预习报告2.提问3.对于设计型实验,着重考查设计方案的科学性、可行性和创新性对实验目的和基本原理的认识程度,对实验方案的设计能力20%实验过程1.是否按时参加实验2.对实验过程的熟悉程度3.对基本操作的规范程度4.对突发事件的应急处理能力5.实验原始记录的完整程度6.同学之间的团结协作精神着重考查学生的实验态度、基本操作技能;严谨的治学态度、团结协作精神30%结果分析1.所分析结果是否用原始记录数据2.计算结果是否正确3.实验结果分析是否合理4.对于综合实验,各项内容之间是否有分析、比较与判断等考查学生对实验数据处理和现象分析的能力;对专业知识的综合应用能力;事实求实的精神50%实验课程名称材料成型数值模拟实验项目名称利用DEFORM模拟镦粗锻造成型实验成绩实验者专业班级成型1001班组别同组者实验日期2013年4月8日第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)一、实验目的1)了解认识DEFORM软件的窗口界面。

球囊成型工艺与过程数值模拟研究

球囊成型工艺与过程数值模拟研究

球囊成型工艺与过程数值模拟研究引言:球囊成型是一种常用的制造工艺,广泛应用于医疗、工业和航天等领域。

为了提高球囊成型的效率和质量,研究人员开始运用数值模拟方法来优化该工艺。

本文将探讨球囊成型工艺与过程数值模拟的研究。

一、球囊成型工艺概述球囊成型是一种利用气体或液体充入弹性材料球囊,使其膨胀并达到所需形状的工艺。

球囊成型广泛应用于血管介入手术、气囊注塑等领域。

传统的球囊成型工艺通常依赖于试验和经验,而数值模拟方法可以提供更准确的预测和优化。

二、球囊成型的数值模拟方法1.材料模型:数值模拟中,需要选择适合球囊材料的本构模型。

常用的材料模型包括线性弹性模型、非线性弹性模型和超弹性模型等。

根据球囊材料的特性和实际需求,选择合适的材料模型进行模拟分析。

2.边界条件:数值模拟中,需要确定球囊成型的边界条件。

边界条件包括球囊的初始形状、充气速度、充气压力等。

通过合理设定边界条件,可以模拟出球囊在不同工艺参数下的成型过程。

3.数值模拟方法:数值模拟中常用的方法包括有限元分析、CFD方法等。

有限元分析可以模拟球囊材料的变形和应力分布,CFD方法可以模拟气体或液体的流动。

结合这些方法,可以全面分析球囊成型的过程。

三、球囊成型工艺的优化通过数值模拟方法,可以对球囊成型工艺进行优化。

优化的目标包括提高成型效率、减少材料损耗和改善成品质量等。

通过模拟分析不同工艺参数的影响,可以找到最优的工艺参数组合,从而提高球囊成型的效率和质量。

四、数值模拟与实验验证数值模拟结果需要与实验数据进行验证,以确保模拟结果的准确性。

通过对比实验结果和模拟结果的差异,可以调整模型和参数,提高模拟的准确性。

数值模拟和实验验证相互结合,可以更好地理解球囊成型的工艺和机理。

结论:通过数值模拟方法,可以对球囊成型工艺与过程进行研究和优化。

数值模拟可以提供更准确的预测和分析,帮助改进球囊成型工艺,提高成型效率和质量。

然而,数值模拟结果需要与实验数据进行验证,以确保模拟结果的准确性。

7材料成型过程的计算机模拟——MOLDFLOW

7材料成型过程的计算机模拟——MOLDFLOW

7材料成型过程的计算机模拟——MOLDFLOW MOLDFLOW是一种用于模拟材料成型过程的计算机软件。

它通过计算机模拟,可以预测和优化塑料制品成型过程中的缺陷和问题,如短流、气泡、收缩和变形等。

本文将详细介绍MOLDFLOW的工作原理、应用和优势。

MOLDFLOW的工作原理主要基于有限元分析(FEA)方法。

它将整个成型过程分为多个时间和空间步骤,并对每个步骤中的物理过程进行数值模拟。

通过对塑料的熔融、流动、冷却和固化等过程的模拟,MOLDFLOW能够提供详细的信息,如温度分布、流动速度、塑料填充和压力分布等。

同时,MOLDFLOW还可以通过计算机模拟来预测和优化成型过程中的缺陷和问题,如短流、气泡、收缩和变形等。

MOLDFLOW的应用范围非常广泛。

它可以用于注塑成型、吹塑成型、压缩成型、挤出成型等各种材料成型过程的模拟和优化。

在注塑成型中,MOLDFLOW可以帮助优化模具设计、材料选择和加工参数,从而提高产品质量和生产效率。

在吹塑成型中,MOLDFLOW可以预测和优化瓶嘴的形状和位置,从而改善瓶子的气密性和外观。

在挤出成型中,MOLDFLOW可以模拟材料的流动和变形,从而改善挤出产品的尺寸精度和表面质量。

MOLDFLOW的优势主要体现在以下几个方面。

首先,它能够通过计算机模拟来预测和优化成型过程的缺陷和问题,从而节省了传统试验方法所需的时间和成本。

其次,MOLDFLOW可以提供详细的信息,如温度分布、流动速度、塑料填充和压力分布等,从而帮助工程师更好地理解材料的行为和成型过程的变化。

此外,MOLDFLOW还可以进行多场耦合分析,如热-流体耦合分析、应力-应变耦合分析和热-机械耦合分析等,从而更全面地研究材料成型的多种物理过程。

总之,MOLDFLOW是一种用于模拟材料成型过程的计算机软件。

它通过计算机模拟,可以预测和优化塑料制品成型过程中的缺陷和问题,如短流、气泡、收缩和变形等。

MOLDFLOW的工作原理基于有限元分析方法,它能够模拟塑料的熔融、流动、冷却和固化等过程,并提供详细的信息。

《材料成型过程的数值模拟》课程教学大纲

《材料成型过程的数值模拟》课程教学大纲

《材料成型过程的数值模拟》课程教学大纲课程编号:081096211课程名称:材料成型过程数值模拟英文名称:Computer Simulation of Materials Processing课程类型:专业课课程要求:必修学时/学分:32/2(讲课学时:16,实验学时:0,上机学时:16适用专业:材料成型及控制工程专业一、课程性质与任务本双语课程作为材料成型及控制工程专业专业必修课,目的是向材料成型及控制工程专业的高年级本科生介绍现代计算机模拟和仿真技术在材料成型中应用的专业课程。

通过本课程的学习,使学生初步掌握模拟与仿真的概念,培养高级的材料成型研究专门人才。

本课程教学内容方面着重基本知识、基本理论和基本方法;在培养学生的实践能力方面,着重计算机软件应用基本能力的训练,培养学生在工程问题分析与设计构思方面的能力,掌握一定的计算机模拟手段预测材料在成型过程中的变化,并能指导实际工程的工业生产项目,以适应当代工业工程发展的需要。

本课程采用双语教学,提升学生相关专业知识和国际视野和外语学习能力,培养与国际工程技术人员之间的沟通能力。

二、 课程与其他课程的联系先修课:金属材料及热处理,材料力学性能,金属液态成型原理,金属塑性成形原理,材料冶金传输原理,模具设计及运用, 材料成型工艺本课程为材料成型及控制工程专业大四学生开设,本课程开设目的是在学生学习材料成型相关理论、工程知识后能够运用计算机辅助设计软件对材料成型及控制问题进行设计,能够运用计算机辅助工程软件对材料成型过程问题进行分析与预测,得到有效结论,因此学生对于前期课程的学习、理解是本课程开设基础。

三、课程教学目标1.了解材料成型过程计算机模拟与仿真的概念、方法、特点及用途,具有分析、选用相关现代模拟手段进行工程问题模拟仿真能力;(支撑毕业能力要求5.1)2.了解材料成型过程数值模拟领域的发展历程和现状,熟悉计算机模拟的基本理论;能够根据,了解主流的计算机模拟软件及其应用范围;(支撑毕业能力要求2.3,5.2)3. 能够根据具体工程问题选用软件对工程问题的关键环节和参数进行模拟仿真,并根据模拟结果分析、解决问题或优化工艺参数;(支撑毕业能力要求5.3,3.2)4.熟练掌握一种以上计算机模拟软件的基本操作过程,培养学生应用计算机模拟手段的工程应用的能力;强化外语应用能力,能够熟练应用英语表达材料成型工程领域专业技术问题,熟悉国际材料成型计算机模拟与仿真发展趋势,具有一定的国际视野和交流能力。

材料成型的数值模拟

材料成型的数值模拟

塑性加工工艺模拟分析方法
• 解析法
工程法(Slab法,主应力法) 滑移线法(Slip line) 上限法(Upper bound)(下限法)、上限单元法(UBET) 有限单元法(FEM,Finite Element Method)
• 实验/解析法
相似理论法 视塑性法 • 数值法 有限元法 有限差分法 边界元法
3.教学软件:
Deform Dynaform Marc
4.教学内容:
基本内容包括:有限元与有限差分法基础、应用数值方法模拟材料成形的一般步骤,金属冲 压成形中的数值模拟,金属锻压成形中的数值模拟,金属焊接成形中的数值模拟等。 课程重点:金属冲压、锻压、焊接成型过程的数值模拟。 课程难点:非线性有限单元法、刚(黏)塑性有限元法、数值解的解的收敛性与误差控制、 热力耦合分析。
协同工作
模拟结果与设备控制的关联
第一讲 材料成形数值模拟概述
1. 引言 2. 工程意义及应用现状 3. 发展趋势
4. 课程要求、进度安排
1.教材:
傅建主编. 材料成形过程数值模拟.化学工业出版社,2009
2.参考书目:
① 刘劲松;张士宏;肖寒;李毅波. MSC.MARC在材料加工工程中的应用.中国水利水电出版 社,2010
材料成型数值模拟
第一讲 材料成形数值模拟概述
1. 引言 2. 工程意义及应用现状 3. 发展趋势
4. 课程要求、进度安排
第一讲 材料成形数值模拟概述
1. 引言 2. 工程意义及应用现状 3. 发展趋势
4. 课程要求、进度安排
塑性加工研究的两类方法 • 金属塑性成形
优点: • 生产效率高 • 产品质量稳定 • 原材料消耗少 • 有效改善金属的组织和力学性能 75%的钢材 缺点: • 以经验和知识为依据、以“试错”为基本方法 70%的汽车零部件

deform分析报告.

deform分析报告.

课程名称材料成型数值模拟仿真实验名称利用DEFORM3D模拟镦粗锻造成型成绩实验者专业班级组别同组者实验日期年月日第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)一、实验目的1)了解认识DEFORM-3D软件的窗口界面。

2)了解DEFORM-3D界面中功能键的作用。

3)掌握利用DEFORM-3D有限元建模的基本步骤。

4)学会对DEFORM-3D模拟的数据进行分析。

二、实验原理DEFORM-3D是在一个集成环境内综合建模、成形、热传导和成形设备特性进行模拟仿真分析。

适用于热、冷、温成形,提供极有价值的工艺分析数据。

如:材料流动、模具填充、锻造负荷、模具应力、晶粒流动、金属微结构和缺陷产生发展情况等。

DEFORM- 3D功能与2D 类似,但它处理的对象为复杂的三维零件、模具等。

不需要人工乾预,全自动网格再剖分。

前处理中自动生成边界条件,确保数据准备快速可靠。

DEFORM- 3D模型来自CAD系统的面或实体造型(STL/SLA)格式。

DEFORM -3D 是一套基于工艺模拟系统的有限元系统(FEM),专门设计用于分析各种金属成形过程中的三维(3D) 流动,提供极有价值的工艺分析数据,有关成形过程中的材料和温度流动。

典型的DEFORM-3D 应用包括锻造、挤压、镦头、轧制,自由锻、弯曲和其他成形加工手段。

三、实验步骤1.DEFORM前处理过程(Pre Processer)进入DEFORM前处理窗口。

了解DEFORM前处理中的常用图标设置模拟控制增加新对象网格生成材料的选择确立边界条件温度设定凸模运动参数的设置模拟控制设定设定对象间的位置关系对象间关系“Inter-Object”的设定生成数据库退出前处理窗口2.DEFORM求解(Simulator Processer)3.DEFORM后处理(Post Processer)了解DEFORM后处理中的常用图标。

数值模拟

数值模拟

1.数值模拟是指利用一组控制方程来描述一个的基本参数变化关系,采用数值计算的方法求解,以获得该过程的定量认识及对过程进行动态模拟分析,在此基础上判断工艺或方案的优劣,预测缺陷,优化工艺等。

2.材料成型过程数值模拟技术在先进制造技术中的地位及作用:金属材料成型过程是十分复杂的高温、动态、瞬时过程,过程开放性差,材料经过液态流动充型,凝固结晶,固态变形,相变,再结晶和重结晶等多种微观组织变化及缺陷的产生与消失等一系列复杂的物理,化学,冶金变化而最后成为毛坯或构件。

3.数值模拟技术在材料成型过程中起到如下作用:1.优化工艺设计,使工艺参数达到最佳,提高产品质量;2.可在较短时间内,对多种工艺方案进行检测,缩短产品开发周期;3.在计算机上进行工艺模拟实验,降低产品开发费用和对资源的消耗,数值模拟技术是材料成型领域cad的重要内容,也是先进制造技术——虚拟化,敏捷化,绿色化生产,并行工程的重要基础。

4.材料成型过程数值模拟的研究的发展趋势:满足高质量、低成本、短周期材料成型技术的实现。

研究发展高质量的数值模拟系统依赖于对成型机理的深入探讨,建立高质量的数学物理模型。

为了提高数值模拟系统的效率,除依靠计算机硬件技术的发展之外,人们在研究提高计算速度的方法,开发了大规模计算问题的并行计算方法。

提高硬件和好的计算方法可以提高效率,高度集成的数值模拟软件系统是此项技术发展的必然趋势。

高质量高效率的高集成数值模拟式并行工程的可靠而有效的保证,也是发展虚拟技术的关键之一,它将会促进21世纪的材料加工技术得到更大的发展。

第一章数值模拟技术1.材料成型过程的数值模拟技术主要包括前处理、模拟分析计算和后处理三部分。

1.前处理的任务是为数值模拟准备一个初始的环境对象。

前处理模块是对材料成型过程进行准确模拟,分析的前提和基础,其性能的好坏直接影响到整个系统的实用性及计算的准确性。

2.前处理模块主要包括两部分内容:实体造型和网格剖分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、材料成形数值模拟
4、数值模拟方法的基本特点及应用现状 将微分方程边值问题的求解域进行离散化,将原来欲求得在 求解域内处处满足场方程、在边界上处处满足边界条件的要求降 低为求得在给定的离散点(节点)上满足由场方程和边界条件所 导出的一组代数方程的数值解。
二、材料成形数值模拟
(1)材料液态成形
二、材料成形数值模拟
3、材料成形数值模拟含义 通过数值计算得到用微分方程边值问题来描述的具体材料成 形问题中工件和模具的速度场(位移场)、应变场、应力场、温 度场等,据此预测工件中组织性能的变化及可能出现的缺陷;利 用计算机图形技术将这些分析结果直观的、动态的呈现在设计人 员面前,使他们能通过这个虚拟的材料加工过程检验工件的最终 形状、尺寸、性能是否符合设计要求,正确选用机器设备和模具 材料。
L 2 1 P 2 y ( ( ) y ) t ( c 2 c y 3 c y ) }dy 0 1 2 3 0 1 L E L 2 2 1 P 2 ) y )t (c1 2c2 y 3c 3 y ) }dy 0 0 y {1 ( L E 2 1 P L 3 2 0 y {1 ( L ) y )t (c1 2c2 y 3c 3 y ) E }dy 0
二、材料成形数值模拟概述
1、材料加工的含义 材料加工是人类利用自然,创造有用产品的基本生产活动。 2、材料成形的基本规律描述 (1)流动方程、热传导方程、平衡方程或运动方程等微分方程描
述。
(2)具体成形问题给定由该问题特点所确定的定解条件,包括 边值条件条件和初值条件等。
二、材料成形数值模拟概述
值解将越逼近精确解。有限元法适应任何复杂的和变动的边界。
三、材料成形数值模拟基础
1、数值模拟方法 (2)有限差分法
以差分代替微分,将求解对象在时间及空间上进行离散,对
每个离散单元进行各种物理场分析(如温度场、流动场及应力场 等),然后将所有单元的求解结果汇总,得到整个求解对象在不
同时刻的行为变化,并对分析对象的可能变化趋势作出预测。具
(1)材料液态成形
二、材料成形数值模拟
(1)材料液态成形
二、材料成形数值模拟
(2)材料塑性成形
二、材料成形数值模拟
(2)材料塑性成形
二、材料成形数值模拟
(3)材料黏流态成形
二、材料成形数值模拟
(4)材料焊接成形
二、材料成形数值模拟
5、材料成形数值模拟的发展趋势 (1)模拟分析由宏观进入微观
(2)解决工模具调试或产品成形过程中的技术问题。 (3)解决成形制品批量生产中的质量控制问题。
二、材料成形数值模拟
4、数值模拟方法的基本特点 将微分方程边值问题的求解域进行离散化,将原来欲求得在 求解域内处处满足场方程、在边界上处处满足边界条件的要求降 低为求得在给定的离散点(节点)上满足由场方程和边界条件所 导出的一组代数方程的数值解。
有求解简单、速度快、前后置处理易于实现等优点。
三、材料成形数值模拟基础
2、有限元法的基本步骤
(1)建立求解域并将之离散化成有限元,即将问题分解为节点和单元 。
(2)假设代表单元物理行为的形函数。 (3)对单元建立方程。
(4)将单元组合成总体的问题,构造总体刚度矩阵。
(5)应用边界条件、初值条件和负荷。 (6)求解线性或非线性微分方程组,以得到节点的值。 (7)后处理。
再来看例子,任意单元的应变能为
对ui与ui+1求最小化应变能有:
写成矩阵形式为
对于任意单元,最小化节点i和i+1处的外力所作的功有:
对于上述例子,用最小总势能公式和直接公式法得到的总体 刚度矩阵是完全一致的。
进一步应用边界条件和负荷,有
5.加权余数法
为控制微分方程假设一个合理解,假设解必须满足给定问题
(6)求解代数方程
杆在y方向横截面面积的变化由下式表示
每个单元的对等刚度系数可以由下式计算出
(6)获取其它信息
4、最小总势能公式法
物体在外力作用下产生变形,在变形期间,外力作的功以弹 性能的方式储存在物体中,即为应变能。考虑承受集中力F的物 体的应变能:
AE F( )l ky l
1
当实体拉伸量为dy’时,物体内储存的能量为:
考虑节点的温度,必须满足以下条件
将节点值代入方程,有
(3) 等参单元 使用一组参数(一组形函数)定义u、v、T等未知变量,并
使用同样的参数(同样的形函数)表示几何关系,则可使用等 参公式。用这种方式表示的单元称为等参单元。
使用四边形单元,实体单元的位移可以根据节点的值表示为:
矩阵形式
3、三维单元
(2)加大多物理场的耦合分析
(3)不断拓宽数值模拟在特种成形中的应用
(4)强化基础研究
(5)关注反向模拟技术应用
(6)模拟软件的发展 (7)协同工作 (8)模拟结果与设备控制的关联
三、材料成形数值模拟基础
1、数值模拟方法 (1)有限元法
将求解域离散为一组有限个形状简单且仅在节点处相互连接
的单元的集合体,在每个单元内用一个满足一定要求的插值函数 描述基本未知量在其中的分布。随着单元尺寸的缩小,近似的数
(e )

v
E 2 d dV 2 2 v
由n个单元和 m个节点组成的物体的总势能为:
= e Fu i i
i 1 i 1
n
m
由最小势能原理有:
ui ui
e ui e 1
n
F u
k 1 k
m
k
0(i 1, 2,3 , n)
四、有限元单元类型及形函数
1、一维单元
(1)一维一次单元及形函数 1)形函数的概念
(1)一维一次单元及形函数
T
(e)
c1 c2 X
将节点值代入方程,得
Ti c1 c2 X i T j c1 c2 X j
2)形函数的性质 ①在相应节点上值为1,而在另一个相应节点上值为
0.
三、材料成形数值模拟基础
3、直接公式法 例:考虑带有负荷P的变横截面杆。如图所 示,杆的一端固定,另一端承受负荷P,以 ω1代表杆的上端宽度,ω2代表杆的下端宽度, 杆的厚度为t,长度为L。弹性模量用E表示。
确定当杆承受负荷P时,在沿杆长度的不同点
上位移、应变、应力大小。忽略杆重。
三、材料成形数值模拟基础
②形函数的和为1.
例:如图所示为节点的位移和它们沿悬臂梁的分 布位置,求悬臂梁在(a)X=4cm和(b) X= 8cm处的位移。
解:(a)悬臂梁在X=4cm处的位移由单元(2) 来表示。
(b)悬臂梁在X=8cm处的位移由单元(3)来 表示。
(2)整体、局部和自然坐标
2 、二维单元
(1)、矩形单元
一维的解是由线段近似的,二维的解是由平面片近似的。
考虑节点的温度,必须满足以下条件
代入求得
得到对于典型单元由形函数表示的温度
应用这些形函数表示任意未知参数Ψ,即
自然坐标是局部坐标的无量纲形式,局部坐标系x、y的原点取 在自然坐标的ξ=-1,η=-1处,如下图。
(2)线性三角形单元
三角形内部的变量变化表示为下式
(1)4节点四面体单元
最简单的三维有限元单元,仅有4个节点,每个节点有3个
自由度,分别沿X、Y、Z方向。
设有如下位移函数
应用节点位移条件,求解系数C,则方程可简化为
(1)将问题域离散成有限的单元
三、材料成形数值模拟基础
(2)假设近似单元行为的近似解
考虑一个等横截面为A的实体的位移量,单
元的长度为l,承受的外力为F,如图所示。
三、材料成形数值模拟基础
AE F=( )l l
上式与线性弹性方程F=kx相似。因此上述单 元可以视为一个弹簧,其等价刚度为
AE keq l
2008

王刚,单岩等. Moldflow模具分析应用实例.清华大学出版社,2005
完成题目要求
1、掌握Dynaform、Pamstamp2G等有限元分析软件,完成金属板 料成形零件的数值模拟分析。要求针对多次拉延工艺进行参数优 化,设计出模拟方案,分析后获得结论。最后提交详细分析过程 1份,完成标准论文1篇。 2、掌握Moldflow模流分析软件,自选塑料产品,完成其三维造型, 注射过程分析。提交详细分析过程1份。完成标准论文1篇。
将作用力和负荷区分,方程组可化为:
(3) 对单元建立方程
将作用力和负荷区分,方程组可化为:
(4)将单元组合起来表示整个问题
单元(1)的刚度矩阵表示如下:
它在总体刚度矩阵中的位置如下:
对于单元(2)、(3),有
最终总体刚度矩阵为:
(5)应用边界条件和负荷
有限元公式可写成如下形式:
位移矩阵=负荷矩阵 [刚度矩阵]
三、材料成形数值模拟基础
节点1:R 1-k1 (u2 u1 ) 0 节点2:k1 (u2 u1 ) k 2 (u 3 u2 ) 0 节点3:k 2 (u 3 u2 ) k3 (u 4 u3 ) 0 节点4:k3 (u 4 u3 ) P 0
重组方程,得方程组:
第一章 绪论
一、CAE技术的发展
CAE 泛指包括分析、计算和仿真在内的一切研发活动,是由
计算力学、计算数学、结构动力学、数字仿真技术、工程管理学 与计算机技术相结合,而形成的一种综合性、知识密集型信息产
品。其核心是有限元理论和数值计算方法。
一、CAE技术的发展
20世纪60年代
CAE软件出现
20世纪70 ~80年代 CAE技术蓬勃发展 20世纪90年代 CAE技术成熟壮大
1 2 1 d Fdy kydy ky ( ky) y 2 2 0 0
相关文档
最新文档