材料成型数值模拟设计实验
复合材料成型数值模拟及其应用

复合材料成型数值模拟及其应用复合材料在现代工业中应用广泛,具有轻质、高强度、高刚度和优异的耐久性等特点。
然而,复合材料的成型过程可谓是一门艺术和技术的结合,需要大量的工程经验,试错和大量的实验验证。
随着计算机技术的不断进步,数值模拟成为一种有效的预测和分析复合材料成型过程的方法。
本文将从数值模拟的角度出发,探讨复合材料在制造过程中的应用。
一、复合材料成型的基本过程复合材料的成型过程一般分为模具设计、预浸料制备、预浸料浸渍、层叠和压缩这几个步骤。
1. 模具设计模具是决定复合材料成型特性的关键因素之一。
合理的模具设计可以提高复合材料的成型质量和生产效率。
目前,常用的模具包括手工模具、金属模具和树脂模具等。
2. 预浸料制备复合材料一般采用热固性环氧树脂作为基体材料,预浸料是将纤维预先浸润在树脂中的半成品材料。
预浸料的制备是浸渍复合材料的基础,质量的高低直接影响到成品的质量。
3. 预浸料浸渍浸渍是将预浸料浸润在纤维上的过程,纤维的含量、树脂的流动性和浸渍过程的参数都是影响浸渍质量的重要因素。
4. 层叠和压缩将浸渍好的纤维层叠起来并进行压缩,以使树脂浸润在纤维之间,形成复合材料。
二、复合材料成型数值模拟的概述数值模拟是一种通过计算机模拟实际过程的方法,可以在虚拟环境中预测实际过程的结果。
数值模拟可以显著缩短调试时间和成本,减少实验次数和避免安全事故的发生。
复合材料成型数值模拟的基础是复合材料的力学行为和传热学理论。
主要包括有限元分析、流体力学分析、热传分析和材料模拟等方法。
可采用数值模拟技术模拟复合材料的成型过程及其过程参数和材料物性对成型过程的影响。
数值模拟可以分为几个步骤:模型的建立、边界条件的确定、求解方案的选择、数值计算和结果的分析等。
模型的建立是数值模拟的基础,复合材料成型过程的模型建立对数值模拟的精度有很大的影响。
应该综合考虑成型过程的物理和化学特性,设计实用、精确、高效、可靠的数值模拟模型。
材料成型数值模拟设计实验

学生学号实验课成绩学生实验报告书实验课程名称材料成型数值模拟设计实验开课学院材料学院指导教师姓名学生姓名学生专业班级成型1001班2012-- 2013学年第二学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。
为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。
1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。
2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。
3、实验报告应由实验预习、实验过程、结果分析三大部分组成。
每部分均在实验成绩中占一定比例。
各部分成绩的观测点、考核目标、所占比例可参考附表执行。
各专业也可以根据具体情况,调整考核内容和评分标准。
4、学生必须在完成实验预习内容的前提下进行实验。
教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。
5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。
在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。
6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。
附表:实验考核参考内容及标准观测点考核目标成绩组成实验预习1.预习报告2.提问3.对于设计型实验,着重考查设计方案的科学性、可行性和创新性对实验目的和基本原理的认识程度,对实验方案的设计能力20%实验过程1.是否按时参加实验2.对实验过程的熟悉程度3.对基本操作的规范程度4.对突发事件的应急处理能力5.实验原始记录的完整程度6.同学之间的团结协作精神着重考查学生的实验态度、基本操作技能;严谨的治学态度、团结协作精神30%结果分析1.所分析结果是否用原始记录数据2.计算结果是否正确3.实验结果分析是否合理4.对于综合实验,各项内容之间是否有分析、比较与判断等考查学生对实验数据处理和现象分析的能力;对专业知识的综合应用能力;事实求实的精神50%实验课程名称材料成型数值模拟实验项目名称利用DEFORM模拟镦粗锻造成型实验成绩实验者专业班级成型1001班组别同组者实验日期2013年4月8日第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)一、实验目的1)了解认识DEFORM软件的窗口界面。
球囊成型工艺与过程数值模拟研究

球囊成型工艺与过程数值模拟研究引言:球囊成型是一种常用的制造工艺,广泛应用于医疗、工业和航天等领域。
为了提高球囊成型的效率和质量,研究人员开始运用数值模拟方法来优化该工艺。
本文将探讨球囊成型工艺与过程数值模拟的研究。
一、球囊成型工艺概述球囊成型是一种利用气体或液体充入弹性材料球囊,使其膨胀并达到所需形状的工艺。
球囊成型广泛应用于血管介入手术、气囊注塑等领域。
传统的球囊成型工艺通常依赖于试验和经验,而数值模拟方法可以提供更准确的预测和优化。
二、球囊成型的数值模拟方法1.材料模型:数值模拟中,需要选择适合球囊材料的本构模型。
常用的材料模型包括线性弹性模型、非线性弹性模型和超弹性模型等。
根据球囊材料的特性和实际需求,选择合适的材料模型进行模拟分析。
2.边界条件:数值模拟中,需要确定球囊成型的边界条件。
边界条件包括球囊的初始形状、充气速度、充气压力等。
通过合理设定边界条件,可以模拟出球囊在不同工艺参数下的成型过程。
3.数值模拟方法:数值模拟中常用的方法包括有限元分析、CFD方法等。
有限元分析可以模拟球囊材料的变形和应力分布,CFD方法可以模拟气体或液体的流动。
结合这些方法,可以全面分析球囊成型的过程。
三、球囊成型工艺的优化通过数值模拟方法,可以对球囊成型工艺进行优化。
优化的目标包括提高成型效率、减少材料损耗和改善成品质量等。
通过模拟分析不同工艺参数的影响,可以找到最优的工艺参数组合,从而提高球囊成型的效率和质量。
四、数值模拟与实验验证数值模拟结果需要与实验数据进行验证,以确保模拟结果的准确性。
通过对比实验结果和模拟结果的差异,可以调整模型和参数,提高模拟的准确性。
数值模拟和实验验证相互结合,可以更好地理解球囊成型的工艺和机理。
结论:通过数值模拟方法,可以对球囊成型工艺与过程进行研究和优化。
数值模拟可以提供更准确的预测和分析,帮助改进球囊成型工艺,提高成型效率和质量。
然而,数值模拟结果需要与实验数据进行验证,以确保模拟结果的准确性。
《材料成型过程的数值模拟》课程教学大纲

《材料成型过程的数值模拟》课程教学大纲课程编号:081096211课程名称:材料成型过程数值模拟英文名称:Computer Simulation of Materials Processing课程类型:专业课课程要求:必修学时/学分:32/2(讲课学时:16,实验学时:0,上机学时:16适用专业:材料成型及控制工程专业一、课程性质与任务本双语课程作为材料成型及控制工程专业专业必修课,目的是向材料成型及控制工程专业的高年级本科生介绍现代计算机模拟和仿真技术在材料成型中应用的专业课程。
通过本课程的学习,使学生初步掌握模拟与仿真的概念,培养高级的材料成型研究专门人才。
本课程教学内容方面着重基本知识、基本理论和基本方法;在培养学生的实践能力方面,着重计算机软件应用基本能力的训练,培养学生在工程问题分析与设计构思方面的能力,掌握一定的计算机模拟手段预测材料在成型过程中的变化,并能指导实际工程的工业生产项目,以适应当代工业工程发展的需要。
本课程采用双语教学,提升学生相关专业知识和国际视野和外语学习能力,培养与国际工程技术人员之间的沟通能力。
二、 课程与其他课程的联系先修课:金属材料及热处理,材料力学性能,金属液态成型原理,金属塑性成形原理,材料冶金传输原理,模具设计及运用, 材料成型工艺本课程为材料成型及控制工程专业大四学生开设,本课程开设目的是在学生学习材料成型相关理论、工程知识后能够运用计算机辅助设计软件对材料成型及控制问题进行设计,能够运用计算机辅助工程软件对材料成型过程问题进行分析与预测,得到有效结论,因此学生对于前期课程的学习、理解是本课程开设基础。
三、课程教学目标1.了解材料成型过程计算机模拟与仿真的概念、方法、特点及用途,具有分析、选用相关现代模拟手段进行工程问题模拟仿真能力;(支撑毕业能力要求5.1)2.了解材料成型过程数值模拟领域的发展历程和现状,熟悉计算机模拟的基本理论;能够根据,了解主流的计算机模拟软件及其应用范围;(支撑毕业能力要求2.3,5.2)3. 能够根据具体工程问题选用软件对工程问题的关键环节和参数进行模拟仿真,并根据模拟结果分析、解决问题或优化工艺参数;(支撑毕业能力要求5.3,3.2)4.熟练掌握一种以上计算机模拟软件的基本操作过程,培养学生应用计算机模拟手段的工程应用的能力;强化外语应用能力,能够熟练应用英语表达材料成型工程领域专业技术问题,熟悉国际材料成型计算机模拟与仿真发展趋势,具有一定的国际视野和交流能力。
武汉理工大学材料成型CAE综合实验实验报告

实验课程名称:材料成型CAE综合实验实验项目名称自主设计焊接接头冷却过程的温度场和应力场实验成绩实验者专业班级组别同组者实验日期年月日第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)(一)实验目的对焊接接头应力及温度场分析是材料成型CAE中较为复杂的问题,它涉及到热与结构耦合等问题。
在焊接过程中,焊接接头的温度场会直接影响到焊接接头最终的组织和性能,是焊接过过程数值模拟的主要任务;焊接接头的应力场则对焊接结构产品的使用性能至关重要。
通过对焊接接头温度场和应力场的有限元模拟,学习用ANSYS对实际工程问题进行数值分析的过程。
(二)基本原理和方法1)基本原理:有限元法是一种离散化的数值计算方法。
离散后的单元和单元之间只通过节点相联系,所有场变量(位移、应力、温度等)都通过节点进行计算。
对于每个单元,选取适当的插值函数,使得在子域内部、子域分界面上以及子域与外界分界面上都满足一定的条件。
然后把所有单元的方程都组装起来,就得到整个结构的方程组。
求解方程组,就可以得到方程的近似解。
用ANSYS软件进行有限元分析,整个过程(以结构分析为例)可分为:前处理:建立几何模型;对几何模型进行离散化处理等。
加载求解:根据作用力等效原则将每个单元所受的载荷移置到该单元的节点上;根据边界条件修改刚度方程,消除刚体位移;求解整体刚度方程,得到节点位移;根据相应方程求解应力和应变等。
后处理:利用计算机图形方式,将计算结果以变形网格、等值线、彩色云图、动画等方式进行显示与分析等。
2)方法:方法:命令流的执行通常从输入框中读入:将“Filename.txt”中的命令采用复制的方式,粘贴到输入框中,按“Enter”键即可执行。
一次可复制一条、多条直至整个命令流文件。
(三)实验内容某一圆环由环形钢板和铁板焊接而成,焊接材料为铜,如图为其纵截面的1/2。
圆盘初始温度为800℃,将圆环放置于空气中进行冷却,周围空气为30℃,对流系数为120W/(m2℃)。
材料成型的数值模拟

塑性加工工艺模拟分析方法
• 解析法
工程法(Slab法,主应力法) 滑移线法(Slip line) 上限法(Upper bound)(下限法)、上限单元法(UBET) 有限单元法(FEM,Finite Element Method)
• 实验/解析法
相似理论法 视塑性法 • 数值法 有限元法 有限差分法 边界元法
3.教学软件:
Deform Dynaform Marc
4.教学内容:
基本内容包括:有限元与有限差分法基础、应用数值方法模拟材料成形的一般步骤,金属冲 压成形中的数值模拟,金属锻压成形中的数值模拟,金属焊接成形中的数值模拟等。 课程重点:金属冲压、锻压、焊接成型过程的数值模拟。 课程难点:非线性有限单元法、刚(黏)塑性有限元法、数值解的解的收敛性与误差控制、 热力耦合分析。
协同工作
模拟结果与设备控制的关联
第一讲 材料成形数值模拟概述
1. 引言 2. 工程意义及应用现状 3. 发展趋势
4. 课程要求、进度安排
1.教材:
傅建主编. 材料成形过程数值模拟.化学工业出版社,2009
2.参考书目:
① 刘劲松;张士宏;肖寒;李毅波. MSC.MARC在材料加工工程中的应用.中国水利水电出版 社,2010
材料成型数值模拟
第一讲 材料成形数值模拟概述
1. 引言 2. 工程意义及应用现状 3. 发展趋势
4. 课程要求、进度安排
第一讲 材料成形数值模拟概述
1. 引言 2. 工程意义及应用现状 3. 发展趋势
4. 课程要求、进度安排
塑性加工研究的两类方法 • 金属塑性成形
优点: • 生产效率高 • 产品质量稳定 • 原材料消耗少 • 有效改善金属的组织和力学性能 75%的钢材 缺点: • 以经验和知识为依据、以“试错”为基本方法 70%的汽车零部件
deform分析报告.

课程名称材料成型数值模拟仿真实验名称利用DEFORM3D模拟镦粗锻造成型成绩实验者专业班级组别同组者实验日期年月日第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)一、实验目的1)了解认识DEFORM-3D软件的窗口界面。
2)了解DEFORM-3D界面中功能键的作用。
3)掌握利用DEFORM-3D有限元建模的基本步骤。
4)学会对DEFORM-3D模拟的数据进行分析。
二、实验原理DEFORM-3D是在一个集成环境内综合建模、成形、热传导和成形设备特性进行模拟仿真分析。
适用于热、冷、温成形,提供极有价值的工艺分析数据。
如:材料流动、模具填充、锻造负荷、模具应力、晶粒流动、金属微结构和缺陷产生发展情况等。
DEFORM- 3D功能与2D 类似,但它处理的对象为复杂的三维零件、模具等。
不需要人工乾预,全自动网格再剖分。
前处理中自动生成边界条件,确保数据准备快速可靠。
DEFORM- 3D模型来自CAD系统的面或实体造型(STL/SLA)格式。
DEFORM -3D 是一套基于工艺模拟系统的有限元系统(FEM),专门设计用于分析各种金属成形过程中的三维(3D) 流动,提供极有价值的工艺分析数据,有关成形过程中的材料和温度流动。
典型的DEFORM-3D 应用包括锻造、挤压、镦头、轧制,自由锻、弯曲和其他成形加工手段。
三、实验步骤1.DEFORM前处理过程(Pre Processer)进入DEFORM前处理窗口。
了解DEFORM前处理中的常用图标设置模拟控制增加新对象网格生成材料的选择确立边界条件温度设定凸模运动参数的设置模拟控制设定设定对象间的位置关系对象间关系“Inter-Object”的设定生成数据库退出前处理窗口2.DEFORM求解(Simulator Processer)3.DEFORM后处理(Post Processer)了解DEFORM后处理中的常用图标。
DEFORM实验报告

铜陵学院课程实验报告实验名称圆柱体压缩过程模拟实验课程材料成型计算机模拟指导教师张金标. 专业班级10 材控(2)姓名孟来福学号 1 0 1 0 1 2 1 0 5 82013年05月14日实验一 圆柱体压缩过程模拟1 实验目的与内容1.1 实验目的进一步熟悉AUTOCAD 或PRO/E 实体三维造型方法与技艺,掌握DEFORM 软件的前处理、后处理的操作方法与热能,学会运用DEFORM 软件分析压缩变形的变形力学问题。
1.2 实验内容运用DEFORM 模拟如图1所示的圆柱坯压缩过程。
(一)压缩条件与参数锤头与砧板:尺寸200×200×20mm ,材质DIN-D5-1U,COLD ,温度室温。
工件:材质DIN_CuZn40Pb2,尺寸如表1所示,温度室温。
(二)实验要求砧板工件锤头图1 圆柱体压缩过程模拟(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl格式输出;(2)设计模拟控制参数;(3)DEFORM前处理与运算(参考指导书);(4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态;(5)比较方案1与2、3与4、1与3和2与4的模拟结果,找出圆柱体变形后的形状差别,说明原因;(6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。
2 实验过程2.1工模具及工件的三维造型根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、锤头和砧板的几何实体,文件名称分别为workpiece,topdie,bottomdie,输出STL格式。
2.2 压缩过程模拟2.2.1 前处理建立新问题:程序→DEFORM5.03→File→New Problem→Next→在Problem Name栏中填写“Forging”→ Finish→进入前前处理界面;单位制度选择:点击Simulation Conrol按钮→Main按钮→在Units栏中选中SI (国际标准单位制度)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生学号实验课成绩学生实验报告书实验课程名称材料成型数值模拟设计实验开课学院材料学院指导教师姓名学生姓名学生专业班级成型1001班2012-- 2013学年第二学期实验教学管理基本规范实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。
为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。
1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照执行或暂不执行。
2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。
3、实验报告应由实验预习、实验过程、结果分析三大部分组成。
每部分均在实验成绩中占一定比例。
各部分成绩的观测点、考核目标、所占比例可参考附表执行。
各专业也可以根据具体情况,调整考核内容和评分标准。
4、学生必须在完成实验预习内容的前提下进行实验。
教师要在实验过程中抽查学生预习情况,在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。
5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。
在完成所有实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。
6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。
附表:实验考核参考内容及标准观测点考核目标成绩组成实验预习1.预习报告2.提问3.对于设计型实验,着重考查设计方案的科学性、可行性和创新性对实验目的和基本原理的认识程度,对实验方案的设计能力20%实验过程1.是否按时参加实验2.对实验过程的熟悉程度3.对基本操作的规范程度4.对突发事件的应急处理能力5.实验原始记录的完整程度6.同学之间的团结协作精神着重考查学生的实验态度、基本操作技能;严谨的治学态度、团结协作精神30%结果分析1.所分析结果是否用原始记录数据2.计算结果是否正确3.实验结果分析是否合理4.对于综合实验,各项内容之间是否有分析、比较与判断等考查学生对实验数据处理和现象分析的能力;对专业知识的综合应用能力;事实求实的精神50%实验课程名称材料成型数值模拟实验项目名称利用DEFORM模拟镦粗锻造成型实验成绩实验者专业班级成型1001班组别同组者实验日期2013年4月8日第一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验方案与技术路线等)一、实验目的1)了解认识DEFORM软件的窗口界面。
2)了解DEFORM界面中功能键的作用。
3)掌握利用DEFORM有限元建模的基本步骤。
4)利用DEFOR模拟铸造成型过程(包括Pre、Simulator、Post Processer)。
二、实验原理DEFORM是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。
通过在计算机上模拟整个加工过程,帮助工程师和设计人员:设计工具和产品工艺流程,减少昂贵的现场试验成本。
提高工模具设计效率,降低生产和材料成本。
缩短新产品的研究开发周期。
DEFORM-2D(二维)适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT微机平台。
可以分析平面应变和轴对称等二维模型。
它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。
三、实验步骤1.DEFORM前处理过程(Pre Processer)1)进入DEFORM前处理窗口。
2)了解DEFORM前处理中的常用图标3)设置模拟控制4)增加新对象5)网格生成6)材料的选择7)确立边界条件8)温度设定9)凸模运动参数的设置10)模拟控制设定11)设定对象间的位置关系12)对象间关系“Inter-Object”的设定13)生成数据库14)退出前处理窗口2.DEFORM求解(Simulator Processer)3.DEFORM后处理(Post Processer)1) 了解DEFORM后处理中的常用图标。
2)动画显示3) 步的选择4)节点距离测量5) 真实应变6)应变云图显示7)金属流线显示8)载荷行程曲线显示9)点追踪四、实验任务DEFORM-2D圆柱体镦粗模拟分析上机操作已知条件毛坯尺寸:底面半径60mm,高度200mm毛坯材料:AISI-1025[1800-2200F(1000-1200℃)毛坯温度:1200℃单元数:10000模具尺寸:长度200,宽度150,高度60上模压下量100mm,压下速度10mm/s完成如下操作(1)在DEFORM-2D/Preprocessor中建立圆柱体镦粗模拟分析模型,生成以“姓名拼音-学号”命名的.DB文件。
(2)对镦粗过程进行模拟,完成以下操作:1)提取模型模拟所得结果:最大和最小应变、工件尺寸(底面半径和鼓形半径)、载荷-行程曲线(3)在模型基础上,分别改变毛坯初始温度(900、1000、1100、1200℃),压下速度(5、10、15、20mm/s)进行模拟,完成以下操作:1)测量四种温度和速度下,毛坯最终成形尺寸(X、Y方向尺寸),作出尺寸随温度和速度变化曲线。
2)测量四种温度和速度下,毛坯最大载荷值,作出载荷随温度和速度变化曲线3)测量四种温度和速度下,毛坯最大和最小等效应变值,最大和最小温度值,作出应变随温度和速度变化曲线。
第二部分:实验过程记录(可加页)(包括实验原始数据记录,实验现象记录,实验过程发现的问题等)一、前处理1.进入DEFORM前处理窗口在安装有Windows操作系统和deform-2D软件的系统中,单击启动软件,进入前处理窗口。
如图所示:选择file|new,增加一个新问题,出现问题设置窗口。
保持系统设置不变,单击next按钮,打开deform-2D前处理器,进入前处理环境。
如下图所示:2.设置模拟控单击图标,打开“simulation control”窗口。
在该窗口中改变模拟标题为newtrial,选择系统单位为“SI”,其他默认为系统设置,单击OK按钮退出窗口。
如图下图所示:3.增加新对象通过单击对象树下等插入对象按钮,添加新对象workpiece,单击按钮,为新增对象建立几何模型。
单击edit按钮,出现一个空白表格,在表格中顺序顺序(逆时针)输入各特征点等坐标X、Y、R。
输入完成后,单击apply按钮,将数据写入系统,此时系统中将显示所见图形。
再次单击插入对象按钮,插入上下模Top die、bottom die。
如下图所示:表3-1workpiece各特征点坐标序号X Y R1 0 0 02 60 0 03 60 200 04 0 200 05 0 0 0表3-2top die各特征点坐标序号X Y R1 0 200 02 100 200 03 100 260 04 0 260 05 0 200 0表3-3Bottom Die各特征点坐标序号X Y R1 0 0 02 0 -60 03 100 -60 04 100 0 05 0 0 04.网格生成为了将workpiece生产网格,单击mesh按钮。
在Tool标签下对网格数量进行选择,设置为10000,如图4.1.1所示。
在detailed settings中将Size Ratio设置为1,单击Generate Mesh按钮,生成网格如下图所示:5.材料的选择单击“workpiece使其高亮显示,单击材料按钮,右边显示材料选择窗口,单击steel,选择材料AISI-1025[1800-2200F(1000-1200C)]。
单击Assign Material按钮,将所选材料导入到Workpiece 中,如下图所示:6.确立边界条件单击按钮进入边界条件选择窗口,单击选择按钮,用鼠标选择左上角第一点,继续选择左下角第二点,两点选择后,毛坯对称中心轴将高亮显示,这便是毛坯的边界。
边界选好后,单击按钮,“Velocity”会出现“X,Fixed”,说明边界条件已经确定。
如图所示:7.温度设定次单击“workpiece”、“Top Die”、“Bottom Die”中的general图标,在“Temperature”中单击Assign temperature按钮,输入合适的温度值,单击OK,使温度确定下来。
如图所示:8.凸模运动参数的设置单击“Top die”,待其高亮显示后单击Movement图标,设定凸模的运动参数,如下图所示9.模拟控制设定单击图标,打开模拟控制窗口,再单击step按钮进入步控制,依次对各项进行设置,单击ok退出,如下图所示:10.设置对象间的位置关系单击按钮,弹出的窗口,在此窗口中可设定对象间的位置关系。
单击interference按钮。
选择Positioning Object为“Workpiece”,“reference”中选择“Top Die”,在“Approach Direction”选择方向为“Y”,单击“Apply”按钮,毛坯与凸模的位置关系就确定了。
同理设置“Bottom Die”在“Approach Direction”选择方向为“-Y”,单击“Apply”按钮,毛坯与凹模的位置关系就确定了。
11.对象间关系“Inter-Object”设定单击按钮,由于当前没有设定关系,会弹出一个对话框询问是否希望系统添加默认的关系,单击Yes按钮后,进入过盈对象关系设定窗口,如下图所示:选择Top Die—(1)workpiece,单击Edit,将constantly选项设置为0.3,其他为系统默认设置即可,单击close。
同样设置Bottom Die—(1)workpiece。
如下图所示:单击图标,然后单击Generate All按钮,毛坯与凸凹模的接触即生成,单击Ok退出。
12.生成数据库单击按钮,出现如图9.1所示的窗口,单击Check按钮,开始对各项数据进行检查。
如下图所示。
检查无误后,单击Generate按钮生成数据库。
单击Close按钮,退出该窗口。
13.退出前处理窗口单击保存按钮,关闭前处理窗口。
二.Deform求解1.打开一个预保存的问题2.求解,单击Run,开始模拟,如下图所示:三.Deform后处理1、当模拟完成后,输出毛坯等效应变图及最大和最小应变。
2、单击“post processor”中的“Deform-2D Post”,弹出后处理窗口。
单击图标,标志中点(0,100),(60,100),即为最大半径点。
点next,再点finish。
测量压下量分别为25mm、50mm、75mm、100mm时毛坯底面半径和最大半径。