高考物理大题突破电磁感应(附答案)
电磁感应综合问题(解析版)--2024年高考物理大题突破

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。
2.掌握应用动量守恒定律处理电磁感应问题的方法。
3.熟练应用楞次定律与法拉第电磁感应定律解决问题。
4.会分析电磁感应中的图像问题。
5.会分析电磁感应中的动力学与能量问题。
电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。
一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。
【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案

高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案一、法拉第电磁感应定律1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。
在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。
t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。
在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。
已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。
求:(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。
【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。
【解析】 【详解】(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。
(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,a =sin mg mθ=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:1Blv t∆Φ=∆ 2(sin )x xB l IBI g t t θ⋅⋅= 解得2sin x lt g θ=ab 棒在区域Ⅱ中做匀速直线运动的速度12sin v gl θ=则ab 棒开始下滑的位置离EF 的距离21232x h at l l =+= (3)ab 棒在区域Ⅱ中运动时间222sin xl lt v g θ== ab 棒从开始下滑至EF 的总时间222sin x lt t t g θ=+= 感应电动势:12sin E Blv Bl gl θ==ab 棒开始下滑至EF 的过程中回路中产生的热量:Q =EIt =4mgl sin θ2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。
备战2023年高考物理真题汇编12电磁感应篇(含答案解析)

备战2023年高考物理真题汇编选择题篇(解析版)历年高考真题是备考的重中之重,尤其是经典的真题,历经岁月淘漉磨炼,其包含的知识点依然活跃在高考的试题中,有些高考试题甚至出现类似的往年真题。
因此,专注高考教学一线物理教师,查阅近几年的各地区全部真题,结合最新考情,精挑细选,进行分类重组,做出这套试卷,愿为你的备考点燃一盏指路明灯。
该套卷共包含直线运动、曲线运动、光学、近代(原子)物理、机械振动和机械波、万有引力、热力学、静电场、交变电流、牛顿运动定律,功能及动量、磁场、电磁感应12个篇章。
十二、电磁感应125.(2022·河北·统考高考真题)将一根绝缘硬质细导线顺次绕成如图所示的线圈,其中大圆面积为1S ,小圆面积均为2S ,垂直线圈平面方向有一随时间t 变化的磁场,磁感应强度大小0B B kt =+,0B 和k 均为常量,则线圈中总的感应电动势大小为( )A .1kSB .25kSC .12()5S k S -D .12(5)k S S +【答案】D【详解】由法拉第电磁感应定律可得大圆线圈产生的感应电动势1111B S E kS t t∆Φ∆⋅===∆∆;每个小圆线圈产生的感应电动势222ΔΦΔE kS t==;由线圈的绕线方式和楞次定律可得大、小圆线圈产生的感应电动势方向相同,故线圈中总的感应电动势大小为()121255E E E k S S =+=+;故D 正确,ABC 错误。
126.(2021·辽宁·统考高考真题)(多选)如图(a )所示,两根间距为L 、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R 的电阻,垂直导轨平面存在变化规律如图(b )所示的匀强磁场,t =0时磁场方向垂直纸面向里。
在t =0到t =2t 0的时间内,金属棒水平固定在距导轨顶端L 处;t =2t 0时,释放金属棒。
整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则( )A .在02t t =时,金属棒受到安培力的大小为2300B L t RB .在t =t 0时,金属棒中电流的大小为200B L t RC .在032t t =时,金属棒受到安培力的方向竖直向上D .在t =3t 0时,金属棒中电流的方向向右【答案】BC【详解】AB .由图可知在0~t0时间段内产生的感应电动势为200∆Φ==∆B L E t t ;根据闭合电路欧姆定律有此时间段的电流为200=B L E I R Rt =;在02t 时磁感应强度为02B ,此时安培力为23002B L F BIL Rt ==;故A 错误,B 正确;C .由图可知在032t t =时,磁场方向垂直纸面向外并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,故C 正确;D .由图可知在03t t =时,磁场方向垂直纸面向外,金属棒向下掉的过程中磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,故D 错误。
高考物理法拉第电磁感应定律(大题培优 易错 难题)附答案

一、法拉第电磁感应定律1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:10.02N F BIL ==可得:10.02A 0.2A 1.00.1F I BL ===⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:Q W =安310.020.1J 2.010J F L -==⨯=⨯(2) 金属框拉出的过程中产生的热量:2Q I Rt=线框的电阻:3222.010Ω 1.0Ω0.20.05Q R I t -⨯===⨯2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。
线圈的半径为r 1。
在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t 0和B 0。
导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)2020 3n B rRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。
(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==3.如图(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1, 在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示,图线与横、纵轴的截距分别为t0和B0,导线的电阻不计.求(1) 0~t0时间内圆形金属线圈产生的感应电动势的大小E;(2) 0~t1时间内通过电阻R1的电荷量q.【答案】(1)202n B rEtπ=(2)20123n B t rqRtπ=【解析】【详解】(1)由法拉第电磁感应定律E ntφ∆=∆有202n B rBE n St tπ∆==∆①(2)由题意可知总电阻R总=R+2R=3 R②由闭合电路的欧姆定律有电阻R1中的电流EIR=总③0~t1时间内通过电阻R1的电荷量1q It=④由①②③④式得20123n B t rqRtπ=4.如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
(完整版)高考物理必做电磁感应大题

高考复习物理 电磁感应大题1.(18分)如图所示,两根相同的劲度系数为k 的金属轻弹簧用两根等长的绝缘线悬挂在水平天花板上,弹簧上端通过导线与阻值为R 的电阻相连,弹簧下端连接一质量为m ,长度为L ,电阻为r 的金属棒,金属棒始终处于宽度为d 垂直纸面向里的磁感应强度为B 的匀强磁场中。
开始时弹簧处于原长,金属棒从静止释放,水平下降h 高时达到最大速度。
已知弹簧始终在弹性限度内,且弹性势能与弹簧形变量x 的关系为221kx E p ,不计空气阻力及其它电阻。
求:(1)此时金属棒的速度多大?(2)这一过程中,R 所产生焦耳热Q R 多少?2.(17分)如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。
在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。
设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。
⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。
3、(16分)t =0时,磁场在xOy 平面内的分布如图所示。
其磁感应强度的大小均为B 0,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反。
每个同向磁场区域的宽度均为l 0。
整个磁场以速度v 沿x 轴正方向匀速运动。
⑴若在磁场所在区间,xOy 平面内放置一由n 匝线圈串联而成的矩形导线框abcd ,线框的bc 边平行于x 轴.bc =l B 、ab =L ,总电阻为R ,线框始终保持静止。
2021届高考物理考前特训:电磁感应2(解析版)

电磁感应【原卷】1.如图甲所示,平行边界MN、QP间有垂直光滑绝缘水平桌面向下的匀强磁场,磁场的磁感应强度大小为1T,正方形金属线框放在MN左侧的水平桌面上。
用水平向右的恒定力拉金属线框,使金属线框一直向右做初速度为零的匀加速直线运动,施加的拉力F随时间t变化规律如图乙所示,已知金属线框的质址为4.5kg、电阻为2Ω,则下列判断正确的是()A.金属框运动的加速度大小为22m/sB.金属框的边长为1mC.金属框进磁场过程通过金属框截面电址为0.5CD.金属框通过磁场过程中安培力的冲量大小为1N·s2.如图所示,两个金属轮A1、A2,可绕通过各自中心并与轮面垂直的固定的光滑金属细轴O1和O2转动,O1和O2相互平行,水平放置,每个金属轮由四根金属辐条和金属环组成,A1轮的辐条长为a1、电阻为R1,A2轮的辐条长也为a1、电阻为R2,连接辐条的金属环的宽度与电阻都可以忽略。
半径为a0的绝缘圆盘D与A1同轴且固连在一起,一轻细绳的一端固定在D边缘上的某点,绳在D上绕足够匝数后,悬挂一质量为m的重物P。
当P下落时,通过细绳带动D和A1绕轴转动,转动过程中A1、A2保持接触,无相对滑动。
两轮与各自轴之间保持良好接触,无相对滑动,两轮与各自细轴之间保持良好的电接触。
两细轴通过导线与一阻值为R的电阻相连,除R和11vaω=A1、A2两轮中辐条的电阻外,所有金属电阻都不计,整个装置处在磁感应强度为B的匀强磁场中,磁场方向与转轴平行,现将P由静止起释放,则()A.重物在下落过程中,减少的重力势能转化为重物的动能和电路电阻发热的内能B.通过电阻R中的电流方向由N→MC.通过电阻R中的电流方向由M→ND.P下落过程中的最大速度为2120241(4)4mg R R R a vB a++=3.如图所示,两根足够长的平行光滑金属轨道MN、PQ水平放置,轨道间距为L。
现有一个质量为m,长度为L的导体棒ab垂直于轨道放置,且与轨道接触良好,导体棒和轨道电阻均可忽略不计。
高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)含详细答案

高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)含详细答案一、电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==V设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。
高考物理电磁感应现象压轴难题试卷含答案解析

高考物理电磁感应现象压轴难题试卷含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad 边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10sv =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2sv =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s;(2)120m ;(3)2s 【解析】【分析】【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R =() 此时线框所受的磁场力与阻力平衡,得:F f =2m 028m/s 4fR v v B L =-= (2)磁场停止运动后,线圈中的电动势:2E BLv = 线圈中的电流:E I R= 实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L v t ft mv R∑∆+= 而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-( 金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-== 所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--= 得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat = 金属框中感应电流002BLat I R= 又因为安培力2200042B L at F BI L R== 对实验车,由牛顿第二定律得:0F f = 即2204B L at f R= 得:02s t =2.如图所示,两平行长直金属导轨(不计电阻)水平放置,间距为L ,有两根长度均为L 、电阻均为R 、质量均为m 的导体棒AB 、CD 平放在金属导轨上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(2011上海(14 分)电阻可忽略的光滑平行金属导轨长S=1.15m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T 的匀强磁场垂直轨道平面向上。
阻值r=0.5Ω,质量m=0.2kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热0.1r Q J =。
(取210/g m s =)求:(1)金属棒在此过程中克服安培力的功W 安;(2)金属棒下滑速度2/v m s =时的加速度a .3)为求金属棒下滑的最大速度m v ,有同学解答如下由动能定理21-=2m W W mv 重安,……。
由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。
2、(2011重庆第).(16分)有人设计了一种可测速的跑步机,测速原理如题23图所示,该机底面固定有间距为L 、长度为d 的平行金属电极。
电极间充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R ,绝缘橡胶带上镀有间距为d 的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻,若橡胶带匀速运动时,电压表读数为U ,求: (1)橡胶带匀速运动的速率;(2)电阻R 消耗的电功率;(3)一根金属条每次经过磁场区域克服安培力做的功。
3、(2010年江苏).(15分)如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I.整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度的大小B;(2)电流稳定后,导体棒运动速度的大小v;(3)流以电流表电流的最大值I m.4、(2010福建)(19)如图所示,两条平行的光滑金属导轨固定在倾角为θ的绝缘斜面上,导轨上端连接一个定值电阻。
导体棒a和b放在导轨上,与导轨垂直并良好接触。
斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场。
现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止。
当a棒运动到磁场的上边界PQ处时,撤去拉力,a棒将继续沿导轨向上运动一小段距离后再向选滑动,此时b棒已滑离导轨。
当a棒再次滑回到磁场边界PQ处时,又恰能沿导轨匀速向下运动。
已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计。
求(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度I,与定值电阻R中的电流强度I R之比;(2)a棒质量m a;(3)a棒在磁场中沿导轨向上运动时所受的拉力F。
5、(2011四川).如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内,在水平面a1b1b2a2区37的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的域内和倾角θ=︒匀强磁场。
电阻R=0.3Ω、质量m1=0.1kg、长为l 的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好。
一端系于K杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有质量m2=0.05kg的小环。
已知小环以a=6 m/s 2的加速度沿绳下滑,K 杆保持静止,Q 杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动。
不计导轨电阻和滑轮摩擦,绳不可伸长。
取g=10 m/s 2,sin ︒37=0.6,cos ︒37=0.8。
求 1)小环所受摩擦力的大小;2)Q 杆所受拉力的瞬时功率。
6、(北京理综)(16分)均匀导线制成的单匝正方形闭合线框abcd ,每边长为L ,总电阻为R ,总质量为m 。
将其置于磁感应强度为B 的水平匀强磁场上方h 处。
如图所示,线框由静止起自由下落,线框平面保持在竖直平面内,且cd 边始终与水平的磁场边界面平行。
当cd 边刚进入磁场时,(1)求线框中产生的感应电动势大小; (2)求cd 两点间电势差的大小;(3)若此时线框的加速度刚好为零,求线框下落的高度h 所应满足的条件。
7、(2007江苏物理)(16分)如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B =1 T ,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d =0.5 m ,现有一边长l =0.2 m 、质量m =0.1 kg 、电阻R =0.1 Ω的正方形线框MNOP 以v 0=7 m/s 的初速从左侧磁场边缘水平进入磁场,求:⑴线框MN 边刚进入磁场时受到安培力的大小F ;⑵线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q ; ⑶线框能穿过的完整条形磁场区域的个数n 。
ab c d h ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯B8、如图所示,平行导轨MN 和PQ 相距0.5m ,电阻可忽略.其水平部分是粗糙的,置于0.60T 竖直向上的匀强磁场中,倾斜部分是光滑的,该处没有磁场.导线a 和b 质量均为0.20kg ,电阻均为0.15Ω,a 、b 相距足够远,b 放在水平导轨上.a 从斜轨上高0.050m 处无初速释放.求:(1)回路的最大感应电流是多少?(2)如果导线与导轨间的动摩擦因数μ=0.10,当导线b 的速率达到最大值时,导线a 的加速度是多少?9、(2011海南第16题).如图,ab 和cd 是两条竖直放置的长直光 滑金属导轨,MN 和''M N 是两根用细线连接的金属杆,其质 量分别为m 和2m 。
竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l 。
整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直。
导轨电阻可忽略,重力加速度为g 。
在t=0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好。
求(1)细线少断后,任意时刻两杆运动的速度之比;(2)两杆分别达到的最大速度。
答 案1、解析:(1)下滑过程中安培力的功即为在金属棒和电阻上产生的焦耳热,由于3R r =,因此30.3()R r Q Q J == ∴=0.4()R r W Q Q Q J =+=安(2)金属棒下滑时受重力和安培力22=B L FBIL v R r =+安 由牛顿第二定律22sin 30B L mg v ma R r︒-=+∴B bPMa Q N2222210.80.752sin 3010 3.2(/)()20.2(1.50.5)B L a g v m s m R r ⨯⨯=︒-=⨯-=+⨯+(3)此解法正确。
金属棒下滑时重力和安培力作用,其运动满足22sin 30B L mg v ma R r︒-=+ 上式表明,加速度随速度增加而减小,棒作加速度减小的加速运动。
无论最终是否达到匀速,当棒到达斜面底端时速度一定为最大。
由动能定理可以得到棒的末速度,因此上述解法正确。
21sin 302m mgS Q mv ︒-=∴ 2.74(/)m v m s === 2、解析:(1)设电动势为E ,橡胶带运动速率为v 。
由:BLv E =,U E =,得:BLU v =(2)设电功率为P ,RU P 2=(3)设电流强度为I ,安培力为F ,克服安培力做的功为W 。
R U I =,BIL F =,Fd W =,得:RBLUdW =3、(1)电流稳定后导体棒做匀速运动BIl mg =①解得:B=mgIl②2)感应电动势 E Blv = ③ 感应电流 EI R= ④由②③④解得2I Rv mg=(3)由题意知,导体棒刚进入磁场时的速度最大,设为v m机械能守恒 212m mv mgh = 感应电动势的最大值 m m E Blv =感应电流的最大值 mm E I R=解得:m I =4、(1)a 棒沿导轨向上运动时,a 棒、b 棒及电阻R 中放入电流分别为I a 、I b 、I c ,有R b b I R I R =, a b R I I I =+,解得:12a b I I =。
(2)由于a 棒在上方滑动过程中机械能守恒,因而a 棒在磁场中向上滑动的速度大小v 1与在磁场中向下滑动的速度大小v 2相等,即12v v v ==,设磁场的磁感应强度为B ,导体棒长为L ,在磁场中运动时产生的感应电动势为 E BLv =,当a 棒沿斜面向上运动时, 322b EI R =⨯,sin b b BI L m g θ=, 向上匀速运动时,a 棒中的电流为'a I ,则'2a EI R =, 'sin a a BI L m g θ=由以上各式联立解得:32 amm=。
(3)由题可知导体棒a沿斜面向上运动时,所受拉力7sinsin2amgF BI L mgθθ=+=。
5、解析:(1)设小环受到的摩擦力大小为F f,由牛顿第二定律,有m2g-F f=m2a①代入数据,得F f=0.2N②(2)设通过K杆的电流为I1,K杆受力平衡,有F f=B1I1l③设回路总电流为I,总电阻为R总,有12I I=④,3=2R R总⑤设Q杆下滑速度大小为v,产生的感应电动势为E,有EIR=总⑥,2E B Lv=⑦12sinF m g B ILθ+=. ⑧,拉力的瞬时功率为P Fv=⑨联立以上方程得到2P W=6、7、2222441cd v2gh2(2)332442(3),02BLv ghIRcd U I R BL ghB L ghF BILm gRmg F ma a hB L==========8、9、解析:设某时刻MN 和''M N 速度分别为v 1、v 2。
(1)两金属杆所受的安培力大小相同,方向相反,MN 受安培力向下,M N ''所受安培力向上。
某时刻MN 的加速度132mg mg BIL BILa g m m m-=-=-同时刻''M N 的加速度22222mg BIL BILa g m m m =-=-因为任意时刻两加速之比总为1221a a =,所以:122vv =① (2)当MN 和''M N 的加速度为零时,速度最大。
对''M N 受力平衡:BIl mg = ②E I R =③ ,12E Blv blv =+④,由①②③④得:12223mgR v B l =、2223mgRv B l=(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。