新人教版九年级上册25.1-25.2水平测试题及答案完美版
人教版九年级数学上册25.1--25.3测试题(附答案)

人教版九年级数学上册25.1随机事件与概率一、单选题1.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.232.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( )A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于63.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( )A.13B.14C.16D.184.平行四边形ABCD中,AC,BD是两条对角线,现从以下四个关系①AB BC=,②AC BD=,③AC BD⊥,④AB BC⊥中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为( )A.14B.12C.34D.15.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处重转),两个转盘指针指向数字之积不超过4的概率是( )A.56B.13C.23D.7126.若k是随机投掷一枚质地均匀的骰子所得到的向上一面的点数,则关于x的一元二次方程2(1)410k x x-++=有两个不相等的实数根的概率为( )A.12 B.13C.23D.167.将分别标有数字0,1,2的三个完全相同的小球装入一个不透明的袋中搅匀,先从袋中取出一个小球,记下数字作为点P 的横坐标x (小球不放回),再从袋中取出一个小球,记下数字作为点P 的纵坐标y ,则点(,)P x y 落在抛物线22y x x =-+上的概率是( ) A.13B.14C.23 D.358.如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是( )A.13B.14C.16 D.18二、填空题9.小明的爸爸妈妈各有两把钥匙,可以分别打开单元门和家门,小明随机从爸爸和妈妈的包里各拿出一把钥匙,恰好能打开单元门和家门的概率______.10.有5张无差别的卡片,上面分别标有1-,0,13,π,从中随机抽取1张,则抽出的数是无理数的概率是________.11.如图,在2×2的正方形网格中四个小正方形的顶点叫格点,已经取定格点A 和B ,在余下的格点中任取一点C ,使△ABC 为直角三角形的概率是___________.12.从1,2--,3三个数字中任取两个不同的数作为点的坐标,则该点在第三象限的概率是_________. 三、解答题13.甲、乙、丙三位歌手进入“校园最佳歌手”的决赛,他们通过抽签来决定演唱顺序.(1)甲第一位出场的概率是________;(2)求甲比乙先出场的概率.14.小张用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)小张第一次抽到的是乙签的概率是_________;(2)求抽出的两支签中,1支为甲签、1支为丙签的概率(用画树状图或列表法求解).15.将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(),m n.(1)请写出(),m n所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.参考答案1.答案:D解析:设小明为A,爸爸为B,妈妈为C,则所有等可能的结果是(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),P∴(他的爸爸妈妈相邻)4263==.故选D.2.答案:B解析:本题考查随机事件、必然事件、不可能事件,两个不透明的口袋中各有三个相同的小球,每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件;两个小球的标号之和等于6,是随机事件;两个小球的标号之和大于1,是必然事件;两个小球的标号之和大于6,是不可能事件,故选B.3.答案:C解析:本题考查画树状图法求概率.根据题意画图如下:共有12种等可能的情况,其中恰好选中甲、乙两位选手的有2种情况,则恰好选中甲、乙两位选手的概率是21126=,故选C. 4.答案:B解析:有一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,所以可推出平行四边形ABCD 是菱形的条件是①,③,所以可推出平行四边形ABCD 是菱形的概率为2142=.故选B. 5.答案:D 解析:列表如下:1 数字之积不超过4的概率是712.故选D.6.答案:A解析:因为关于x 的一元二次方程2(1)410k x x -++=有两个不相等的实数根,所以24164(1)0b ac k ∆=-=-->,且1k ≠,所以5k <,且1k ≠,所以2k =,3,4,所以所求事件的概率3162P ==.故选A. 7.答案:A解析:画树状图如下:由树状图,知共有6种等可能的结果,其中点(,)P x y 落在抛物线22y x x =-+上的有(0,2),(1,2),共2种结果,所以点(,)P x y 落在抛物线22y x x =-+上的概率为2163=.故选A. 8.答案:B解析:本题考查概率的计算及矩形与菱形面积的计算.设大矩形的长为a ,宽为b ,则大矩形的面积为ab ,菱形的面积为12ab ,小矩形的面积为14ab ,∴阴影部分的面积为111,244ab ab ab -=∴飞镖落在阴影区域的概率为1144abab =,故选B. 9.答案:12解析:解:设单元门的钥匙为12A A ,,家门钥匙为12B B ,,画树状图为:共有4种可能的结果数,其中恰好能打开单元门和家门的结果数为2, 所以恰好能打开单元门和家门的概率2142==, 故答案为:12.10.答案:2 5解析:在1-,0,13π,π,共2个,所以抽出的数是无理数的概率是25.11.答案:47解析:∵取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,∴使△ABC为直角三角形的概率是:4 7 .故答案为4 7 .12.答案:1 3解析:列表如下:2163=.13.答案:(1)甲第一位出场的概率是1 3(2)甲比乙先出场的概率是1 2解析:14.答案:(1)14;(2)16解析:(1)小张第一次抽到的所有等可能结果为甲、乙、丙、丁共4种,其中为乙签的情况有1种,所以14 P=(第一次抽到乙签).故答案为:14;(2)画树状图,如图所示:所有等可能的情况共12种,其中1支为甲签、1支为丙签的情况有2种,故112 12P=(支为甲签、支为丙签)=1 6.15.答案:(1)(),m n所有可能出现的结果:()()()()()()()()() 1,1,1,2,1,3,2,2,2,1,2,3,3,1,3,2,3,3.(2)数字之和为奇数的概率49=,数字之和为偶数的概率59=,4599≠,∴这个游戏不公平.解析:25.2用列举法求概率一.选择题1.青岛第四届海上马拉松比赛将在2020年11月举行,小明和小刚分别从A、B、C三个组中随机选择一个组参加志愿者活动,假设每人参加这三个组的可能性都相同,小明和小刚恰好选择同一组的概率是()A.B.C.D.2.现有三张正面分别标有数字﹣1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为()A.B.C.D.3.今年国庆假期间,小明与小亮两家准备从九龙山、金丝峡、红河谷三个景点中任选一个景点游玩.则两家选到同一个景点的概率是()A.B.C.D.4.抽屉里装有3张卡片,两张印有图案,一张印有的,三张卡片除了图案不同外其他完全相同,现在随机从抽屉里抽取一张卡片,不放回然后抽取第二张,则两次抽到卡片上图案均为轴对称图形的概率是()A.B.C.D.5.如图是一个是圆形房间的地板图案,其中大圆的直径恰好等于两个小圆的直径的和(两个小圆的直径相等),若在房间内任意扔一颗小玻璃珠,则小玻璃珠静止后,滚落在阴影部分的概率是()A.B.C.D.6.三张同样的卡片上正面分别有数字5、6、7,背面朝上放在桌子上,小明从中任意抽取一张作为百位,再任意抽取一张作为十位,余下的一张作为个位,组成一个三位数,则得到的三位数小于600的概率是()7.如图是由1个正方形和4个全等扇形组成的地砖图案,地砖ABCD的边长是4dm,向这块地砖随意抛掷一颗芝麻(看作一个点,芝麻落在地砖上看作必然事件),则芝麻落在地砖中空白部分的概率是()A.1﹣B.1﹣C.4﹣πD.2﹣π8.2018年5月5日,中国邮政发行《马克思诞辰200周年》纪念邮票1套2枚(如图),这套邮票正面图案为:马克思像、马克思与恩格斯像、背面完全相同.发行当日,小宇购买了此款纪念邮票2套,他将2套邮票沿中间虚线撕开(使4枚形状、大小完全相同)后将4枚纪念邮票背面朝上放在桌面上,并随机从中抽出2张,则抽出的2张邮票恰好都是“马克思像”的概率为()A.B.C.D.9.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”,传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是()10.在如图所示的正方形和圆形组成的盘面上投掷飞镖,飞镖未落在阴影区域的概率是()A.B.C.D.二.填空题11.一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为.12.有四张背⾯完全相同的卡⾯,正⾯上分别标有数字﹣2,﹣1,2,3.把这四张卡⾯背⾯朝上,随机抽取两张,记下数字为k、b,则y=kx+b不经过第三象限的概率为.13.现有5张除正面数字外完全相同的卡片,正面数字分别为1,2,3,4,5,将卡片背面朝上洗匀,从中随机抽出一张记下数字后放回,洗匀后再次随机抽出一张,则抽出的两张卡片上所写数字相同的概率是.14.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤2,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.15.如图,一张圆形纸片中,画出7个同样大小的圆并涂上颜色.若一只蚂蚁(蚂蚁视为一点)随机的停留在该纸片上,则蚂蚁停留在涂有颜色部分的概率为.三.解答题(共4小题)16.有7张纸签,分别标有数字1,2,2,3,3,4,5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字2和5的纸签的概率;(3)小明和小王做游戏,从7张纸签中各随机摸出一张,若为偶数小明胜,若为奇数小王胜.这个游戏对双方公平吗?为什么?17.一个不透明的盒子里装有除颜色外其余均相同的2个黑球和n个白球,搅匀后从盒子里随机摸出一个球,摸到白球的概率为.(1)求n的值;(2)所有球放入盒中,搅匀后随机从中摸出1个球,放回搅匀,再随机摸出第2个球,求两次摸球摸到一个白球和一个黑球的概率.请用画树状图或列表的方法进行说明.18.2019年甘肃在国际知名旅游指南《孤独星球》亚洲最佳旅游地排名第一.截至2020年1月,甘肃省已有五家国家5A级旅游景区,分别为A:嘉峪关文物景区;B:平凉崆峒山风景名胜区;C:天水麦积山景区;D:敦煌鸣沙山月牙泉景区;E:张掖七彩丹霞景区.张帆同学与父母计划在暑假期间从中选择部分景区游玩.(1)张帆一家选择E:张掖七彩丹霞景区的概率是多少?(2)若张帆一家选择了E:张掖七彩丹霞景区,他们再从A,B,C,D四个景区中任选两个景区去旅游,求选择A,D两个景区的概率(要求画树状图或列表求概率).19.一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.参考答案与试题解析一.选择题1.【解答】解:画树状图得:∵共有9种等可能的结果,小明和小刚恰好选择同一组的有3种情况,∴两人恰好选择同一组的概率为=;故选:A.2.【解答】解:画树状图为:共有9种等可能的结果数,其中点P(m,n)在第二象限的结果数为2,所以点P(m,n)在第二象限的概率=;故选:D.3.【解答】解:用A、B、C表示:九龙山、金丝峡、红河谷;画树状图得:∵共有9种等可能的结果,则两家抽到同一景点的有3种情况,∴则两家抽到同一景点的概率是:=;故选:A.4.【解答】解:两张印有图案的卡片用A、B表示,一张印有的卡片用C表示,根据题意画图如下:由树状图知,共有6种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有2种结果,则两次所抽取的卡片恰好都是轴对称图形的概率是=;故选:B.5.【解答】解:设小圆的半径为r,则大圆的半径为2r,由图可得,大圆的面积=π×(2r)2=4πr2,S阴影=π×(2r)2﹣2π×r2=2πr2,∴滚落在阴影部分的概率===,故选:A.6.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中得到的三位数小于600的有2种结果,∴得到的三位数小于600的概率为=,故选:A.7.【解答】解:∵地砖ABCD的面积=4×4=16(dm2),4个全等的扇形和=22π=4π,∴空白部分的面积=(16﹣4π)dm2,∴芝麻落在地砖中空白部分的概率是=,故选:B.8.【解答】解:根据题意画图如下:共有12种等情况数,其中抽出的2张邮票恰好都是“马克思像”的有2张,则抽出的2张邮票恰好都是“马克思像”的概率为=;故选:D.9.【解答】解:养老保险、失业保险、医疗保险、工伤保险、生育保险分别用A、B、C、D、E表示,画图如下:共有25种等情况数,其中正好抽中养老保险和医疗保险的有2种情况数,则正好抽中养老保险和医疗保险的概率是;故选:D.10.【解答】解:∵观察发现阴影部分占所有面积的,∴其他部分的面积占所有面积的,∴飞镖未落在阴影区域的概率是;故选:D.二.填空题(共5小题)11.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中2个球颜色不同的有4种结果,∴2个球颜色不同的概率为=,故答案为:.12.【解答】解:画树状图为:共有12种等可能的结果数,其中y=kx+b不经过第三象限的结果数为4,所以随机抽取两张,记下数字为k、b,则y=kx+b不经过第三象限的概率==.故答案为.13.【解答】解:根据题意画图如下:共有25种等情况数,其中抽出的两张卡片上所写数字相同的概率有5种,则抽出的两张卡片上所写数字相同的概率是=.故答案为:.14.【解答】解:∵|m|≤1,|n|≤2,∴m=0,±1,n=0,±1,±2,∴有序整数(m,n)共有3×5=15(种),∵方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1﹣2)三种可能,∴关于x的方程x2+nx+m=0有两个相等实数根的概率是=.故答案为.15.【解答】解:设小圆的半径为r,则大圆的半径就是3r,7个小圆的面积是:7r2π=7πr2,大圆的面积是:(3r)2π=9πr2,则蚂蚁停留在涂有颜色部分的概率为=;故答案为:.三.解答题(共4小题)16.【解答】解:(1)抽出标有数字3的纸签的概率=;(2)抽出标有数字2和5的纸签的概率=;(3)小明获胜的概率=,小王获胜的概率=,因为<,所以这个游戏对双方不公平.17.【解答】解:(1)由概率的意义可得,=,解得,n=1,答:n的值为1;(2)用列表法表示所有可能出现的结果情况如下:共有9种可能出现的结果,其中两次摸球摸到一个白球和一个黑球有4种.∴P(一白一黑)=,18.【解答】解:(1)共有5种可能选择的结果,因此张帆一家选择“E:张掖七彩丹霞景区”的概率是;(2)从A,B,C,D四个景区中任选两个景区所有可能出现的结果如下:共有12种可能出现的结果,其中选择A、D两个景区的有2种,==.∴P(选择A、D)19.【解答】解:(1)共有3种可能出现的结果,其中是A的只有1种,因此第1次摸到A的概率为,故答案为:(人教版)九年级上 第二十五章 25.3 用频率估计概率学校:姓名:班级:考号:评卷人得分一、选择题1. 关于频率和概率的关系,下列说法正确的是()A. 频率等于概率B. 当试验次数很大时,概率稳定在频率附近C. 当试验次数很大时,频率稳定在概率附近D. 试验得到的频率和概率不可能相等2. 某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围的频率为( )A. 0.8B. 0.7C. 0.4D. 0.23. 关于频率和概率的关系,下列说法正确的是()A. 频率等于概率B. 当试验次数很多时,频率稳定在概率附近C. 当试验次数很多时,概率稳定在频率附近D. 试验得到的频率与概率不可能相等4. 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越来越接近概率5. 袋子里有10个红球和若干个蓝球,小明从袋子里有放回地任意摸球,共摸100次,其中摸到红球次数是25次,则袋子里蓝球大约有()A. 20个B. 30个C. 40个D. 50个6. 某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是( )A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D. 掷一个质地均匀的正六面体骰子,向上的面点数是47. 在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回袋中,摇匀后再随机摸出一球,记下颜色,……,如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率应稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( ) A. ①②③ B. ①② C. ①③ D. ②③8. 如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A. 12B. 25C. 37 D. 47 评卷人 得分 二、填空题9. 小明“六一”去公园玩投掷飞镖的游戏,投中图中阴影部分有奖品(飞镖盘被平均分成8份),小明能获得奖品的概率是________.10. 某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可得测试分数在80~90分数段的学生有________名.11. 一鱼池里有鲤鱼,鲫鱼,鲢鱼共1000尾,一渔民通过多次捕捞试验后发现,鲤鱼,鲫鱼出现的概率约为31%和42%,则这个鱼池里大概有鲤鱼______尾,鲫鱼______尾,鲢鱼______尾. 12. 某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活的概率为________(精确到0.1).13. 小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC (如图).为了知道它的面积,小明在封闭图形内划出了一个半径为1 m 的圆,在不远处向圈内掷石子,且记录如下:依此估计此封闭图形ABC的面积是 m 2.14. 在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合格产品的概率是________.15. 一个不透明的盒子里有红色、黄色、白色小球共80个.它们除颜色外均相同,小文将这些小球摇匀后从中随机摸出一个记下颜色,再把它放回盒中,不断重复,多次试验后他发现摸到红色、黄色小球的频率依次为30%和40%.由此可估计盒中大约有白球 个.16. 下表记录了一名球员在罚球线上投篮的结果.评卷人得分三、解答题17. (9分)课外阅读是提高学生素养的重要途径,某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时),根据t的长短分为A,B,C,D四类.下面是根据所抽查的人数绘制的两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题:(1)求表格中的a值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少学生课外阅读时间不少于...1小时.18. (本小题满分7分)今年起,兰州市将体育考试正式纳入中考考查科目之一,其等级作为考生录取的重要依据之一.某中学为了了解学生体育活动情况,随机调查了720名初二学生.调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;(3)2011年兰州市区初二学生约为2.4万人,按此调查,可以估计2011年兰州市区初二学生中每天锻炼未超过1小时的学生约有多少万人?(4)请根据以上结论谈谈你的看法.19. 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时: (1)求三辆车全部同向而行的概率; (2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.20. “中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:请根据上表提供的信息,解答下列问题:(1)表中x 的值为________,y 的值为________;(2)将本次参赛作品获得A 等级的学生依次用A 1,A 2,A 3,…表示,现该校决定从本次参赛作品获得A 等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A 1和A 2的概率.21. 解决概率计算问题,可以直接利用模型,也可以转化后再利用模型. 请解决以下问题:(1)如图,一个寻宝游戏,若宝物随机藏在某一块砖下(图中每一块砖形状、大小完全相同),则宝物藏在阴影砖下的概率是多少?(2)在1~9中随机选取3个整数,若以这3个整数为边长构成三角形的情况如下表:请根据表中数据,估计构成钝角三角形的概率是多少(精确到百分位)?参考答案1. 【答案】C 【解析】概率是一个确定的数,频率是一个变化量,当试验次数很大时,频率会稳定在概率附近.2. 【答案】A 【解析】频率=频频频频,棉花纤维长度的数据在8≤x <32的频数为2+8+6=16,故棉花纤维长度的数据在8≤x <32的频率=1620=0.8,故选A.3. 【答案】B 【解析】事件发生的频率是变化的,只能用频率估计概率,A 错误;当进行大量重复试验时,事件发生的频率会稳定在概率附近,B 正确,C 错误;试验得到的频率可能与概率相等,如随机抛掷一枚硬币时,“正面朝上”的频率为0.5与概率相等,D 错误.故选B.4. 【答案】D 【解析】频率是某一事件发生的次数m 与试验总次数n 的比值,故选项A 错误;在大量重复进行同一试验时,某一事件发生的频率m /n 总是接近于某个数,在它附近摆动.故选项B 错误;概率是一个定值,当试验次数n 相当大的时候,频率可以作为概率的一个近似值,或者说概率是可以通过频率来测量的.故选项C 错误,选项D 正确,故选D.5. 【答案】B 【解析】设蓝球有x 个,则袋子里共有球(x +10)个.由题意得1010+x =25100,解得x =30.故选B.6. 【答案】D 【解析】由统计图知,随着实验次数的增加,频率稳定在0.16左右,这表明事件发生的概率估计为0.16,选项A 中,“剪刀”出现的概率为13,不符合;选项B 中,“红桃”出现的概率为14,不符合;选项C 中,“取出黄球”的概率为23,也不符合;选项D 中,“点数为4”的概率为16,符合.故选D.7. 【答案】B 【解析】摸出白球的概率为1-20100-50100=30100,故①正确;因为黑球的个数多,所以摸出一个球是黑球的概率最大,故②正确;③错误;故选B.8. 【答案】D 【解析】如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A 的概率P (A )=mn .故找到可以组成直角三角形的点,根据概率公式解答即可.如图,C 1,C 2,C 3,C 4均可与点A 和B 组成直角三角形.P =47,故选D.。
人教版 九年级数学上册 25.2 ---25.3同步测试题含答案)。

人教版 九年级数学 25.2 用列举法求概率一、选择题1. 2018·大连一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( ) A.13B.49C.12D.592. 三名九年级同学坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原位的概率是 ( ) A.19B.16C.14D.123. 2019·临沂经过某十字路口的汽车,可能直行,也可能向左转或向右转,若这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( ) A.23B.29C.13D.194. 2019·广西“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从图书馆、博物馆、科技馆三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A.13B.23C.19D.295. 一个盒子中装有标号分别为1,2,3,4,5的五个小球,这些球除标号不同外其余都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( ) A.15B.25C.35D.456. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( ) A.14B.13C.12D.347. 定义一种“十位上的数字比个位上的数字、百位上的数字都大”的三位数叫做“中高数”,如796就是一个“中高数”.若某三位数十位上的数字为7,从3,4,5,6,8,9中任选两数分别作为个位和百位上的数字,则与7组成“中高数”的概率是( ) A.12B.23C.25D.358. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π4二、填空题9. 2018·滨州若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,则点M在第二象限的概率是________.10. 同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上,一枚硬币反面向上的概率是________.11.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球.从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是________.12. 如图所示的圆面图案是用半径相同的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在阴影区域的概率为________.13. 如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是________.14. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是________.15. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数的图象恰好经过第一、二、四象限的概率为________.16. 已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则能使电路形成通路的概率是________.三、解答题17.甲同学口袋中有三张卡片,分别写着数字1、1、2,乙同学口袋中也有三张卡片,分别写着数字1、2、2.两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜;否则乙胜.求甲胜的概率.18. 2019·常州将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.根据以上信息,解决下列问题:(1)搅匀后从中摸出1个盒子,盒子中的纸片既是轴对称图形又是中心对称图形的概率是________;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒子中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率(不重叠、无缝隙拼接).19. 定义一种“各个数位上的数字从左向右逐渐减小”的数叫做“下降数”,如876就是一个“下降数”.在一个不透明的布袋中有三个质地相同的小球,小球上分别标有1,2,3三个数字.随机从中摸出一球,记下数字作为百位数字,然后放回摇匀.重复上面的操作两次,记下数字分别作为十位数字和个位数字,求三次摸球后得到的三位数是“下降数”的概率.20. 为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分100分,得分为正整数且无满分,最低75分)分成五组,并绘制了下列不完整的统计图表.(1)表中m=________,n=________;(2)请补全频数直方图;(3)甲同学的比赛成绩是40名参赛选手成绩的中位数,据此推测他的成绩落在________分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列表法或画树状图法求恰好是一名男生和一名女生的概率.21. 2019·孝感一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其他完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________;(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图10-ZT-3,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图法或列表法,求点M落在四边形ABCD所围成的图形内(含边界)的概率.人教版 九年级数学 25.2 用列举法求概率 课时训练-答案一、选择题1. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为59.2. 【答案】D[解析] 利用列举法可知,三人全部的坐法有6种,其中恰好有两名同学没有坐回原位的情况有3种,因此恰好有两名同学没有坐回原位的概率是36=12.3. 【答案】B4. 【答案】A5. 【答案】C[解析] 随机摸出两个球,所有可能的结果有20种,每种结果的可能性相同,其中摸出的小球标号之和大于5的结果有12种,所以所求概率P =1220=35.故选C.6. 【答案】A7. 【答案】C[解析] 画树状图如下:∵共有30种等可能的结果,与7组成“中高数”的结果有12种, ∴与7组成“中高数”的概率是1230=25.8. 【答案】C[解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8.二、填空题9. 【答案】13 [解析] 若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,一共有(-1,1),(-1,2),(1,-1),(1,2),(2,-1),(2,1)6种等可能结果,其中在第二象限的结果一共有2种,所以点M 在第二象限的概率是13.10. 【答案】12 [解析] 同时抛掷两枚硬币共有4种等可能的结果,即正正,正反,反正,反反,其中一正一反的结果有2种, 所以所求概率=24=12.11.【答案】49【解析】如解图所示,由树状图可知,共有9种情况,而符合两次都摸到红球的情况共有4种,根据计算简单事件的概率公式P =m n =49.12. 【答案】1313. 【答案】23 [解析] 因为随机闭合开关S1,S2,S3中的两个,共有3种情况:S1S2,S1S3,S2S3,能让灯泡发光的有S1S2,S1S3两种情况,所以随机闭合两个,能让灯泡发光的概率为23.14. 【答案】19 [解析] 画树状图如下:∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a ,b ,c 为边长正好构成等边三角形的概率是327=19.15. 【答案】16 [解析] 函数y =ax2+bx +1的图象一定经过y 轴上的点(0,1),又知其图象经过第一、二、四象限,则图象的开口向上,对称轴在y 轴的右侧,且与x 轴正半轴有两个交点,所以a >0,b <0,b2-4ac >0. 列表如下:由表可知,从-4,-2,1,2四个数中随机取两个数一共有12种等可能的结果,其中只有a =1,b =-4和a =2,b =-4这2种结果符合题意,所以所求概率=212=16.16. 【答案】35 [解析] 列表如下:∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.三、解答题17. 【答案】解:所有可能的结果列表如下:由表可知,和为偶数的结果有4种,∴P(甲胜)=49. 答:甲胜的概率是49.18. 【答案】解:(1)2 3(2)画树状图如下:由树状图可知,共有6种等可能的结果,其中“拼成的图形是轴对称图形”的结果有2种,故P(拼成的图形是轴对称图形)=26=13.19. 【答案】解:根据题意,画树状图如下:由树状图可知共有27种等可能的结果,其中组成的“下降数”只有1个,即321,∴三次摸球后得到的三位数是“下降数”的概率=1 27.20. 【答案】解:(1)m=40×0.2=8,n=14÷40=0.35. 故答案为8,0.35.(2)补全频数直方图如下:(3)成绩从小到大排序后,第20名和第21名同学的成绩都落在84.5~89.5之间,故甲的成绩落在84.5~89.5分数段内.(4)成绩在94.5分以上的选手共有4名,故男生两名、女生两名,分别记为男1,男2,女1,女2,画树状图如下:由树状图知,共有12种等可能的结果,其中恰好选中一名男生和一名女生的结果有8种,故所求概率P=812=23.21. 【答案】解:(1)1 4(2)由题意,列表如下:由表可知,点M的所有等可能的结果有16种,点M落在四边形ABCD所围成的图形内(含边界)的结果有(-2,0),(-1,-1),(-1,0),(0,-2),(0,-1),(0,0),(0,1),(1,0),共8个,所以满足条件的概率为P=816=12.25.3 用频率估计概率1. 关于频率和概率的关系,下列说法正确的是( )A.概率等于频率B.当试验次数很大时,频率稳定在概率附近C.当试验次数很大时,概率稳定在频率附近D.试验得到的频率与概率不可能相同2. 从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().A.11000 B.1200C.12D.153.下列说法正确的是( ).A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C.彩票中奖的机会是1%,买100张一定会中奖;D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4. 在抛掷一枚硬币的试验中,第一小组做了500 次试验,当出现正面的频数为________时,其出现正面的频率才是 49.6 %( ) A .248 B .250 C .258 D .无法确定5. 某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ). A .10粒 B .160粒 C .450粒 D .500粒 6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的53;D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球. 7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为51,四位同学分别采用了下列装法,你认为他们中装错的是( ).A .口袋中装入10个小球,其中只有两个红球;B .装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C .装入红球5个,白球13个,黑球2个;D .装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是().A. 2元 B.5元 C.6元 D.0元9. 小明想知道一碗芝麻有多少粒,于是就从中取出100粒涂上黑色,然后放入碗中充分搅匀后再随意取出100粒,其中有5粒是黑色的,因此可以估算这碗芝麻有粒.10. 为了估计水塘中的鱼的个数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数可估计为条.11. 在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.12. 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:结果第一组第二组第三组第四组第五组第六组两个正面 3 3 5 1 4 2一个正面 6 5 5 5 5 7没有正面 1 2 0 4 1 1这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.13.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上组别频数频率46 ~ 50 4051 ~ 55 8056 ~ 60 16061 ~ 65 8066 ~ 70 3071~ 75 10.14. 图表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约是.(精确到0.1)从袋口里随机摸出5个球(不放回),其中有2个为黑球,请你估计口袋里大约有多少个白球?参考答案:1---8 BBBAC CCB9. 200010. 120011. 1512. 3113,,102020111 ,, 42413. 0.1, 0.2, 0.4, 0.2, 0.075, 0.025;0.114. 0.515. 解:设有x个白球,根据已知,得25=8x+8,解得x=12,所以可估计口袋中共有12个白球.。
人教版九年级数学上册第二十五章综合素质评价附答案

人教版九年级数学上册第二十五章综合素质评价一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【2023·茂名校考开学考试】下列事件中,是必然事件的是() A.任意掷一枚质地均匀的骰子,掷出的点数是7B.一名射击运动员射击一次的命中环数是8环C.任意买一张电影票,座位号是2的倍数D.早上的太阳从东方升起2.【2022·深圳光明区二模】学校课后延时服务项目为同学们提供了丰富多彩的社团活动,欢欢从国际象棋、玩转发明、美术欣赏、艺术体操四个社团中任选一个参加,则恰好选到艺术体操社团的概率为()A.1 B.12 C.13 D.143.【2023·惠州惠阳区黄埔学校开学考试】如图是由8块相同的等腰直角三角形灰白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬行,并随机停留在某块瓷砖上,蚂蚁停留在灰色瓷砖上的概率是()A.12 B.13C.38 D.234.某射击运动员在同一条件下射击,结果如下表:射击总次数n10 20 50 100 200 500 1 000 击中靶心的次数m8 17 40 79 158 390 780击中靶心的频率mn0.8 0.85 0.8 0.79 0.79 0.78 0.78根据频率的稳定性,该运动员射击一次击中靶心的概率是()A.0.78 B.0.79 C.0.8 D.0.855.【2022·江门新会葵城中学期中】已知抛一枚质地均匀的硬币正面朝上的概率为12,下列说法错误的是()A.连续抛一枚质地均匀的硬币2次必有1次正面朝上B.连续抛一枚质地均匀的硬币10次都可能正面朝上C.大量反复抛一枚质地均匀的硬币,平均每100次出现反面朝上50次D.通过抛一枚质地均匀的硬币确定谁先发球的比赛规则是公平的6.【2023·惠州惠阳区黄埔学校开学考试】从长度分别为1 cm、3 cm、5 cm、6 cm的四条线段中随机取出三条,能够组成三角形的概率为()A.14 B.13 C.12 D.347.一个不透明袋子中装有1个红球,2个绿球,这些球除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是()A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的球不一定是红球C.第一次摸出的球是红球的概率是1 3D.两次摸出的球都是红球的概率是1 98.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一个球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是69.现有三张正面分别标有数-1,1,2的不透明卡片,它们除数外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数后放回,背面朝上洗均匀,再随机抽取一张记下数,前后两次抽取的数分别记为m,n,则点P(m,n)在第四象限的概率为()A.29 B.13 C.49 D.2310.如图,用①②③表示三张背面完全相同的纸片,正面分别写有3个不同的条件,小明将这三张纸片背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张,抽得的条件能判定四边形ABCD为平行四边形的概率是()A.12 B.13 C.23 D.34二、填空题:本大题共5小题,每小题3分,共15分.11.“打开电视正在播放动画片”是________事件.(填“必然”“随机”或“不可能”)12.【2023·茂名新世纪学校期中】一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加上述同种型号的1个球,使得从中随机抽取1个球,白球被抽到的可能性是13,那么添加的球是________.13.【母题:教材P148习题T5】某鱼塘里养了1 600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5,若该鱼塘主随机在鱼塘捕捞一条鱼,则捕捞到鲤鱼的概率约为________.(结果保留小数点后一位)14.【母题:教材P150活动1】在如图所示的图形中随机撒一把豆子,豆子落在________区域的可能性最大.(填“A”“B”或“C”)15.如图,每个转盘被分成面积相等的几个扇形,同时转动两个转盘,两个转盘停止后,指针都不落在“1”区域的概率是________.(如果指针落在分隔线上,则重新转动,直至落在其中一块区域上)三、解答题(一):本大题共3小题,每小题8分,共24分.16.某班从3名男生(含小强)和5名女生中选4名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名.(1)当n为何值时,男生小强参加是确定事件?(2)当n为何值时,男生小强参加是随机事件?17.【2023·茂名高州市第一中学附属实验中学开学考试】一个不透明的口袋中装有6个红球,9个黄球,3个白球,这些球除颜色外其他均相同,从中任意摸出一个球.(1)求摸到的球是白球的概率.(2)如果要使摸到的球是白球的概率为14,那么需要在这个口袋中再放入多少个白球?18.某批乒乓球的质量检验结果如下:(1)请求出a,b的值;(2)从这批乒乓球中,任意抽取一个,估计这个乒乓球是优等品的概率;(精确到0.01)(3)若这批乒乓球共有4 500个,请估计其中是优等品的个数.四、解答题(二):本大题共3小题,每小题9分,共27分.19.【2022·珠海一模】某品牌免洗洗手液按剂型分为凝胶型、液体型、泡沫型三种型号(分别用A,B,C表示).小辰和小安计划每人购买一瓶该品牌免洗洗手液,上述三种型号中的每一种免洗洗手液被选中的可能性均相同.(1)小辰随机选择一种是凝胶型免洗洗手液的概率是________;(2)请你用列表法,求小辰和小安选择同一种型号免洗洗手液的概率.20.【2023·东莞东华初级中学期中】小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图.(1)若小明设计的电路图如图①所示(四个开关按键都处于打开状态),求任意闭合一个开关按键,灯泡发光的概率;(2)若小明设计的电路图如图②所示(四个开关按键都处于打开状态),求同时闭合其中的两个开关按键,灯泡发光的概率.(用画树状图法)21.将背面完全相同,正面上分别写有数字1,2,3,4的四张大小一样的卡片混合后,小明从中随机地抽取一张,把卡片上的数字作为被减数;将形状、大小完全相同,分别标有数字2,3,4的三个小球混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差.(1)请你用画树状图或列表的方法,求这两个数的差为0的概率;(2)小明与小华做游戏,规则是:若这两个数的差为正数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.五、解答题(三):本大题共2小题,每小题12分,共24分.22.【2022·江门怡福中学月考】中华文化,源远流长,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)请将条形统计图补充完整;(2)扇形统计图中“1部”所在扇形的圆心角为________度;(3)没有读过四大古典名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,若将《西游记》《三国演义》《水浒传》《红楼梦》依次记为A,B,C,D,请用画树状图的方法求他们选择同一部名著的概率.23.在一个不透明的口袋里装有分别标有数-2,-1,0,3的四个小球,除数不同外,小球没有任何区别,每次试验先搅拌均匀.(1)从中任取一小球,将小球上的数记为a,求关于x的一元二次方程ax2-2ax+a+2=0有实数根的概率;(2)从中任取一小球,将小球上的数作为点的横坐标,记为x(不放回),再任取一小球,将小球上的数作为点的纵坐标,记为y,用画树状图法或列表法表示出点(x,y)所有可能出现的结果,并求点(x,y)在二次函数y=x2+2x-1的图象上的概率.答案一、1.D【提示】A是不可能事件;B, C是随机事件;D是必然事件.2.D【提示】共有4种等可能的结果,其中恰好选到艺术体操社团的结果只有1种,则恰好选到艺术体操社团的概率为1 4.3.A【提示】蚂蚁停留在灰色瓷砖上的概率为48=12.4.A5.A【提示】A.连续抛一枚质地均匀的硬币2次,可能1次正面朝上,也可能2次正面朝上,也可能0次正面朝上,故A错误;B.是随机事件,有可能发生,故B正确;C.大量反复抛一枚质地均匀的硬币,反面朝上的概率为12,则平均每100次出现反面朝上50次,故C正确;D.抛一枚质地均匀的硬币正面朝上或反面朝上的概率均为12,所以通过抛一枚质地均匀的硬币确定谁先发球的比赛规则是公平的,故D正确.6.A【提示】从长度分别为1 cm、3 cm、5 cm、6 cm的四条线段中随机取出三条,有1 cm、3 cm、5 cm;1 cm,3 cm、6 cm;3 cm、5 cm、6 cm;1 cm、5 cm、6 cm,共4种等可能结果,其中能够组成三角形的有3 cm、5 cm、6 cm这1种,所以能够组成三角形的概率是1 4.7.A【提示】A.第一次摸出的球是红球,第二次摸出的球不一定是绿球,故A错误;B.第一次摸出的球是红球,第二次摸出的球不一定是红球,故B正确;C.第一次摸球,共有3种等可能情况,摸出的球是红球的有1种情况,则第一次摸出的球是红球的概率是13,故C正确;D.两次摸球,共有9种等可能情况,两次摸出的球都是红球的有1种情况,则两次摸出的球都是红球的概率是19,故D正确.8.D9.A【提示】列表如下:1 (1,-1) (1,1) (1,2)2 (2,-1) (2,1) (2,2)由表可知共有9种等可能结果,其中点P(m,n)在第四象限的有2种结果,所以点P(m,n)在第四象限的概率为2 9.10.C【提示】画树状图如图.由树状图可知共有6种等可能的结果,其中能判定四边形ABCD为平行四边形的有①③,③①,②③,③②,共4种,所以能判定四边形ABCD为平行四边形的概率为46=23.二、11.随机12.红球或黄球【提示】∵22+2+1=25,∴原来白球被抽到的可能性是2 5.∵25>13,∴添加的球是红球或黄球.13.0.3【提示】设草鱼的条数为x,则x1 600+x+800=0.5,解得x=2 400,经检验:x=2 400是原方程的解,1 6001 600+2 400+800≈0.3.∴捕捞到鲤鱼的概率约为0.3.14.A 【提示】由题图知,C区域的面积为4π cm2,B区域的面积为16π-4π=12π(cm2),A区域的面积为36π-16π=20π(cm2).所以豆子落在C,B,A区域的概率分别为19,13,59,所以豆子落在A区域的可能性最大.15.13【提示】列表如下:1 2 3由表可知共有6种等可能结果,其中指针都不落在“1”区域的结果有2种,所以指针都不落在“1”区域的概率是26=13.三、16.【解】(1)当女生选1名时,3名男生都能选上,男生小强参加是必然事件,属于确定事件.当女生选4名时,3名男生都不能选上,男生小强参加是不可能事件,属于确定事件.综上所述,当n的值为1或4时,男生小强参加是确定事件.(2)当n的值为2或3时,男生小强参加是随机事件.17.【解】(1)P(摸到的球是白球)=36+9+3=16.(2)设需要在这个口袋中再放入x个白球,则3+x6+9+3+x=14,解得x=2.经检验:x=2是原方程的解且符合题意,所以需要在这个口袋中再放入2个白球.18. 【解】(1)a=200×0.940=188,b=1 8982 000=0.949.(2)估计这个乒乓球是优等品的概率为0.95.(3)4 500×0.95=4 275(个),所以估计其中是优等品的个数是4 275个.四、19.【解】(1)1 3(2)列表如下:由表格可知共有9种等可能结果,其中小辰和小安选择同一种型号免洗洗手液的有3种结果,所以小辰和小安选择同一种型号免洗洗手液的概率为39=13.20.【解】(1)一共有四个开关按键,只有闭合开关按键K2,灯泡才会发光,所以P(灯泡发光)=1 4.(2)画树状图如图.一共有12种等可能的情况,其中有6种情况能使灯泡发光,所以P(灯泡发光)=612=12.21.【解】(1)画树状图如图.由树状图可知所有可能出现的结果有12种,其中差为0的有3种,∴这两个数的差为0的概率为312=14.(2)不公平,理由如下:由(1)知所有可能出现的结果有12种,这两个数的差为正数的有3种,其概率为312=14;这两个数的差为非正数的有9种,其概率为912=34.∵14≠34,∴该游戏不公平.游戏规则修改为:若这两个数的差为负数,则小明赢;否则,小华赢.五、22.【解】(1)总人数是10÷25%=40(人),40-2-10-8-6=14(人).如图.(2)126(3)设没有读过四大古典名著的两名学生分别为甲、乙,根据题意画树状图如图:共有16种等可能的结果,其中他们选择同一部名著的有4种结果,故他们选择同一部名著的概率为416=14.23.【解】(1)∵关于x的一元二次方程ax2-2ax+a+2=0有实数根,∴Δ=(-2a)2-4×a×(a+2)=-8a≥0,解得a≤0,∵a≠0,∴a<0.∴当a为-2,-1时符合题意,故关于x的一元二次方程ax2-2ax+a+2=0有实数根的概率为24=12.(2)画树状图如图:可知有(-2,-1),(-2,0),(-2,3),(-1,-2),(-1,0),(-1,3),(0,-2),(0,-1),(0,3),(3,-2),(3,-1),(3,0),共12种等可能的结果.∵对于二次函数y=x2+2x-1,当x=-2时,y=-1;当x=-1时,y=-2;当x=0时,y=-1;当x=3时,y=14,∴在二次函数y=x2+2x-1的图象上的点是(-2,-1),(-1,-2),(0,-1) ,共3个,∴点(x,y)在二次函数y=x2+2x-1的图象上的概率为14.。
(含答案)九年级数学人教版上册课时练第25章《25.1.2 概率》(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第25章概率初步25.1.2概率一、选择题(本大题共10小题,共40分)1.已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的2.下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为13.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.12B.13C.23D.164.一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数-1,0,2和3.从中随机地摸取一个小球,则这个小球所标数是正数的概率为()A.14B.13C.12D.345.某存折的密码是一个六位数(每位都可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是()A.15B.16C.19D.1106.掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上7.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在“Ⅱ”所示区域内的概率是()A.13B.14C.16D.188.在平行四边形ABCD中,AC,BD是两条对角线,现从以下四个关系:AB=BC;AC=BD;AC⊥BD;AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.14B.12C.34D.19.如图,随机闭合开关1,2,3中的两个,则能让两盏灯泡1,2同时发光的概率为()A.16B.12C.23D.1310.正方形ABCD的边长为4,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.−22B.−24C.−28D.−216二、填空题(本大题共3小题,共12分)11.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在灰色区域的概率是.12.下列事件:太阳绕着地球转;小明骑车经过某个十字路口时遇到红灯;地球上海洋面积大于陆地面积;将油滴入水中,油会浮在水面上.其中概率为1的事件是.13.对于▱ABCD,从以下五个关系式中任取一个作为条件:AB=BC;∠BAD=90∘;AC=BD;AC⊥BD;∠DAB=∠ABC,能判定▱ABCD是矩形的概率是.三、解答题(本大题共3小题,共48分)14.在一个不透明袋中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率不小于45,求m的值.15.甲、乙两个不透明的袋子中有红、白两种仅颜色不同的小球.甲袋中,红球个数是白球个数的2倍,乙袋中红球个数是白球个数的3倍.(1)随机从甲袋中摸出一个球,求摸出红球的概率;(2)往乙袋中放入10个白球后,随机摸出一个球,摸出白球的概率是1,求乙袋中红球的个3数;(3)在(2)的基础上,将乙袋中的球全部倒入甲袋中后,随机从甲袋中摸出一个球,求摸出红球的概率.16.有一类随机事件概率的计算方法:设试验结果落在某个区域S中的每一点的机会均等,用A表示事件“试验结果落在S中的一个小区域M中”,那么事件A发生的概率P(A)=.有一块边长为30cm的正方形ABCD飞镖游戏板,假设飞镖投在游戏板上的每一点的机会均等.(1)在飞镖游戏板上画有半径为5cm的一个圆(如图),求飞镖落在圆内的概率;(2)飞镖在游戏板上的落点记为点O,求△OAB为钝角三角形的概率.参考答案1.A2.B3.A4.C5.D6.B7.A8.B9.D10.A11.3812.13.3514.解:(1)若事件A为必然事件,则袋中应全为黑球,∴m=4.若事件A为随机事件,则袋中有红球,∵m>1,∴m=2或3.故答案为:4;2或3.(2)由题意得+610≥45,解得m≥2,又∵m≤4,∴2≤m≤4,且m是整数,∴m的值是2或3或4.15.解:(1)设甲袋中有白球x个,则甲袋中的红球有2x个,所以P(摸出红球)=2+2=2 3 .(2)设乙袋中原有白球y个,则乙袋中的红球有3y个,依题意得+103++10=1 3 ,解得y=20.经检验,y=20是原方程的解,则3y=60,即乙袋中红球有60个.(3)由(2)知乙袋中一共有90个球,将乙袋中的球全部倒入甲袋后,P(摸出红球)=2+6090+3=2 3 .16.解:(1)∵半径为5cm的圆的面积为×52=25(2),边长为30cm的正方形ABCD的面积为302=900(2),∴P(飞镖落在圆内)=25900= 36.(2)易知当点O落在以AB为直径的半圆内时,△OAB为钝角三角形.∵半圆形=12⋅⋅152=2252(2),∴P(△OAB为钝角三角形)=2252900=8.。
周测7(25.1~25.2)2024-2025学年九年级上册数学配套教学设计(人教版)

首先,在教学方法上,我意识到需要更加注重学生的主动参与。在未来的教学中,我将增加课堂讨论和小组合作的机会,鼓励学生提出问题和发表自己的观点,从而提高他们的学习兴趣和参与度。
教师活动:
-发布预习任务:通过在线平台或班级信群,发布预习资料(如PPT、视频、文档等),明确预习目标和要求。
-设计预习问题:围绕二次函数的图像与性质,设计一系列具有启发性和探究性的问题,引导学生自主思考。
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解二次函数的基本概念。
(3)拓展性作业:提供一些拓展性的题目,供学有余力的学生进行深入研究。如研究二次函数的图像与性质在实际问题中的应用,查阅相关资料,撰写小论文等。
2.作业反馈
(1)及时批改:教师应及时批改学生的作业,确保学生能够及时了解自己的学习情况。
(2)指出问题:在批改作业过程中,教师应指出学生在作业中存在的问题,如解题方法不当、计算错误、概念理解不准确等。
课后拓展
1.拓展内容
(1)阅读材料:推荐学生阅读与二次函数、二次方程、二次不等式相关的书籍或文章,如《数学分析》、《二次方程与二次不等式的应用》等,以加深对知识点的理解。
(2)视频资源:鼓励学生观看与本节课内容相关的教学视频,如“二次函数的图像与性质”、“二次方程的解法”等,以直观地理解知识点。
(3)在线资源:推荐学生访问数学教育网站或数学论坛,如“中学数学论坛”、“数学之家”等,以获取更多学习资源。
(新人教版)数学九年级上册第25章检测题(含答案).doc

初中数学试卷桑水出品第25章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.以下事件中,必然发生的是( C )A .打开电视机,正在播放体育节目B .正五边形的外角和为180°C .通常情况下,水加热到100℃沸腾D .掷一次骰子,向上一面是5点2.(2014·宜宾)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是( B )A .19B .13C .12D .233.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( A )A .1B .2C .3D .4 4.下列说法正确的是( C )A .若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B .某篮球运动员2次罚球,投中一个,则可断定他罚球命中的概率为50%C .明天我市会下雨是随机事件D .某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 5.一只小鸟自由地在空中飞行,然后随意地落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是( B )A .12B .13C .14D .15,第5题图),第7题图),第8题图),第10题图)6.在四张背面完全相同的卡片上分别印着等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率( D )A .34B .14C .13D .127.如图,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( C )A .15B .25C .35D .458.如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字,如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是( C )A .12B .29C .49D .139.(2014·陕西)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A .110B .19C .16D .1510.(2014·河北)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( D )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一个球是黄球D .掷一个质地均匀的正六面体骰子,向上一面的点数是4 二、填空题(每小题3分,共24分)11.某中学九(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,则组长是男生的概率为__47___.12.小芳同学有两根长度为4 cm ,10 cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是__25___.13.某电视台综艺节目接到热线电话500个,现从中抽取“幸运观众”10名,小明的打通了一次热线电话,他成为“幸运观众”的概率是__150___.14.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__13___.15.平行四边形中,AC ,BD 是两条对角线,现从以下四个关系式:①AB =BC ;②AC =BD ;③AC⊥BD ;④AB ⊥BC 中,任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为__12___.16.从-3,1,-2这三个数中任取两个不同的数,积为正数的概率是__13___.17.(2014·兰州)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀.从口袋内任取一个球记下数字后作为点P 的横坐标x ,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P 的纵坐标y ,则点P(x ,y)落在直线y =-x +5上的概率是__14___.18.一个不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球__28___个.三、解答题(共66分)19.(8分)掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数;(2)点数大于2且小于5.解:(1)12 (2)1320.(8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球. (1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13,求从袋中取出黑球的个数.解:(1)14 (2)设取出x 个黑球,由题意得8-x 20-x =13,解得x =2.经检验x =2是方程的解且符合题意,即从袋中取出黑球个数为221.(8分)(2014·南京)从甲、乙、丙3名同学中随机抽取环保志愿者.求下列事件的概率: (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.解:(1)13 (2)2322.(10分)现有20名志愿者准备参加某次博览会的服务工作,其中男生8人,女生12人. (1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.解:(1)35(2)画树状图(略),牌面数字之和的所有可能结果为:5,6,7,5,7,8,6,7,9,7,8,9,共12种,其中和为偶数的有:6,8,6,8,故甲参加的概率为P(和为偶数)=412=13,而乙参加的概率为P(和为奇数)=23.因为13≠23,所以游戏不公平23.(10分)中秋节期间,某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”“20元”“30元”“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券.某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得__20___元购物券,最多可得__80___元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.解:画树状图(略),∵共有16种等可能结果,该顾客所获奖券金额不低于50元的有10种,∴该顾客所获购物券金额不低于50元的概率为P =1016=5824.(10分)(1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少? 解:(1)0.5 (2)622×0.5=311,故估计投中的次数约是311次25.(12分)小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a 层出电梯,乙在b 层出电梯.(1)小明想知道甲、乙二人在同一层出电梯的概率,你能帮他求出吗? (2)小亮和小芳打赌:若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.解:(1)列表(略),一共出现16种等可能结果,其中在同一层出电梯的有4种结果,则P(甲、乙在同一层出电梯)=416=14 (2)甲、乙在同一层或相邻楼层出电梯的有10种结果,故P(小亮胜)=1016=58,P(小芳胜)=1-58=38,∵58>38,∴游戏不公平.修改规则:若甲、乙在同一层或相隔两层出电梯,则小亮胜;若甲、乙相隔一层或三层出电梯,则小芳胜。
人教版 九年级上册数学 25章概率初步章节水平测试题(含答案)
25.1随机事件与概率一.选择题1.下列事件中,是必然事件的是()A.明天太阳从西边出来B.打开电视,正在播放《云南新闻》C.昆明是云南的省会D.小明跑完800米所用的时间恰好为1分钟2.一个不透明的盒子里装有红、黄、白三种颜色的球,个数分别为2、3、4,这些球除颜色外都相同,从盒子中任抽一个球,则抽到红球的概率是()A.B.C.D.3.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件4.在一个不透明的袋子里装有2个黑球3个白球,它们除颜色外都相同,随机从中摸出一个球,是黑球的概率是()A.B.C.D.5.从﹣3,,0,,这5个数中任意抽取一个,抽到无理数的概率为()A.B.C.D.6.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是7.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0B.C.D.8.下列事件中,是随机事件的是()A.抛出的篮球会下落B.爸爸买彩票中奖了C.地球绕着太阳转D.一天有24小时9.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上B.可能有3次正面朝上C.至少有1次正面朝上D.不可能有6次正面朝上10.某商店举办有奖销售活动,购货满100元者发奖券一张,在10000张奖券中设特等奖1个、一等奖10个、二等奖100个,若某人购物满100元,那么他中奖的概率是()A.B.C.D.二.填空题11.一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,则“摸出的球至少有1个黑球”是事件.(填“必然”、“不可能”或“随机”)12.有8张卡片,标号为1,2,3,4,5,6,7,8从中任意抽取一张,P(抽到大于3)=.13.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为.14.在9张质地完全相同的卡片上分别写上数字﹣4、﹣3、﹣2、﹣1、0、1、2、3、4,从中任意抽取一张卡片,则所抽卡片上的数字的绝对值大于2的概率是.15.一个盒中装着大小、外形一模一样的x颗白色弹珠和12颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是,则盒中有白色弹珠的颗数为.三.解答题16.①四边形内角和是180°;②今年的五四青年节是晴天;③367人中有2人同月同日生.指出上述3个事件分别是什么事件?并按事件发生的可能性由大到小排列.17.如图,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向偶数区域的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向区域的概率为.18.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)现再将n个白球放入布袋,搅匀后.使摸出1个白球的概率为.求n的值.参考答案1.解:A、明天太阳从西边出来是不可能事件;B、打开电视,正在播放《云南新闻》是随机事件;C、昆明是云南的省会是必然事件;D、小明跑完800米所用的时间恰好为1分钟是不可能事件;故选:C.2.解:∵盒子里装有红、黄、白三种颜色的球,个数分别为2、3、4,共9个球,从盒子中任抽一个球共有9种结果,其中出现红球的情况2种可能,∴抽到红球的概率是:.故选:C.3.解:“翻开数学书,恰好翻到第16页”确实有可能刚好翻到第16页,也有可能不是翻到第16页,故这个事件是随机事件.故选:A.4.解:∵在一个不透明的袋子里装有2个黑球3个白球,共5个球,∴随机从中摸出一个球,摸到黑球的概率是.故选:A.5.解:∵﹣3,,0,,这五个数中,无理数有2个,∴随机抽取一个,则抽到无理数的概率是,故选:B.6.解:A、“穿十条马路连遇十次红灯”是随机事件,故此选项错误;B、任意画一个三角形,其内角和是180°是必然事件,正确;C、某彩票中奖概率为1%,那么买100张彩票也不一定会中奖,故此选项错误;D、“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是,故此选项错误.故选:B.7.解:∵共有3只包装相同的备用口罩,其中有2只是医用外科口罩,∴她一次取对的概率为;故选:D.8.解:A、抛出的篮球会下落的是,是必然事件,不符合题意;B、爸爸买彩票中奖了,是随机事件,符合题意;C、地球绕着太阳转,是必然事件,不符合题意;D、一天有24小时是必然事件,不符合题意,故选:B.9.解:掷一枚质地均匀的硬币,可能正面向上,也可能反面向上,可能性是均等的,不会受到前一次的影响,掷一枚质地均匀的硬币6次,不一定3次正面朝上,因此A选项不符合题意,“可能有3次正面朝上”是正确的,因此B选项正确;可能6次都是反面向上,因此C不符合题意,有可能6次正面向上,因此D选项不符合题意;故选:B.10.解:∵在10000张奖券中设特等奖1个、一等奖10个、二等奖100个,∴他中奖的概率是=;故选:D.11.解:一个不透明的袋中装有3个红球,1个黑球,每个球除颜色外都相同.从中任意摸出2球,共有以下2种情况:1、2个红球;2、1个红球,1个黑球;所以从中任意摸出2球,“摸出的球至少有1个黑球”是随机事件,故答案为:随机.12.解:标号为1,2,3,4,5,6,7,8的卡片中大于3的有5张,∴P(抽到大于3)=,故答案为:.13.解:由于每一次正面朝上的概率相等,∴第21次抛掷的结果正面朝上的概率为0.5;故答案为:0.5.14.解:∵数的总个数有9个,绝对值大于2的数有﹣4、﹣3、3、4,共4个,∴任意抽取一张卡片,则所抽卡片上数字的绝对值大于2的概率是,故答案为:.15.解:设盒中有白色弹珠x颗,那么盒中一共有弹珠(x+12)颗,∵从盒中随机取出一颗弹珠,取得白色弹珠的概率是,∴=,解得:x =6.故答案为:6.16.解:①是不可能事件;②是随机事件;③必然事件.答:按事件发生的可能性由大到小排列为:③>②>①.17.解:(1)P (指针指向偶数区域)==;(2)方法一:如图,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为; 方法二:自由转动转盘,当它停止时,指针指向数字不大于4的区域的概率是. 故答案为:18.解:(1)∵一个不透明的布袋里装有3个球,其中2个红球,1个白球,∴摸出1个球是白球的概率为;(2)由题意得:,解得:n =4.经检验,n =4是所列方程的解,且符合题意,∴n =4. 人教版 九年级数学 25.2 用列举法求概率一、选择题(本大题共10道小题)1. 2018·大连 一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( )A.13B.49C.12D.592. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚鸟卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.233. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.234. 在一个箱子里放有1个白球和2个红球,它们除颜色不同外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B.23C.13D.125. 在▱ABCD 中,AC ,BD 是两条对角线,现从以下四个关系式:① AB =BC ,①AC =BD ,①AC①BD ,① AB①BC 中任选一个作为条件,可推出▱ABCD 是菱形的概率为( )A.12B.14C.34D.256. 2018·梧州 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种颜色的球各1个,这些球除颜色不同外无其他差别,每人从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( )A.127B.13C.19D.297. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V 数”的概率是( )A.16B.14C.13D.238. 在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n的图象的顶点在坐标轴上的概率为( ) A.25B.15C.14D.129. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π410. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是( )A.613B.513C.413D.313 二、填空题(本大题共7道小题)11. 一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是________.12. 2019·邵阳不透明袋中装有大小、形状、质地完全相同的4个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是________.13.①①①①①①①①①①①①①①①3①①(①①①①①①)①①①2①①①①①1①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①________①14. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是________.15. 任取不等式组⎩⎨⎧k -3≤0,2k +5>0的一个整数解,则能使关于x 的方程2x +k =-1的解为非负数的概率为________.16. 已知电路AB 由如图所示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个,则能使电路形成通路的概率是________.17. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y =ax 2+bx +1中a ,b 的值,则该二次函数的图象恰好经过第一、二、四象限的概率为________.三、解答题(本大题共4道小题)18. 小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A ,B ,C ,D ,E 五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A ,B 两个出入口放入;②若小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法列举出该游戏的所有可能情况;(2)小美玩一次游戏,得到小兔玩具的机会有多大?(3)假设有125人玩此游戏,估计游戏设计者可赚多少元.19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.20. 有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为x的值,放回卡片洗匀后,再从三张卡片中随机抽取一张,以其正面数字作为y的值,两次结果记作(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使分式x2-3xyx2-y2+yx-y有意义的(x,y)出现的概率;(3)化简分式x2-3xyx2-y2+yx-y,并求使分式的值为整数的(x,y)出现的概率.21. 2019·孝感一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其他完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________;(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图10-ZT-3,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图法或列表法,求点M落在四边形ABCD所围成的图形内(含边界)的概率.人教版九年级数学25.2 用列举法求概率同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为5 9.2. 【答案】B[解析] 从树状图(C代表雌鸟,X代表雄鸟)中可以看出,三只雏鸟中有两只雌鸟的概率是38.故选B.3. 【答案】C[解析] 列表得:所以甲获胜的概率是59.4. 【答案】C5. 【答案】A[解析] ①AB=BC,③AC⊥BD能够推出▱ABCD为菱形,4种情形中有2种符合要求,所以所求概率为24=12.6. 【答案】D[解析] 如图,用A,B,C分别表示红球、黄球、白球,可以发现一共有27种等可能结果,三人摸到球的颜色都不相同的结果有6种,∴P(三人摸到球的颜色都不相同)=627=29.7. 【答案】C[解析]根据题意,画树状图如下:共有6种等可能的结果,与5组成“V数”的结果有2种(即658,856),所以从4,6,8中任选两数分别作为个位和百位上的数字,与5组成“V数”的概率为26=13.8. 【答案】A[解析] 画树状图如下:由树状图可知,共有20种等可能的结果,其中取到0的结果有8种, 所以函数图象的顶点在坐标轴上的概率为820=25.9. 【答案】C[解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.10. 【答案】B[解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.二、填空题(本大题共7道小题)11. 【答案】13 [解析] 本题考查了用列举法求概率,关键扣住“不放回”,用列表法列出等可能的结果如下:所以共有12种等可能的结果,其中两次取出的小球上数字之积等于8的结果有4种,所以P(两次取出的小球上数字之积等于8)=412=13.12. 【答案】16 [解析] 画树状图如下:由树状图知,共有12种等可能的结果,其中取出2个小球的颜色恰好是一红一蓝的结果有2种,所以取出2个小球的颜色恰好是一红一蓝的概率为212=16.故答案为16.13.【答案】49①①①①①①①①①①①①①①①①①①①9①①①①①①①①①①①①①①①①①①①4①①①①①①①①①①①①①①①P①m n ①49.14. 【答案】19 [解析] 画树状图如下:∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a ,b ,c 为边长正好构成等边三角形的概率是327=19.15. 【答案】13 [解析] 因为不等式组⎩⎨⎧k -3≤0,2k +5>0的解集为-52<k≤3,所以不等式组的整数解为-2,-1,0,1,2,3. 关于x 的方程2x +k =-1的解为x =-k +12. 因为关于x 的方程2x +k =-1的解为非负数,所以k +1≤0,解得k≤-1,所以能使关于x 的方程2x +k =-1的解为非负数的k 的值为-1,-2, 所以能使关于x 的方程2x +k =-1的解为非负数的概率为26=13.16. 【答案】35 [解析] 列表如下:∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.17. 【答案】16 [解析] 函数y =ax2+bx +1的图象一定经过y 轴上的点(0,1),又知其图象经过第一、二、四象限,则图象的开口向上,对称轴在y 轴的右侧,且与x 轴正半轴有两个交点,所以a >0,b <0,b2-4ac >0. 列表如下:由表可知,从-4,-2,1,2四个数中随机取两个数一共有12种等可能的结果,其中只有a=1,b=-4和a=2,b=-4这2种结果符合题意,所以所求概率=2 12=1 6.三、解答题(本大题共4道小题)18. 【答案】解:(1)画树状图如下:(2)由树状图知,共有10种等可能的结果,其中兔子从开始进入的出入口离开的结果有2种,所以小美玩一次游戏,得到小兔玩具的概率为210=15.(3)125×(3×45-4×15)=200(元).答:估计游戏设计者可赚200元.19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B手中的结果只有1种,∴两次传球后,球恰好在B手中的概率为1 4.(2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A手中的结果有2种,∴三次传球后,球恰好在A手中的概率为28=14.20. 【答案】解:(1)画树状图如下:所以所有可能出现的结果为(-2,-2),(-2,-1),(-2,1),(-1,-2),(-1,-1),(-1,1),(1,-2),(1,-1),(1,1). (2)要使分式x2-3xy x2-y2+yx -y有意义,则有(x +y)(x -y)≠0,所以只有(-2,-1),(-2,1),(-1,-2),(1,-2)符合条件,所以使分式x2-3xy x2-y2+y x -y 有意义的(x ,y)出现的概率为49.(3)x2-3xy x2-y2+yx -y=x2-3xy (x +y )(x -y )+y (x +y )(x +y )(x -y ) =x2-3xy (x +y )(x -y )+xy +y2(x +y )(x -y ) =x2-3xy +xy +y2(x +y )(x -y ) =x2-2xy +y2(x +y )(x -y ) =(x -y )2(x +y )(x -y )=x -y x +y. 将使公式x2-3xy x2-y2+yx -y 有意义的(-2,-1),(-2,1),(-1,-2),(1,-2)分别代入上式,计算可得原式的值分别为13,3,-13,-3,所以使分式的值为整数的(x ,y)出现的概率为29.21. 【答案】解:(1)14(2)由题意,列表如下:由表可知,点M 的所有等可能的结果有16种,点M 落在四边形ABCD 所围成的图形内(含边界)的结果有(-2,0),(-1,-1),(-1,0),(0,-2),(0,-1),(0,0),(0,1),(1,0),共8个,所以满足条件的概率为P =816=12.25.3 用频率估计概率1. 关于频率和概率的关系,下列说法正确的是( ) A .概率等于频率B .当试验次数很大时,频率稳定在概率附近C .当试验次数很大时,概率稳定在频率附近D .试验得到的频率与概率不可能相同2. 从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ). A .B .C .D .3.下列说法正确的是( ).A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B .为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;1100012001215C .彩票中奖的机会是1%,买100张一定会中奖;D .中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论.4. 在抛掷一枚硬币的试验中,第一小组做了 500 次试验,当出现正面的频数为________时,其出现正面的频率才是 49.6 %( ) A .248 B .250 C .258 D .无法确定5. 某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ). A .10粒 B .160粒 C .450粒 D .500粒 6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是,这个的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的;D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球. 7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为,四位同学分别采用了下列装法,你认为他们中装错的是( ).A .口袋中装入10个小球,其中只有两个红球;B .装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C .装入红球5个,白球13个,黑球2个;D .装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数53535351记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是().A. 2元 B.5元 C.6元 D.0元9. 小明想知道一碗芝麻有多少粒,于是就从中取出100粒涂上黑色,然后放入碗中充分搅匀后再随意取出100粒,其中有5粒是黑色的,因此可以估算这碗芝麻有粒.10. 为了估计水塘中的鱼的个数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼.如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数可估计为条.11. 在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.12. 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:25 72由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.13.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上.14. 图表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约是.(精确到0.1)从袋口里随机摸出5个球(不放回),其中有2个为黑球,请你估计口袋里大约有多少个白球?参考答案:1---8 BBBAC CCB9. 200010. 120011. 1512. 13. 0.1, 0.2, 0.4, 0.2, 0.075, 0.025;0.114. 0.515. 解:设有x 个白球,根据已知,得25=8x +8,解得x =12,所以可估计口袋中共有12个白球.3113,,102020111,,424。
人教版九年级数学上册 25.1---25.3巩固练习带答案
人教版九年级数学上册第二十五章概率初步25.1随机事件与概率一、选择题1.下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.打开电视,正在播放广告C.抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7D.一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球2.下列事件中,是必然事件的是()A.内错角相等B.掷两枚硬币,必有一个正面朝上,一个反面朝上C.13人中至少有两个人的生肖相同D.打开电视,一定能看到三水新闻3.下列成语所描述的事件是随机事件的是()A.旭日东升B.不期而遇C.海枯石烂D.水中捞月4.在平行四边形、矩形、菱形、等腰梯形中任选一个图形,那么下列事件中为不可能事件的().A.这个图形是中心对称图形;B.这个图形既是中心对称图形又是轴对称图形;C.这个图形是轴对称图形;D.这个图形既不是中心对称图形又不是轴对称图形.5.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件6.下列说法中,正确的是()A.“掷一次质地均匀的骰子,向上一面的点数是6”是必然事件B.“经过有交通信号灯的路口,遇到红灯”是随机事件C.“发热病人的核酸检测呈阳性”是必然事件D.“13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月”是不可能事件7.下列说法不正确...的是( )A.机场对乘客进行安检不能采用抽样调查B.一组数据10,11,12,9,8的平均数是10,方差是2C.“清明时节雨纷纷”是随机事件D.一组数据6,5,3,5,4的众数是5,中位数是38.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是1 29.甲口袋有x个黑球与若干个白球,乙口袋有若干个黑球与x个白球.现交换甲乙口袋中的小球,每次交换的数量相等.交换数次后,下列说法错误的是( )A.甲口袋中的黑球数量与乙口袋中的白球数量之和始终为2x个B.甲口袋中的黑球数量与乙口袋中的白球数量之差可能为1个C.甲口袋中的黑球数量可能是乙口袋中的白球数量的2倍D.甲口袋中的黑球数量与乙口袋中的白球数量始终相等10.某初中七(5)班学生军训排列成7 7=49 人的方阵,做了一个游戏,起初全体学生站立,教官每次任意点4 个不同学号的学生,被点到的学生,站立的蹲下,蹲下的站立,且学生都正确完成指令,同一名学生可以多次被点,则15 次点名后蹲下的学生人数可能是()A.3B.27C.49D.以上都不可能二、填空题11.高速公路某收费站出城方向有编号为,,,,A B C D E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:在,,,,A B C D E 五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.12.某商场为消费者设置了购物后的抽奖活动,总奖项数量若干,小红妈妈在抽奖的时候,各个奖项所占的比例如图,则小红妈妈抽到三等奖以上(含三等奖)的可能性为__________.13.为了了解学生每月的零用钱情况,从甲、乙、丙三个学校各随机抽取200名学生,调查了他们的零用钱情况(单位:元)具体情况如下:在调查过程中,从__(填“甲”,“乙”或“丙”)校随机抽取学生,抽到的学生“零用钱不低于300元”的可能性最大. 14.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).15.写一个你喜欢的实数m 的值,使得事件“对于二次函数21(53)42y x m x =--+,当2x >时,y 随x 的增大而增大”成为随机事件,这个实数m 的值______________.三、解答题16.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?17.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.18.如图,有一个转盘被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①①①①①①①;①①①①①①①;(①①①①①①①;①①①①①①①①,估计各事件的可能性大小,完成下列问题.(1)①①①①①①①①①①①① ;(2)多次实验,指针指向绿色的频率的估计值是;(3)将这些事件的序号按发生的可能性从小到大的顺序排列为: <<< .19.某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名.(1)当n为何值时,男生小强参加是确定事件?(2)当n为何值时,男生小强参加是随机事件?20.一黑色口袋中有4只红球,2只白球,1只黄球,这些球除了颜色外都相同, 小明认为袋中共有三种颜色不同的球,所以认为摸到红球、白球或者黄球的可能性是相同的,你认为呢?21.请用“一定”“很可能”“可能”“不太可能”“不可能”等语言来描述下列事件的可能性.(1)袋中有50个球,1个红的,49个白的,从中任取一球,取到红色的球;(2)掷一枚质地均匀的骰子,6点朝上;(3)100件产品中有2件次品,98件正品,从中任取一件,刚好是正品;(4)早晨太阳从东方升起;(5)小丽能跳100 m 高.22.一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完全相同,每次任取3只,出现了下列事件:(1)3只正品;(2)至少有一只次品;(3)3只次品;(4)至少有一只正品指出这些事件分别是什么事件.23.下列事件,哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)用长度分别为2 dm ,3 dm ,5 dm 的三根钢筋,首尾相连能焊成一个三角形;(2)如果两个角相等,那么这两个角是对顶角;(3)任意画一个三角形,其内角和是180°.【参考答案】1.C 2.C 3.B 4.D 5.C 6.B 7.D 8.B 9.D 10.D11.B12.1213.丙14.随机15.m >1的实数16.(1)n =5或6;(2)n =1或2;(3)n =3或417.()1不确定事件;()2不可能事件;()3必然事件18.(1)23;(2)16;(3)①、①①①、①. 19.(1)14n n ==或;(2)23n n ==或.20.摸到红球、白球、黄球的可能性不相同.因为红球最多,所以摸到红球的可能性最大,而摸到黄球的可能性最小. 21.(1)不太可能;(2)可能;(3)很可能;(4)一定;(5)不可能.22.略23.(1)是不可能事件.(2)是随机事件.(3)是必然事件.人教版 九年级数学 25.2 用列举法求概率一、选择题1. 某校开展“文明小卫士”活动,从学生会“督查部”的三名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是( )A.13B.49C.23D.292. 2019·临沂 经过某十字路口的汽车,可能直行,也可能向左转或向右转,若这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A.23B.29C.13D.193. 一个布袋里装有2个红球、3个黄球和5个白球,这些球除颜色不同外其他都相同.搅匀后任意摸出1个球,是白球..的概率为( )A.12B.310C.15D.7104. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.235. 从如图所示图形中任取一个,是中心对称图形的概率是( )A.14B.12C.34 D .16. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π47. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长的三角形是等边三角形的概率是( )A.19B.127C.59D.138. 在▱ABCD 中,AC ,BD 是两条对角线,现从以下四个关系式:① AB =BC ,②AC =BD ,③AC⊥BD ,④ AB⊥BC 中任选一个作为条件,可推出▱ABCD 是菱形的概率为( )A.12B.14C.34D.25二、填空题9. 2018·滨州若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是________.10. 某市初中毕业男生体育测试项目有四项,其中“立定跳远”“1000米跑”“肺活量测试”为必测项目,另外从“引体向上”“推铅球”中选一项进行测试.小亮、小明和小刚从“引体向上”“推铅球”中选择同一个测试项目的概率是________.11. 掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为________.12. 如图所示的圆面图案是用半径相同的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在阴影区域的概率为________.13. 如图,A是正方体小木块(质地均匀)的一个顶点,将小木块随机投掷在水平桌面上,则点A与桌面接触的概率是________.14. 淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式决定,那么她们两人都抽到物理实验的概率是________.15. 点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.16. 已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则能使电路形成通路的概率是________.三、解答题17. 如图所示,有一个可以自由转动的转盘,其盘面被分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次.每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时视为无效转次)18. 汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲、乙两队每局获胜的机会相同.(1)若前四局双方战成2∶2,则甲队最终获胜的概率是________;(2)现甲队在前两局比赛中已取得2∶0的领先,那么甲队最终获胜的概率是多少?19. 2019·孝感一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其他完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________;(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图10-ZT-3,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图法或列表法,求点M落在四边形ABCD所围成的图形内(含边界)的概率.人教版九年级数学25.2 用列举法求概率-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】C[解析] 列表得:所以甲获胜的概率是59.5. 【答案】C [解析] 因为共有4种等可能的结果,任取一个,是中心对称图形的有3种结果,所以任取一个,是中心对称图形的概率是34. 故选C.6. 【答案】C [解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.7. 【答案】A [解析] 画树状图如下:由树状图知,共有27种等可能的结果,构成等边三角形的结果有3种,所以以a ,b ,c 为边长的三边形是等边三角形的概率是327=19.故选A.8. 【答案】A [解析] ①AB =BC ,③AC ⊥BD 能够推出▱ABCD 为菱形,4种情形中有2种符合要求,所以所求概率为24=12.二、填空题9. 【答案】13[解析] 若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,一共有(-1,1),(-1,2),(1,-1),(1,2),(2,-1),(2,1)6种等可能结果,其中在第二象限的结果一共有2种,所以点M 在第二象限的概率是13.10. 【答案】14[解析] 分别用A ,B 代表“引体向上”与“推铅球”,画树状图如图所示.由图可知共有8种等可能的结果,小亮、小明和小刚从“引体向上”“推铅球”中选择同一个测试项目的有2种结果,所以小亮、小明和小刚从“引体向上”“推铅球”中选择同一个测试项目的概率是28=14.11. 【答案】38[解析] 画树状图如下:∵共有8种等可能的结果,其中有两次正面朝上、一次反面朝上的结果有3种, ∴掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为38.12. 【答案】1313. 【答案】12[解析] 正方体小木块共有6个面,其中包含点A 的面有3个,所以P(点A 与桌面接触)=36=12.14. 【答案】19[解析] 列表如下:由表可知,共有9种等可能的结果,其中两人都抽到物理实验的结果只有1种,所以她们两人都抽到物理实验的概率是19.15. 【答案】15[解析] 画树状图如下:共有20种等可能的结果,其中点P(a ,b)在平面直角坐标系中第二象限内的结果有4种, 所以点P(a ,b)在平面直角坐标系中第二象限内的概率为420=15.16. 【答案】35[解析] 列表如下:∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.三、解答题17. 【答案】解:(1)3+5+2+3+3+4+3+58=3.5. 答:前8次的指针所指数字的平均数为3.5. (2)可能.若这10次的指针所指数字的平均数不小于3.3,且不大于3.5,则所指数字之和应不小于33,且不大于35.而前8次所指数字之和为28,所以最后2次所指数字之和应不小于5,且不大于7. 第9次和第10次指针可能所指的数字如下表所示:一共有16种等可能的结果,其中指针所指数字之和不小于5,且不大于7的结果有9种,其概率为916.18. 【答案】解:(1)12(2)画树状图如下:由图可知,共有8种等可能的结果,其中甲至少胜一局的结果有7种, 所以P(甲队最终获胜)=78.19. 【答案】解:(1)14(2)由题意,列表如下:由表可知,点M 的所有等可能的结果有16种,点M 落在四边形ABCD 所围成的图形内(含边界)的结果有(-2,0),(-1,-1),(-1,0),(0,-2),(0,-1),(0,0),(0,1),(1,0),共8个,所以满足条件的概率为P =816=12.25.3用频率估计概率一、填空题1、黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg ,由此估计该果农今年的“优质蓝莓”产量约是________ kg .2、在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是________3、一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球____个.4、为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼 条.5、.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有 个.6、在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有 个.7、某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为 个.8、在一个不透明的盒子中装有n 个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n 大约是 .9、在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球有4个,黑、白色小球的数目相同,小明从布袋右随机摸出一球,记下颜色放回布袋中,搅匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小明发现其中摸出红球频率稳定于20%,由此可以估计布袋中的黑色小球有________个.10、小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.11、在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是12、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为.二、选择题13、一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口袋中有红球大约多少只?()A、8只B、12只C、18只D、30只14、在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:请估算口袋中白球约是( )只.A.8 B.9 C.12 D.1315、在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( ) A.12 B.15 C.18 D.2116、在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是( ) A.10个B.15个 C.20个D.25个17、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条 B.380条 C.400条 D.420条18、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.619、2015年4月30日,苏州吴江蚕种全部发放完毕,共计发放蚕种6460张(每张上的蚕卵有200粒左右),涉及6个镇,各镇随即开始孵化蚕种,小李所记录的蚕种孵化情况如表所示,则可以估计蚕种孵化成功的概率为()A.0.95 B.0.9 C.0.85 D.0.820、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条 B.380条 C.400条 D.420条21、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.622、在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个 B.20个 C.30个 D.35个参考答案一、填空题1、5602、103、84、800 条.5、15 个.6、12 个.7、15 个.8、109、810、2 100个11、10.12、0.600 .二、选择题13、B14、C15、B16、B17、C18、C19、B20、C21、B22、D。
部编版人教初中数学九年级上册《25.1.2概率 测试题(含答案)》最新精品优秀
前言:
该测试题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的测试题助力考生查漏补缺,在原有基础上更进一步。
(最新精品测试题)
25.1.2 概率
1.抛掷一枚均匀的硬币,前两次都正面朝上,第三次正面朝上的概率( )
A.大于
1
2
B.等于
1
2
C.小于
1
2
D.无法确定
2.如图2518所示,从中任取一个图形是中心对称图形的概率是( )
图2518
A.
1
4
B.
1
2
C.
3
4
D.1
3.从装有4个红球的袋中随机摸出一个球,若摸到白球的概率是P1,摸到红球的概率是P2,则( )
A.P1=1,P2=1 B.P1=0,P2=1
C.P1=0,P2=
1
4
D.P1=P2=
1
4
4.下面四个转盘中,C,D转盘分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )
1。
2021年人教版数学九年级上册第25章测试题附答案
人教版数学九年级上册第25章测试题一、选择题1.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()。
A.16个B.15个C.13个D.12个2.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()。
A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率3.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()。
A.12个B.16个C.20个D.30个二、填空题4.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗。
5.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有个。
6.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出n的值是。
7.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:移植总数(n)400750150035007000900014000成活数(m)369662133532036335807312628成活的频率0.9230.8830.8900.9150.9050.8970.902根据表中数据,估计这种幼树移植成活率的概率为(精确到0.1).8.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是.9.已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是.三、解答题10.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.11.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.12.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.13.在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人九上25.1~25.2自主学习达标检测
一、精心选一选(每小题7分,共35分)
1.同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是
( )
(A)点数之和为12. (B)点数之和小于3.
(C)点数之和大于4且小于8. (D)点数之和为13.
2.下列说法正确的是
( )
(A)可能性很小的事件在一次实验中一定不会发生.
(B)可能性很小的事件在一次实验中一定发生.
(C)可能性很小的事件在一次实验中有可能发生.
(D)不可能事件在一次实验中也可能发生.
3.下列事件中,概率是1的是
( )
(A)太平洋中的水常年不干. (B)男生比女生高.
(C)计算机随机产生的两位数是偶数. (D)星期天是晴天.
4.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中 (每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是( ) (A) . (B) . (C) . (D) .
5.中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻),某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是
( )
(A) . (B) . (C) . (D) . 二、耐心填一填(每小题7分,共35分)
6.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是 .
7.下列事件中:①太阳从西边出来;②树上的苹果飞到月球上;③普通玻璃从三楼摔到一楼的水泥地面上碎了;④小颖的数学测试得了100分.随机事件为 ;哪些事件是必然发生的 ;哪些事件是不可能发生的 (只填序号).
8.在四张相同的卡片上标有1、2、3、4四个数字,从中任意抽出两张:①两张都是偶数的概率是 ;②第一张为奇数第二张为偶数的概率是 ;③总是出现一奇一偶的概率是 .
9.某校九年级想举办班徽设计比赛,全班50名学生计划每位同学交设计方案一份,拟评选出10份一等奖,那么该班某位同学获一等奖的概率是 .
10.某家庭电话,打进的电话响第一声时被接的概率为0.1,响第二声被接的概率为0.2,响第三声或第四声被接的概率都是0.25,则电话在响第五声之前被接的概率为 .
三、用心想一想(每题10分,共30分)
11.说明下列事件的可能性,并标在图上(只标序号).
1 2 1 3 1 4 1 5 1 4 1 5 1 6 3
20
①北京市举办2008年奥运会;
②一个三角形内角和为181°;
③现将10名同学随机分成两组进行劳动,同学甲被分到第一组.
12.某商场设了一个可以自由转动的转盘如图,并规定:顾客购物10元
以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区
域就可以获得相应的奖品.下表是活动进行中的一组统计数据:
(2)请估计,当n 很大时,频率将会接近多少?
13.杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张,规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分,当两张硬纸片上的图形可拼出房子或小山时,季红得1分(如图2),问题:(1)游戏规则对双方公平吗?请说明理由;(2)若你认为不公平,如何修改游戏规则才能使游戏对双方公平?
参考答案
1.D
2.C
3.A
4.B
5.C
6.
7.④;③;①,②
8.① ,② ,③
9. 10.0.8 11.略 12.(1)0.68,0.74,0.69,0.705,0.701 (2)0.7 13.(1)这个游戏对双方不公平,
∵P(拼成电灯)= ,P(拼成小人)= ,P(拼成房子)= ,P(拼成小山)= ,∴杨华平均每
次得分为 ×1+ ×1= 分,季红平均每次得分为 ×1+ ×1= 分.∵ < , ∴游戏对双方不公平;(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变,就能使游戏对双方公平.
1 2 1 6 1 3 2 3 1 5 3 10 1 10 3 10 3 10 3 10 1 10 4 10 3 10 3 10
6 10 4 10 6 10。