量子力学 第四版 卷一(曾谨言 著) 答案----第4章-2

合集下载

量子力学曾谨言练习题答案

量子力学曾谨言练习题答案

量子力学曾谨言练习题答案量子力学是现代物理学的重要分支,研究微观世界的行为规律。

而曾谨言练习题则是量子力学学习过程中的一种重要辅助工具,有助于加深对于量子力学理论的理解和应用。

在这篇文章中,我们将探讨一些量子力学曾谨言练习题的答案,帮助读者更好地理解这一复杂而又神奇的学科。

首先,我们来看一个经典的量子力学练习题:双缝干涉实验。

在这个实验中,一束光通过两个狭缝后形成干涉条纹。

问题是,如果我们只通过其中一个缝让光通过,干涉条纹会发生什么变化?答案是,当只有一个缝让光通过时,干涉条纹会消失。

这是因为双缝干涉实验中的干涉效应依赖于两个缝同时让光通过,以形成干涉图样。

当只有一个缝让光通过时,就无法形成干涉,因此干涉条纹消失。

接下来,我们来看一个更复杂的问题:薛定谔方程。

薛定谔方程是描述量子力学中微观粒子行为的基本方程。

问题是,如何求解薛定谔方程?答案是,薛定谔方程是一个偏微分方程,可以通过一些数值和解析方法进行求解。

数值方法包括有限差分法和有限元法,可以通过离散化空间和时间来近似求解。

解析方法则包括分离变量法和变分法等,可以通过一系列数学技巧来得到解析解。

薛定谔方程的求解是量子力学研究的基础,对于理解和预测微观世界的行为至关重要。

除了理论问题,量子力学还涉及到一些实验上的考察。

例如,光电效应是量子力学的重要实验现象之一。

问题是,为什么在光电效应中,只有光的频率大于某个临界值时,才能引起电子的发射?答案是,光电效应是由光子与金属表面电子的相互作用引起的。

当光子的能量大于金属表面电子的束缚能时,光子能够将电子从金属中解离出来,形成光电子。

而光子的能量与频率有直接关系,即E=hf,其中E为光子的能量,h为普朗克常数,f为光的频率。

因此,只有光的频率大于某个临界值,光子的能量才能够大于金属表面电子的束缚能,从而引起电子的发射。

最后,我们来看一个与量子力学应用相关的问题:量子计算。

量子计算是利用量子力学的特性来进行计算的一种新型计算方式。

曾谨言量子力学(卷1)习题答案

曾谨言量子力学(卷1)习题答案

目次第二章:波函数与波动方程………………1——25 第三章:一维定态问题……………………26——80 第四章:力学量用符表达…………………80——168 第五章:对称性与守衡定律………………168——199 第六章:中心力场…………………………200——272 第七章:粒子在电磁场中的运动…………273——289 第八章:自旋………………………………290——340 * * * * * 参考用书1.曾谨言编著:量子力学上册 科学。

1981 2.周世勋编:量子力学教程 人教。

19793.L .I .席夫著,李淑娴,陈崇光译:量子力学 人教。

19824.D .特哈尔编,王正清,刘弘度译:量子力学习题集 人教。

1981 5.列维奇著,李平译:量子力学教程习题集 高教。

1958 6.原岛鲜著:初等量子力学(日文) 裳华房。

19727.N.F.Mott.I.N.Sneddon:Wave Mechanics and its Applications 西联影印。

1948 8.L.Pauling.E.B.Wilson:Introduction to Quantum- Mechanics(有中译本:陈洪生译。

科学) 19519. A.S.Davydov: Quantum Mechanics Pergamon Press 1965 10. SIEGFRIED.Fluegge:Practical Quantum- Mechanics(英译本) Springer Verlag 197311. A.Messian:Quantum Mechanics V ol I.North.Holland Pubs 1961 ndau,E.Lifshitz:Quantum-Mechanics1958 量子力学常用积分公式 (1)dx e x an e x a dx e x axn ax n ax n ∫∫−−=11 )0(>n (2) )cos sin (sin 22bx b bx a ba e bxdx e axax−+=∫ (3) =∫axdx e axcos )sin cos (22bx b bx a ba e ax++ (4)ax x a ax a axdx x cos 1sin 1sin 2−=∫(5) =∫axdx x sin 2ax a xaax a x cos )2(sin 2222−+(6)ax a xax aaxdx x sin cos 1cos 2+=∫ (7) ax aa x ax a x axdx x sin )2(cos 2cos 3222−+=∫))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)∫=+dx c ax 2)arcsin(222x c a ac c ax x −−++ (a<0) ∫20sin πxdx n2!!!)!1(πn n − (=n 正偶数)(9) =∫20cos πxdx n!!!)!1(n n − (=n 正奇数) 2π(0>a )(10)∫∞=0sin dx xax2π− (0<a )(11))1!+∞−=∫n n ax an dx x e (0,>=a n 正整数) (12)adx e ax π2102=∫∞− (13) 121022!)!12(2++∞−−=∫n n ax n an dx e x π(14)1122!2+∞−+=∫n ax n an dx e x (15)2sin 022adx xax π∫∞= (16)∫∞−+=222)(2sin b a abbxdx xe ax (0>a )∫∞−+−=022222)(cos b a b a bxdx xeax(0>a )第一章量子力学的诞生1.1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。

量子力学 第四版 卷一(曾谨言 著) 答案----第2章

量子力学 第四版 卷一(曾谨言 著) 答案----第2章

(b)由(4)式,得
∂ w 2 ∂ ∂ = ( ∇ ψ * )⋅ ∇ ψ + ∇ ψ * ⋅ ( ∇ ψ ∂t 2m ∂ t ∂t 2 = ∇ 2m ∂ψ * ∂ψ * ⋅ ∇ψ + ∇ψ − ∂ t ∂ t
∂ψ ∗ ∂ψ ) + Vψ + ψ *V ∂t ∂t ∂ψ * 2 ∂ ψ 2 * ∂ψ * ∂ψ ∇ ψ + ∇ ψ + Vψ + ψ *V ∂t ∂t ∂t ∂t
(1)
V1 与 V2 为实函数。
(a)证明粒子的几率(粒子数)不守恒。
(b)证明粒子在空间体积 τ 内的几率随时间的变化为
d dt
∫∫∫
τ
d 3 rψ *ψ = −
ψ *∇ ψ − ψ ∇ ψ ∫ ∫ 2im S
(
*
) ⋅ dS +
2V2
∫∫∫ d
τ
3
rψ *ψ
证:(a)式(1)取复共轭, 得
*
∂ ψ 2 2 ∂ ψ * 2 2 = −∇ ⋅s+ − ∇ + V ψ + − ∇ + V ψ ∂ t 2m ∂ t 2m ∂ψ * ∂ψ * = − ∇ ⋅ s + E ψ + ψ ∂t ∂t ∂ρ = −∇ ⋅s+ E ∂t = −∇ ⋅s
dp

∞ −∞
e − α ξ dξ =
2
π α
imx 2

1 ψ ( x, t ) = e 2 t 2π
2mπ it
写出共轭函数(前一式 i 变号):

曾谨言量子力学(卷I)第四版(科学出版社)2007年1月...

曾谨言量子力学(卷I)第四版(科学出版社)2007年1月...

曾谨言《量子力学》(卷I )第四版(科学出版社)2007年1月摘录第三版序言我认为一个好的高校教师,不应只满足于传授知识,而应着重培养学生如何思考问题、提出问题和解决问题。

这里涉及到科学上的继承和创新的关系。

“继往”中是一种手段,而目的只能是“开来”。

讲课虽不必要完全按照历史的发展线索讲,但有必要充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案。

要真正贯彻启发式教学,教师有必要进行教学与科学研究。

而教学研究既有教学法的研究,便更实质性的是教学内容的研究。

从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识过程。

在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我信为还有很多问题并未搞得很清楚,很值得研究。

量子力学涉及物质运动形式和规律的根本变革.20世纪前的经典物理学(经典力学、电动力学、热力学与统计物理学等),只适用于描述一般宏观从物质波的驻波条件自然得出角动量量子化的条件及自然理解为什么束缚态的能量是量子化的:P17~18;人类对光的认识的发展历史把原来人们长期把物质粒子看作经典粒子而没有发现错误的启发作用:P18;康普顿实验对玻尔电子轨道概念的否定及得出“无限精确地跟踪一个电子是不可能的”:P21;在矩阵力学的建立过程中,玻尔的对应原理思想起了重要的作用;波动力学严于德布罗意物质波的思想:P21;微观粒子波粒二象性的准确含义:P29;电子的双缝衍射实验对理解电子波为几率波的作用:P31在非相对论条件下(没有粒子的产生与湮灭),概率波正确地把物质粒子的波动性与粒子性联系起来,也是在此条件下,有波函数的归一化及归一化不随时间变化的结果:P32;经典波没有归一化的要领,这也是概率波与经典波的区别之一:P32;波函数归一化不影响概率分布:P32多粒子体系波函数的物理意义表明:物质粒子的波动性并不是在三维空间中某种实在的物理量的波动现象,而一般说来是多维的位形空间中的概率波。

曾谨言量子力学(卷I)第四版(科学出版社)2007年1月...

曾谨言量子力学(卷I)第四版(科学出版社)2007年1月...

曾谨言《量子力学》(卷I )第四版(科学出版社)2007年1月摘录第三版序言我认为一个好的高校教师,不应只满足于传授知识,而应着重培养学生如何思考问题、提出问题和解决问题。

这里涉及到科学上的继承和创新的关系。

“继往”中是一种手段,而目的只能是“开来”。

讲课虽不必要完全按照历史的发展线索讲,但有必要充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案。

要真正贯彻启发式教学,教师有必要进行教学与科学研究。

而教学研究既有教学法的研究,便更实质性的是教学内容的研究。

从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识过程。

在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我信为还有很多问题并未搞得很清楚,很值得研究。

量子力学涉及物质运动形式和规律的根本变革.20世纪前的经典物理学(经典力学、电动力学、热力学与统计物理学等),只适用于描述一般宏观从物质波的驻波条件自然得出角动量量子化的条件及自然理解为什么束缚态的能量是量子化的:P17~18;人类对光的认识的发展历史把原来人们长期把物质粒子看作经典粒子而没有发现错误的启发作用:P18;康普顿实验对玻尔电子轨道概念的否定及得出“无限精确地跟踪一个电子是不可能的”:P21;在矩阵力学的建立过程中,玻尔的对应原理思想起了重要的作用;波动力学严于德布罗意物质波的思想:P21;微观粒子波粒二象性的准确含义:P29;电子的双缝衍射实验对理解电子波为几率波的作用:P31在非相对论条件下(没有粒子的产生与湮灭),概率波正确地把物质粒子的波动性与粒子性联系起来,也是在此条件下,有波函数的归一化及归一化不随时间变化的结果:P32;经典波没有归一化的要领,这也是概率波与经典波的区别之一:P32;波函数归一化不影响概率分布:P32多粒子体系波函数的物理意义表明:物质粒子的波动性并不是在三维空间中某种实在的物理量的波动现象,而一般说来是多维的位形空间中的概率波。

量子力学第4章(曾谨言)

量子力学第4章(曾谨言)

15
ˆ ˆ 例题:求x、p x 和H在一维谐振子能量表象中的 矩阵表示。 【解】同理可得 p jk ia ( (k 1) / 2 j ,k 1 k / 2 j ,k 1 ) ( p jk ) ia 0 1/ 2 0 0 . 1/ 2 0 2/2 0 . 0 2/2 0 3/ 2 . . 0 . 3 / 2 . 0 . . . 0

已知a和a可以通过幺正变换相联系,即a Sa, S11 幺正矩阵S ( Sk ) S 21 . S12 S 22 . . . , Sk ( , k ) .
可以证明,矩阵L ( Lkj )和L ( L )可以通过 幺正矩阵S相变换:L SLS 1
因此,在离散表象中量子力学的诸方程的 形式如下:
20
1 ,两态正交: 0 (1)态的归一:
(2)力学量的平均值(若 已归一)
F F (3)本征方程: F ,


d H(t ), (4)Schrodinger方程: i dt
以上各式中的乘法均理解为矩阵(包括列、 行矢量)乘法。
c( p, t ) ( x )( x, t )dx,
p
( x)
p
1 i exp px 2
( x, t ) 和 c( p, t )
可以互求,它们包含同样多的信息。 称这样做是变换到了动量表象,
3
2 一般情形。力学量 Q ,本征值离散,本征集为 {q1 , q2 , } ,本征函数系为 {u1 ( x ), u2 ( x ), } 则波函数可以本征函数展开
( x, t ) an (t )un ( x),

量子力学——第四章作业参考答案

量子力学——第四章作业参考答案

( p × l − l × p )x ,
2 ( p × l − l × p)y , ⎡ ⎣l , p ⎤ ⎦ z = i ( p × l − l × p ) z ,因此
同理 ⎡ ⎣l , p ⎤ ⎦y = i
i
2 ( p × l − l × p) = ⎡ ⎣l , p ⎤ ⎦。
3.10 证明: (a) pr =
可见, ( r × l − l × r ) = r × l − l × r , r × l − l × r 为厄米算符。
+
3.3
证明:一维情况下,由 x 和 p 的对易关系 [ x, p ] = i , 可得 从而
(6) (7)
xp = i + px , px = xp − i

m −1 n m n +1 [ p, F ] = ∑ Cmn ( px m p n − x m p n+1 ) = ∑ Cmn ⎡ ⎣( xp − i ) x p − x p ⎤ ⎦ m,n =0 ∞ m,n =0
∂ F。 ∂x
(8)
=
m ,n =0
mn
= −i
m,n =0
∑C
mn
mx m −1 p n = −i
同理,可得 [ x, F ] = i 3.4 证明:
∂ F。 ∂p
(9)
[ AB, C ] = ABC − CAB = ( ABC + ACB ) − ( ACB + CAB )
= A [ B, C ]+ − [ A, C ]+ B
(b) pr =
1⎛r r ⎞ 1 ⎡r r ⎛ r ⎞⎤ ⎜ i p + p i ⎟ = ⎢ i p + i p − i ⎜ ∇i ⎟ ⎥ 2⎝ r r ⎠ 2 ⎣r r ⎝ r ⎠⎦

量子力学习题答案(曾谨言版)

量子力学习题答案(曾谨言版)
n
同理有
[ x, F ] i F p
P75 习题3.14
解:设lz算符的本征态为m,相应的本征值mћ ˆ dx l *l
x

m x
m
1 * ˆ ˆ ˆl ˆ ) dx m ( l y lz l z y m i 1 * ˆ ˆ * ˆ ˆ [ m l y lz m dx m lz l y m dx] i 1 * ˆ ˆ ) * l ˆ dx] [m m ly dx ( l z m z m y m i 1 * ˆ * ˆ [m m ly dx m z m m l y m dx ] 0 i 类似地可以证明 l y 0
1 2 1 ipx p e dp 常数 ( x ) 2m 2
因此(x)=(x) 非能量本征态。 (d) 任意波函数可按自由粒子的平面波函数展开:
( x, t ) C ( p) p ( x, t ) C ( p) p ( x , t )dp
p

Rnl ( r ) N nl l e 2F ( n l 1, 2l 2, )
园轨道(l = n-1)下的径向概率分布函数
n,n1 ( r ) Cr e
2 d n,n1 ( r ) 0 dr
2
2 n 2 Zr na
最概然半径 rn 由下列极值条件决定:



右边


C ( p )dp p ( x , t ) p ' * ( x , t )dx


C ( p ) ( p p ')dp C ( p ')
所以

C ( p ) p * ( x , t ) ( x , t )dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.29——6.1
ˆ 的本征态下, L x = L y = 0 。(提示:利用 L y L z − Lz L y = iL x ,求平均。) 4.29 证明在 L z
证:设 ψ 是 L z 的本征态,本征值为 m ,即 L z ψ
= m ψ

[L
y
, L z = L y L z − L z L y = iL x , 1 Ψ Ly Lz Ψ i 1 = m Ψ Ly Ψ i
(
1 2 C 2 1 C1 0 = 1 ,相应的几率为 C1 ; 2 4 0
)
1 L x 取 − 的振幅为 1 − 2
总几率为 C1
2
(
1 2 C 2 1 C1 0 = 1 ,相应的几率为 C1 。 2 4 0
)
2) L x 在 l = 2 的空间, L2 , L z 对角化表象中的矩阵 利用
1 − 2 1 6a , d = − 2a , e = a ,本征矢为 6 ,在 C 2Y20 态下,测得 L x = − 2 的 4 − 2 1
将它们代入(3)就得到前一法(考虑 l x , l y 对称)得到相同的结果。
l x2 =
1 [(l + m)(l − m + 1) 2 + (l − m)(l + m + 1) 2 ] 4 1 = [l (l + 1) − m 2 ] 2 2
ˆ lˆ , lˆ lˆ 没有贡献,(3)(4)应有相同的结果。第二种方法运用角动量一般理论,这 又从(4)式看出,由于 l + + − −
2
将上式在 lm 态下求平均,因 Lz 作用于 lm 或 lm 后均变成本征值 m ,使得后两项对平均值的贡献互相抵 消,因此 又
Lx
2
= Ly
2 2
2
Lx + L y Lx
2
= L − Lz
2
2
2
= l ( l + 1) − m 2 2
[
]

上题已证
= Ly
=
1 l ( l + 1) − m 2 2 2
ˆl ˆ ˆ ˆ l + + − l− l− )
再求它们在态 Yim 中的平均值,在表示式中用标乘积符号时是
1 lˆx2 = (Yim , (lˆ+ lˆ+ + lˆ+ lˆ− + lˆ− lˆ+ + lˆ− lˆ− )Yim ) 4 1 lˆy2 = (Yim , (lˆ+ lˆ− + lˆ− lˆ+ − lˆ+ lˆ+ − lˆ− lˆ− )Yim ) 4 l x2 = 1 (Y ∗ im (lˆ+ lˆ+ + lˆ+ lˆ− + lˆ− lˆ+ + lˆ− lˆ− )Yim dΩ ∫ ∫ 4Ω 1 (Y ∗ im (lˆ+ lˆ− + lˆ− lˆ+ − lˆ+ lˆ+ − lˆ− lˆ− )Yim dΩ 4 ∫Ω∫ (l − m)(l + m + 1)Yi ,m + 1 (l + m)(l − m + 1)Yi ,m − 1
ⅳ ) λ = 2 , b = 2a , c =
1 Lx = 2 的振幅为 C 2 ( 0 0 1 0 0 ) 4
1 2 6 3 2 C 2 。几率为 C 2 ; 6 = 4 8 2 1
ⅴ) λ = − 2 , b = − 2a , c =
(
)
0 1 0 a a 1 求本征矢并令 = 1 ,则 1 0 1 b = λ b , 2 c 0 1 0 c
得, b =
2λ a , a + c =
2λ b , b =
2λ c 。 λ = 0,± 1 。
ⅰ) λ = 0 , b = 0 , a = −
3 c,d = 0,e = − 2
L x = 0 的振幅为。几率为 C 2
2
4

1 1 1 0 。 在 C 2Y20 态 下 , 测 得 Lx = 的 振 幅 为 ⅱ) λ = 1, b = a , c = 0 , d = − b , d = e ,本征矢为 2 − 1 − 1 1 1 1 C 2 ( 0 0 1 0 0) 0 = 0 ,几率为 0 。 2 − 1 − 1 − 1 − 1 1 0 ,在 C 2Y20 态下,测得 L x = − 几率为 ⅲ) λ = − 1 , b = − a , c = 0 , d = − b , e = − d ,本征矢为 2 1 1 0。 c 1 e = = a ,本征矢为 6 a , d = 2e = 2 a , 4 6 1 2 6 , 在 C 2Y20 态 下 , 测 得 2 1
利用基本对易式
L × L = i L ,
2
可得算符关系 iLx = iLx Lx = L y Lz − Lz L y Lx = L y ( Lz Lx ) − Lz L y Lx
(
)
= L y ( Lx L z + iL y ) − Lz L y Lx = iL y + L y Lx L z − Lz L y Lx
lxl y = 1 m 2 i = − l x l y , 说明 lˆx lˆy 不是厄密的。 lˆx2 , lˆy2 的平均值见下题。 2
4.30 设粒子处于 Ylm (θ , ϕ ) 状态下,求 ( ∆ Lx ) 2 和 ∆ L y 解:记本征态 Ylm 为 lm ,满足本征方程
(
)
2
L2 lm = l ( l + 1) 2 lm , Lz lm = m lm , lm Lz = m lm ,
在第四章中并没有准备知识,所以用本法解题不符合要求,只作为一种参考材料。 4.30——6.2 4.31——6.5,6.9,6.14 4.31 设体系处于ψ = C1Y11 + C 2Y20 状态(已归一化,即 C1 (a) Lz 的可能测值及平均值; (b) L2 的可能测值及相应的几率; (c) L x 的可能测值及相应的几率。 解:
∫∫ Y ∫∫ Y ∫∫ Y ∫∫ Y

im + +
lˆ lˆ Yim dΩ = 常数 × lˆ lˆ Yim dΩ = 常数 ×
∫∫Y ∫∫ Y

im i , m + 2
Y
dΩ = 0 dΩ = 0

im − −

im i , m − 2
Y

im + −
lˆ lˆ Yim dΩ = (l + m)(l − m + 1) 2 lˆ lˆ Yim dΩ = (l − m)(l + m + 1) 2
ˆ ≡l ˆ + il ˆ l + x y
lˆ− ≡ lˆx − ilˆy
ˆ = 于是有 l x
1 ˆ ˆ (l + + l − ) 2
i lˆy = (lˆ− − lˆ+ ) 2
ˆ 2 的平方,用 lˆ lˆ 来表示: 求其符 l x + − 1 lˆx2 = (lˆ+ lˆ+ + lˆ+ lˆ− + lˆ− lˆ+ + 4 ˆ 2 = 1 (l ˆl ˆ ˆ ˆ l y + − + l− l+ − 4 lˆ− lˆ− )

im − +
注意上述每一个积分的被积函数都要使用(5)的两个式子作重复运算, 再代进积分式中,如:
lˆ+ lˆ− Yim = lˆ+ (l + m)(l − m + 1)Yl ,m − 1 = = (l + m)(l − m + 1) ⋅ lˆ+ Yl ,m − 1 (l + m)(l − m + 1) [l − (m − 1)][(l + (m − 1) + 1 ⋅ Yl ,m
(b) L2 的可能测值为 2 2 , 6 2 ,相应的几率为 C1 , C 2 。 (c)若 C1 , C 2 不为 0,则 L x (及 L y )的可能测值为: 2 , ,0, − , − 2 。
2
2
0 1 0 1) L x 在 l = 1 的空间, L2 , L z 对角化的表象中的矩阵是 1 0 1 2 0 1 0
(
)
1 2 1 j m − 1 jx j m = 2 j m + 1 jx j m =
( j − m )( j + ( j + m )( j −
m + 1) m + 1) 3 , 2 − 1 jx 2 − 2 = 1 。 2

2 2 jx 2 1 = 1 , 2 1 jx 2 0 =
3 , 2 0 jx 2 − 1 = 2
2
+ C2
2
= 1 ),求
L2Y11 = 2 2Y11 , L2Y20 = 6 2Y20 ; L z Y11 = Y11 , L z Y20 = 0Y20 。
(a)由于ψ 已归一化,故 Lz 的可能测值为 ,0,相应的几率为 C1 , C 2 。平均值 L z = C1 。
2 2 2
b = λ a,a +
3 3 ( b + d ) = λ c , 3 c + e = λ d , d = λ e , λ = 0,± 1,± 2 。 c = λb, 2 2 2 3 3 − c 本征矢为 8 2 1 0 0 0 2 。在 C 2Y20 = C 2 1 态下,测得 3 0 0 0 1
相关文档
最新文档