线性代数行列式经典例题

合集下载

(完整word)行列式习题1附答案

(完整word)行列式习题1附答案

命题人或命题小组负责人签名: 教研室(系)主任签名: 分院(部)领导签名:第 1 页 共 4 页《线性代数》第一章练习题一、填空题1、_____________)631254(=τ8 2、要使排列(3729m14n5)为偶排列,则m =___8____, n =____6_____ 3、关于x 的多项式xx x xx 22111---中含23,x x 项的系数分别是 -2,44、 A 为3阶方阵,2=A ,则____________3*=A 1085、四阶行列式)det(ij a 的次对角线元素之积(即41322314a a a a )一项的符号为 +6、求行列式的值 (1)46924692341234=__1000___; (2)131410242121=_0___ ;(3) 2005000200410020030102002200120001--=___2005____;(4) 行列式243012321---中元素0的代数余子式的值为___2____7、648149712551 = 6 ;1252786425941653241111--=1680-8、设矩阵A 为4阶方阵,且|A|=5,则|A *|=__125____,|2A |=__80___,|1-A |= 15。

命题人或命题小组负责人签名: 教研室(系)主任签名: 分院(部)领导签名:第 2 页 共 4 页9、011101110= 2 ;=000100312222210 12 。

10、若方程组⎪⎩⎪⎨⎧=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 011、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 值不变 。

12、行列式中在项的项共有214312344214231144434241343332312423222114131211,,24!4a a a a a a a a a a a a a a a a a a a a a a a a =,21431234a a a a 是该行列式的项,符号是 + 。

线性代数行列式经典例题

线性代数行列式经典例题

线性代数行列式经典例题例1计算元素为a= | i-j|得n阶行列式、ij解方法1 由题设知,=0,,,故其中第一步用得就是从最后一行起,逐行减前一行.第二步用得每列加第列.方法2=例2、设a, b, c就是互异得实数, 证明:得充要条件就是a + b + c =0、证明: 考察范德蒙行列式:=行列式即为y2前得系数、于就是=所以得充要条件就是a + b + c = 0、例3计算D=解: 方法1 递推法按第1列展开,有D= x D+(-1)a = x D+ a由于D= x + a,,于就是D= x D+ a=x(x D+a)+ a=xD+ ax + a== xD+ ax++ ax + a= 方法2 第2列得x倍,第3列得x倍,,第n列得x倍分别加到第1列上===方法3 利用性质,将行列式化为上三角行列式.Dx k= x( + +++a+x)=方法4 ++++=(-1)(-1)a+(-1)(-1) ax++(-1)(-1)ax +(-1)( a+x) x=例4.计算n阶行列式:()解采用升阶(或加边)法.该行列式得各行含有共同得元素,可在保持原行列式值不变得情况下,增加一行一列,适当选择所增行(或列)得元素,使得下一步化简后出现大量得零元素.=这个题得特殊情形就是=可作为公式记下来.例5.计算n阶“三对角”行列式D=解方法1 递推法.DD—D-D即有递推关系式D=D-D (n3)故=递推得到====而,==,代入得(2、1)由递推公式得==αD +==+++=方法2 把D按第1列拆成2个n阶行列式D=+上式右端第一个行列式等于αD,而第二个行列式=β于就是得递推公式,已与(2、1)式相同.方法3 在方法1中得递推公式D=D-D又因为当时D=====D= =-2= =于就是猜想,下面用数学归纳法证明.当n=1时,等式成立,假设当nk 时成立.当n=k+1就是,由递推公式得D=D-D=—=所以对于nN,等式都成立例6.计算阶行列式:其中.解这道题有多种解法.方法1 化为上三角行列式其中,于就是.方法2 升阶(或加边)法方法3 递推法.将改写为+由于因此=为递推公式,而,于就是======。

线性代数第1章行列式试卷及答案

线性代数第1章行列式试卷及答案

第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。

2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。

解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。

线性代数行列式经典例题22998

线性代数行列式经典例题22998

线性代数行列式经典例题例1计算元素为a ij = | i -j |的n 阶行列式.解 方法1 由题设知,11a =0,121a =,1,1,n a n =-L L ,故011102120n n nD n n --=--L L MOL1,1,,2i i r r i n n --=-=L 011111111n ----L L M O L1,,1j n c c j n +=-=L 1211021(1)2(1)0201n n n n n n ------=----L L L L M O O L M L其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列.方法2 011102120n n n D n n --=--L L M OL11,2,,1111111120i i r r i n n n +-=----=--L L L MOL12,,1001201231j c c j nn n n +=---=---L L L MOL=12(1)2(1)n n n ----例2. 设a , b , c 是互异的实数, 证明:的充要条件是a + b + c =0. 证明: 考察德蒙行列式:=行列式 即为y 2前的系数. 于是 =所以 的充要条件是a + b + c = 0.例3计算D n =121100010n n n x x a a a x a ----+K K M M M M K解: 方法1 递推法 按第1列展开,有D n = x D 1-n +(-1)1+n a n 11111n x xx-----O O= x D 1-n + a n由于D 1= x + a 1,2211x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2D 2-n + a 1-n x + a n =L = x 1-n D 1+ a 2x 2-n +K + a 1-n x + a n =111n n n n x a x a x a --++++L方法2 第2列的x 倍,第3列的x 2倍,K ,第n 列的x1-n 倍分别加到第1列上12c xc n D += 21121010010000n n n n x x xa xa a a x a -----++K K K M M M M K213c x c +=32121231010*********n n n n n n x x x a xa x a a a a x a --------+++K K KMMMM MK=L L =111x fx---OO On r =按展开1(1)n f+-1111n x xx----OO =111n n n n x a x a x a --++++L方法3 利用性质,将行列式化为上三角行列式.D n21321111n n c c x c c x c c x-+++=L1122000000000n n nnn n nx x x a a a a a a k x x x ---+++KK KM M M M Kn =按c 展开x 1-n k n = x 1-n (1-n n xa + 21--n n x a +K +x a 2+a 1+x) =111n nn n a a x a x x --++++L方法4 n r nD =按展开1(1)n na +-1000100001x x ---K K M M M M K+21(1)n n a +--0000101x x --K K M M M M K+K +212(1)n a --10000001x x --K K M M M M K+21(1)()na x -+10000000x x x-K K M M M M L=(-1)1+n (-1)1-n a n +(-1)2+n (-1)2-n a 1-n x+K +(-1)12-n (-1)a 2x2-n +(-1)n2( a 1+x) x1-n= 111n nn n a a x a x x --++++L例4. 计算n 阶行列式:11212212n n n n na b a a a a b a D a a a b ++=+L L M M M L(120n b b b ≠L )解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a L ,可在保持原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素.12112122121000n n n n n na a a ab a a D a a b a a a a b +=++L L L M M M M L升阶213111n r r r r r r +---=L 12121100100100n na a ab b b ---L L L M M M M L1112,,1j j c c b j n -+=+=L 1112111210000000n na a a a ab b b b b +++L L LL M M M M L=1121(1)n n na ab b b b b +++L L 这个题的特殊情形是121212n n n n a x a a a a x a D a a a x++=+LL M M M L=11()nn i i xx a -=+∑可作为公式记下来.例5.计算n 阶“三对角”行列式D n =00100010001αβαβαβαβαβαβ+++K K KM M M MMK+ 解 方法1 递推法.D n1=按c 展开()αβ+D 1-n —(1)000010001n αβαβαβαβ-++K K M M M M M K1=按r 展开()αβ+D 1-n -αβD 2-n即有递推关系式 D n =()αβ+D 1-n -αβD 2-n (n ≥3) 故 1n n D D α--=12()n n D D βα---递推得到 1n n D D α--=12()n n D D βα---=223()n n D D βα---=L =221()n D D βα--而1()D αβ=+,2D =β+α1αββ+α=22ααββ++,代入得1n n n D D αβ--=1n n n D D αβ-=+ (2.1)由递推公式得1n n n D D αβ-=+=12()n n n D ααββ--++=α2D2-n +1n n αββ-+=L=nα+1n αβ-+K +1n n αββ-+=时=,当时,当--βαβα1)α(n αβαβ111≠⎪⎩⎪⎨⎧++++n n n方法2 把D n 按第1列拆成2个n 阶行列式D n =00010010001ααβαβαβαβαβ++K K KM M M MMK++00100010000001βαβαβαβαβαβαβαβ+++K K KM M M MMK K上式右端第一个行列式等于αD 1-n ,而第二个行列式00100010000001βαβαβαβαβαβαβαβ+++K K KM M M MMK K12,,i i c ac i n--==L 000010000100001ββββK K KM M M M M K=βn 于是得递推公式1nn n D D αβ-=+,已与(2.1)式相同.方法3 在方法1中得递推公式D n =()αβ+D 1-n -αβD 2-n又因为当αβ+时 D 1=αβ+=βαβα--2221D αβαβαβ+=+=2()αβ+-αβ=22ααββ++=βαβα--33D 3=βααββααββα+++110=3()αβ+-2αβ()αβ+ = ()αβ+22()αβ+=βαβα--44于是猜想11n n n D αβαβ++-=-,下面用数学归纳法证明.当n=1时,等式成立,假设当n ≤k 时成立. 当n=k+1是,由递推公式得D 1+k =()αβ+D k -αβD 1-k=()αβ+βαβα--++11k k —αββαβα--k k =βαβα--++22k k所以对于n ∈N +,等式都成立例6. 计算n 阶行列式:12111111111n na a D a ++=+LL M M M L其中120n a a a ≠L .解 这道题有多种解法. 方法1 化为上三角行列式nD 12,,i r r i n-==L 1121111n a a a a a +--L M O112,,j ja c c a j n+==L 21100nb a a L M O其中11211ni i b a a a ==++∑1111n i i a a =⎛⎫=+ ⎪⎝⎭∑,于是n D 12111nn i i a a a a =⎛⎫=+ ⎪⎝⎭∑L . 方法2 升阶(或加边)法12111101*********1n na D a a +=++L L L M M M M L升阶12,3,,1i r r i n -=+=L 121111100100100na a a ---L L L M M M M L11111121,2,,1121111111j jni jc c a nn j n i i na a a a a a a a +=+=-=+⎛⎫==+ ⎪⎝⎭∑∑L LL O方法3 递推法.将n D 改写为1211101110111n na a D a ++++=+LL M M M Ln =按c 拆开12111111111a a ++L L M M M L+1211011011na a a ++L L M M M L由于12111111111a a ++L L M M M L1,,1i n r r i n -=-=L 12111a a L121n a a a -=L1211011011na a a ++L L M M M Ln =按c 展开1n n a D -因此n D =1n n a D -121n a a a -+L 为递推公式,而111D a =+,于是n D =1n n a D -121n a a a -+L =12n a a a L 11211n n n D a a a a --⎛⎫+ ⎪⎝⎭L=12n a a a L 2122111n n n n D a a a a a ---⎛⎫++⎪⎝⎭L =L L=12n a a a L 11211n D a a a ⎛⎫+++⎪⎝⎭L =12n a a a L 121111n a a a ⎛⎫++++ ⎪⎝⎭L。

(完整word版)线性代数经典试题4套及答案

(完整word版)线性代数经典试题4套及答案

线性代数经典试题4套及答案试卷1一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数行列式经典例题22998

线性代数行列式经典例题22998

线性代数行列式经典例题例 1计算兀素为a ij = | i — j|的n 阶行列式解方法1由题设知, an =0,a 〔2 1 , L,a1nn 1丄故0 1L n 10 1 L n 11L n2rir 111 L1D nMOi n ,n1,L ,2MOn 1 n2 L 011 L1n 1 n L L n 12L L1C j CnM O OL ( 1)n 12* 2(n 1)j 1,L ,n 1M0 2L 01其中第一步用的是从最后一行起,逐行减前一行•第二步用的每列加第n 列.的充要条件是 a + b + c =0.证明:考察德蒙行列式=(a 一对o—1 L n 111 L 1 1 0L n 2r i r i 1 1 1 L 1 MOi 1,2,L ,n 1M On 1n 2 Ln 1n 2 L方法2 D n10 L 0 Cj G 12 L0 j 2,L ,nM On 12n 3 Ln 11)n 12n 2(n 1) =(例 2.设a , b , c 是互异的实数,证明:1 x行列式即为y 2前的系数•于是所以的充要条件是a + b + c = 0.x 10 K 0 x 1 K MM Ma na n 1a n 2K例3计算D n = 递推法按第 1 0 0 M x a i解:方法1列展开,D n = x D n 1 + (-1) a n =x D n 1+ a n 由于 D 1 = x + a 1, D 2 a 2a 1 2 1+ a n =x(x D n 2 +a n 1)+ a n =x D n 2 + n 1 n 2 a n 1x + a n = L = x D 1 + a 2 x + n n 1 + a n 1 x + a n = x a 1 x a n 1 x a n,第n 列的x n 1倍分别加到第1列上 01 0K C 1 XC 22 x x1 K D n0 0 x KMMMa n xa n 1a n 1a n 2K方法2第2列的x 倍,第3列的x 2倍, 0 0 0M x a 11 0 0 K 2C 1xC30 x 1 0K3 x 0 x 1 KMMMM2 a n xa n 1x a n 2a n 1a n 2a n 3K0 0 0 M x a 10 1x 1 O OfO按r n 展开1)n11 x 1x O Oxna 〔xa n 1x a n方法3利用性质,将行列式化为上三角行列式.1 c Gx 1c 3c2Xx 0 0x 0 0 MM0 0 x M-Cn a na n 1a na n 2a n 1按Cn 展开““ a n 1n 1 dnx k n = x ( —^7 +xa n 1 x0 0 0 M k na 2 + +a 1 +x)x按r n 展开1 方法4D n( 1)n1a nAMX0 K 0 0n 21 K0 0(1) a n1+M MM MK X 1X 1 K0 02 n0 X K0 0+ ( 1) (a 1 x)M M M M 0 0 L 0 X n 1 n=a n a n 1X L a 1X x=(-1) n 1 (- 1) n 1a n + (- 1) 0 K1 K 0+MM M0 KX1X1 K 0 0+ ( 1)2n 1a 20 X K 0 0M MM M0 K1(-1 ) n 2 a n 1X+ (-1) 2n 1(一 1) a 22 + (— 1) 2nn 1(a 1+x) xa n a n 1X L n 1 n a 1x x 例4.计算n 阶行列式: a Ea 2L a n D nqa 2b 2L a n M M Ma 1 a 2L a nb n(解 采用升阶(或加边)法.该行列式的各行含有共同的元素bbL b n 0)a 1,a 2,L , a * ,可在保持原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化 简后出现大量的零元素.1aa 2 La n1 a 1 a2 L a n 升阶0 a 1a 2 L a n2 r 13 r 11 bi 0 L 0 D n0 aa 2b 2 La n Lrn 1r11 0 b2 L 0 M MMMM M MMaa 2La nb n10 0Lb n彳a1La 1L1 —a 1a 2 a n 1bib 1q — C jb j i0 bi 0 L 0a 1a nj 2丄,n 1L=d b ? L b n (1Ln0 b 2 0b nMM MM0 0 Lb n例5.计算n 阶“三对角”行列式K 0 01K 0 0D n =0 1 + K 0 0M M MMM0 00 K 1解方法1递推法K 0 0按q 展开D n()D n 1 ―1K 0M M MM MK 1(n 1)按口展开()D n 1 —D n 2即有递推关系式D n=( )D n1 — D n2(n 3)故D nD n1 =(D n 1D n 2 )可作为公式记下来.递推得到D n D n 1 = (D ni2D n 2)= ( D n 2 D n 3)a 1 x a 2D na 1 a 2 xM Ma 1 a 2L a nL a n n 1 /n =x (x ajMi 1 L an X这个题的特殊情形是n 2八=L= (D 2 D i )方法3在方法1中得递推公式D n = () D n 1 — Dn 22 2又因为当时 D 1= = ------------D nD n1n(2.1)由递推公式得D n D n 1 0 = ( D n 2n1)n2 .=aD n 2 +n 1nD 2=(而D 1 (D 2=ap a + B代入得D nD n 1(n当a B 时 当a=B 时1K K 0 0 0 0D n = 01 +K0 0+M M MMMK1K 0 0 1K 0 0 0 1K0 0 MM MMM0 0 0 KK1K 0 0 1K 0 0 0 1K0 0 M M MMM0 0 0 KK10 0 K0 010 K0 0c aq 11K0 0 n =B i 2,L ,nM M MM M 10 0 K1n 1方法2把D n 按第1列拆成2个n 阶行列式上式右端第一个行列式等于aD n 1,而第二个行列式于是得递推公式 D n D n 1 n ,已与(2.1)式相)2n 1 n 1于是猜想D n ------------------ ,下面用数学归纳法证明. 当n=1时,等式成立,假设当 n k 时成立. 当n=k+1是,由递推公式得D k 1 = () D k — Dk 1=(所以对于n N ,等式都成立例6.计算n 阶行列式:D na n其中a n 0 .方法2升阶(或加边)法D 3 =)(=()3-2(4 4a 2解这道题有多种解法. 方法1 化为上三角行列式其中b 1i 2 3i1 a 1 1L1&1c1 丁 C jb1 L1r i r 1a 1a 2aj0 a 22,L ,nM Oj 2,L ,nMOa 1a na n1n1na 1 1于是D na 〔 a ? a n 1i 1a ia ii 1D n. i n0 0方法 由于 因此 升阶D n1c1cj 1aj1,2,L ,n 1递推法.a11r i「11 a 1 1 1 a 11 D n = a n D n 1a ja 2 M2,3,L , n 1a 10 M a 2 Ma 1a na na 2a n1 3ia 11 L 1 01 1 a2 L1 0M MM11L1 a n1 a 11 L 11 a 11 L 01 1 a 2L11 1 a2 L+MMM AM MM 1 1L111La nD n 改写为按c n 拆开L a 2 D na 2 M a^L a n 1 a 11 r i 「na 2M i 1L ,n 1111 L1L 3卫2 L L按c n 展开a n 1a n1为递推公式, a nD n 1而D 1D n =a nD n 1a 1 a 2 L a n 1=a 1a 2L a nD n 1a 1a 2La n 1D n 2=a 1a 2 L a na 1a 2L a n 2a n 1—=L L a nD1 1 1 11 1 =a〔a2 L 3n L = a〔a2 L a n 1 La1 a2 a n a1 a2 a n a〔a?。

线性代数第一章行列式练习题

线性代数第一章行列式练习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--班级__________ 姓名__________ 学号_______第一章第一次练习题一)填空题1)计算(1465372)τ=________;[135(21)246(2)]n n τ-=________;2)写出四阶行列式中含有因子1123a a 的项及符号__________; 3)在四阶行列式中,21143243a a a a 的符号为__________;4)设12134453k l a a a a a 在五阶行列式中带有负号,则k =________;l =________.二)解答题5)计算三阶行列式 222111ab c a b c .6)用定义证明1(1)212100000(1)0000n nn nnλλλλλλ--=-.7)设n阶行列式中有多于2n n-个元素为零,证明这个行列式为零.班级__________ 姓名__________ 学号_______第一章第二次练习题一)填空题1)把行列式111222a b c a b c ++定出两个行列式之和______________________; 2)把行列式132412340000a a a a x yb b z wb b 写成两个行列式之积_________________________________;3)提取行列式第二行公因子后111213212223313233333a a a a a a a a a =__________________________; 4)行列式223456789a b c d a ab ac ad=_________________________________.二)解答题5)化简行列式111122223333x y x a z x y x a z x y x a z +++6)计算行列式5222 2522 2252 22257)计算行列式3112 5134 2011 1533------班级__________ 姓名__________ 学号_______第一章第三次练习题一)填空题1)将行列式123123123x x xy y yz z z按第三列展开为__________________________________;2)已知四阶行列式D中第三行元素依次为2,5,3,4;它们的余子式分别为3,1,2,4;则D=__________;3)计算1111234549162582764125=__________;4)设3961246812035436D=,则41424423A A A++=__________.二)解答题5)计算行列式100 110 011 001abcd ---.6)当λ为何值时,线性方程组12312330(3)22040x x x x x x x λλ++=⎧⎪--+=⎨⎪=⎩有非零解7)设曲线230123y a a x a x a x =+++通过四个点(1,3),(2,4) ,(3,4) , (4,3)-;求系数0123,,,a a a a .班级__________ 姓名__________ 学号_______第一章复习题1) 按定义计算行列式0001000200200100000n n n--2)计算行列式ab b b ba b b bb a b bbba3)计算行列式01000 00100 00010 a b c d e e d c b a4)计算行列式1231111 1111 11111111n aaaa ++++5)问,λμ取何值时,齐次线性方程组12312312320x x xx x xx x xλμμ++=⎧⎪++=⎨⎪++=⎩有非零解6)解非齐次线性方程组12341241341234 2583692254760 x x x xx x xx x xx x x x+-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩。

行列式典型例题

行列式典型例题
目录
• 计算行列式 • 行列式的性质 • 行列式的展开 • 行列式的应用 • 特殊行列式
01
计算行列式
二阶行列式
总结词:二阶行列式是2x2矩阵的行列 式值,计算方法为对角线元素乘积减去 副对角线元素乘积。
|3 4|
示例:对于行列式|1 2|,其值为1*32*4=-5。
详细描述:对于二阶行列式,其一般形式 为|a b|,计算公式为a*c-b*d,其中a、b、 c、d分别代表矩阵中的元素。
行列式与矩阵的逆和转置有关, 它们都可以通过行列式进行计算 或判断。
行列式有一些重要的性质,如交 换律、结合律、分配律等,这些 性质在矩阵运算中非常重要。
05
特殊行列式
对角线型行列式
总结词
对角线型行列式是指除了主对角线上 的元素外,其他元素都为零的行列式。
详细描述
对角线型行列式的值就是主对角线上 的元素乘积,计算过程相对简单,因 为除了主对角线元素外,其他元素都 为零,所以可以直接将主对角线上的 元素相乘得到结果。
04
行列式的应用
行列式在几何中的应用
线性变换
行列式可以表示线性变换前后的面积比,用于研 究几何图形的变换性质。
Hale Waihona Puke 定向行列式可以用来确定定向,即方向和旋转顺序, 对于三维空间中的向量场和曲线非常重要。
体积
行列式可以用来计算多面体的体积,特别是平行 六面体的体积。
行列式在代数方程组中的应用
线性方程组
行列式的加法性质
总结词
行列式的加法满足分配律
详细描述
对于任何两个n阶方阵A和B,以及任意的常数c和d,有|cA + dB| = c|A| + d|B|。

线性代数第一章行列式训练题解

线性代数第一章行列式训练题一、单项选择题1.二阶行列式1221−−k k ≠0的充分必要条件是( )A .k ≠–1B .k ≠3C .k ≠–1且k ≠3D .k ≠–1或≠3答案:C2.设行列式2211b ab a =1,2211c a c a =2,则222111c b a c b a ++=( )A .–3B .–1C .1D .3 注22112211222111c a c a b a b a c b a c b a +=++答案:D3.如果方程组=+=−=−+0404033232321kx x x x x kx x 有非零解,则 k =( ) A.–2 B.–1C.1D.2 注:使04014013=−−kk答案:B4.设行列式D=333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( ) A .–15 B .–6 C .6D .15答案:C 5.3阶行列式ji a =011101110−−−中元素21a 的代数余了式21A =( )A .–2B .–1C .1D .2 0111)1(12−−+ 答案:C6.已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a −−−=( ) A.–24 B.–12 C.–6D.12答案:B 7.行列式11110111111110−−−−−−第二行第一列元素的代数余子式21A =( )A .–2B .–1C .1D .2答案:B 8.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m–nB.n–mC.m+nD.–(m+n )答案:B二、填空题请在每小题的空格中填上正确答案。

线性代数练习册练习题—第1章 行列式

第1章 行列式及其应用一、填空题1.行列式1221--k k 0≠的充分必要条件是 .2.排列36715284的逆序数是 。

3.已知排列397461t s r 为奇排列,则r = , s = ,t = . 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 . 5.若54435231a a a a a j i 为五阶行列式带正号的一项,则 i = , j = .6.设行列式275620513--=D ,则第三行各余子式之和的值为 . 7.行列式=30092280923621534215 .8.行列式=1110110********* .9.多项式0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 的所有根是 .10.若方程225143214343314321x x -- = 0 ,则 .11.行列式 ==2100121001210012D12. 行列式122305403-- 中元素3的代数余子式是 . 13. 设行列式4321630*********=D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式,则44434241A A A A +++ = ,44434241M M M M +++= . 14.已知四阶行列D 中第三列元素依次为1-,2,0,1,它们的余子式依次分布为5,3,,7-4,则D = .15. 若方程组⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx仅有零解,则k .二.选择题1.若行列式x52231521- = 0,则=x ( ).(A )2 (B )2- (C )3 (D )3-2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = ( ).(A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x 根的个数是( ).(A )0 (B )1 (C )2 (D )3 4.下列构成六阶行列式展开式的各项中,取“+”的有 ( ). (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为( ).(A )3,2==l k ,符号为正 (B )3,2==l k ,符号为负 (C )2,3==l k ,符号为正 (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是( ).(A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于等于n 个7.如果133********21131211==a a a a a a a a a D ,3332313123222121131211111232423242324a a a a a a a a a a a a D ---= ,则=1D ( ). (A )8 (B )12- (C )24- (D )24 8.如果3333231232221131211==a a a a a a a a a D ,2323331322223212212131111352352352a a a a a a a a a a a a D ---=,则=1D ( ). (A )18 (B )18- (C )9- (D )27-9. 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c cb b b b a a a a =( ). (A )8 (B )2 (C )0 (D )6- 10.若111111111111101-------=x A ,则A 中x 的一次项系数是 ( ).(A )1 (B )1- (C )4 (D )4-11.4阶行列式443322110000000a b a b b a b a 的值等于 ( ).(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a --(C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 12.如果122211211=a a a a ,则方程组 ⎩⎨⎧=+-=+-022221211212111b x a x a b x a x a 的解是( ).(A )2221211a b a b x =,2211112b a b a x = (B )2221211a b a b x -=,2211112b a b a x = (C )2221211a b a b x ----=,2211112b a b a x ----= (D )2221211a b a b x ----=,2211112b a b a x -----=13. 方程0881441221111132=--x x x的根为 ( ). (A )3,2,1 (B )2,2,1- (C )2,1,0 (D )2,1,1-14. 已知a a a a a a a a a a =333231232221131211,那么=+++323133312221232112111311222a a a a a a a a a a a a ( ). (A )a (B )a - (C)a 2 (D )a 2-15. 已知齐次线性方程组⎪⎩⎪⎨⎧=+-=-+=++0030z y z y x z y x λλλ仅有零解,则 ( ).(A )0≠λ且1≠λ (B )0=λ或1=λ (C )0=λ (D )1=λ三、判断题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数行列式经典例题例1计算元素为a ij = | i -j |的n 阶行列式.解 方法1 由题设知,11a =0,121a =,1,1,n a n =-L L ,故011102120n n n D n n --=--L L MOL1,1,,2i i r r i n n --=-=L011111111n ----L L M O L1,,1j n c c j n +=-=L 1211021(1)2(1)021n n n n n n ------=----LL L L M O O L M L其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2011102120n n n D n n --=--L L MOL11,2,,1111111120i i r r i n n n +-=----=--L L L MOL12,,1001201231j c c j nn n n +=---=---L L L MOL=12(1)2(1)n n n ---- 例2. 设a , b , c 是互异的实数, 证明:的充要条件是a + b + c =0.证明: 考察范德蒙行列式:=行列式 即为y 2前的系数. 于是=所以的充要条件是a + b + c = 0.例3计算D n =121100010n n n x xa a a x a ----+K KM M M M K解: 方法1 递推法 按第1列展开,有D n = x D 1-n +(-1)1+n a n11111n x xx-----O O= x D 1-n + a n由于D 1= x + a 1,2211x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2D 2-n +a 1-n x + a n =L = x1-n D 1+ a 2x2-n +K + a 1-n x + a n =111n n n n x a x a x a --++++L方法2 第2列的x 倍,第3列的x 2倍,K ,第n 列的x1-n 倍分别加到第1列上12c xc n D += 21121010010000n n n n x x xa xa a a x a -----++K K K M M M M K213c x c +=32121231010*********n n n n n n x x x a xa x a a a a x a --------+++K K KMMMM MK=L L =111x fx---OO On r =按展开1(1)n f+-1111n x xx----OO =111n n n n x a x a x a --++++L方法3 利用性质,将行列式化为上三角行列式.D n21321111n n c c x c c x c c x-+++=L1122000000000n n nnn n nx x x a a a a a a k xx x ---+++KK KM M M M Kn =按c 展开x1-n k n = x1-n (1-n n x a + 21--n n xa +K +x a 2+a 1+x) =111n nn n a a x a x x --++++L方法4 n r n D =按展开1(1)n na +-1000100001x x ---KK M M M M K+ 21(1)n n a +--0000101x x --K K M M M M K+K +212(1)n a --1000001x x --K K M M M M K+21(1)()na x -+100000000x x x-K K M M M M L =(-1)1+n (-1)1-n a n +(-1)2+n (-1)2-n a 1-n x +K +(-1)12-n (-1)a 2x 2-n +(-1)n 2( a 1+x) x 1-n= 111n nn n a a x a x x --++++L例4. 计算n 阶行列式:11212212n n n n na b a a a a b a D a a a b ++=+L L M M M L(120n b b b ≠L )解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a L ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素.1211212212100n n n n n na a a ab a a D a a b a a a a b +=++L L L M M M M L升阶213111n r r r r r r +---=L 12121100100100n na a ab b b ---L L L M M M M L1112,,1j j c c b j n -+=+=L 1112111210000000n na a a a ab b b b b +++L L LL M M M M L=1121(1)n n na ab b b b b +++L L 这个题的特殊情形是121212n n n n a x a a a a x a D a a a x++=+LL M M M L=11()nn i i xx a -=+∑可作为公式记下来.例5.计算n 阶“三对角”行列式D n =00100010001αβαβαβαβαβαβ+++K K KM M M MMK+ 解 方法1 递推法.D n1=按c 展开()αβ+D 1-n —(1)000010001n αβαβαβαβ-++K K M M M M M K1=按r 展开()αβ+D 1-n -αβD 2-n即有递推关系式 D n =()αβ+D 1-n -αβD 2-n (n ≥3) 故 1n n D D α--=12()n n D D βα---递推得到 1n n D D α--=12()n n D D βα---=223()n n D D βα---=L =221()n D D βα--而1()D αβ=+,2D =β+α1αββ+α=22ααββ++,代入得1n n n D D αβ--=1n n n D D αβ-=+ (2.1)由递推公式得1n n n D D αβ-=+=12()n n n D ααββ--++=α2D2-n +1n n αββ-+=L=nα+1n αβ-+K +1n n αββ-+=时=,当时,当--βαβα1)α(n αβαβ111≠⎪⎩⎪⎨⎧++++n n n方法2 把D n 按第1列拆成2个n 阶行列式D n =00010010001ααβαβαβαβαβ++K K KM M M MMK++00100010000001βαβαβαβαβαβαβαβ+++K K KM M M MMK K上式右端第一个行列式等于αD 1-n ,而第二个行列式00100010000001βαβαβαβαβαβαβαβ+++K K KM M M MMK K12,,i i c ac i n--==L 000010000100001ββββK K KM M M M M K=βn 于是得递推公式1nn n D D αβ-=+,已与(2.1)式相同.方法3 在方法1中得递推公式D n =()αβ+D 1-n -αβD 2-n又因为当αβ+时 D 1=αβ+=βαβα--2221D αβαβαβ+=+=2()αβ+-αβ=22ααββ++=βαβα--33D 3=βααββααββα+++110=3()αβ+-2αβ()αβ+ = ()αβ+22()αβ+=βαβα--44于是猜想11n n n D αβαβ++-=-,下面用数学归纳法证明.当n=1时,等式成立,假设当n ≤k 时成立. 当n=k+1是,由递推公式得D 1+k =()αβ+D k -αβD 1-k=()αβ+βαβα--++11k k —αββαβα--k k =βαβα--++22k k所以对于n ∈N +,等式都成立例6. 计算n 阶行列式:12111111111n na a D a ++=+L L M M M L其中120n a a a ≠L .解 这道题有多种解法. 方法1 化为上三角行列式nD 12,,i r r i n-==L 1121111na a a a a +--L M O112,,j ja c c a j n+==L 21100nb a a L M O其中11211ni i b a a a ==++∑1111n i i a a =⎛⎫=+ ⎪⎝⎭∑,于是n D 12111nn i i a a a a =⎛⎫=+ ⎪⎝⎭∑L .方法2 升阶(或加边)法121111*********111n na D a a +=++L L LMM M M L升阶12,3,,1i r r i n -=+=L 121111100100100na a a ---L L L M M M M L11111121,2,,1121111111j jni jc c a nn j n i i na a a a a a a a +=+=-=+⎛⎫==+ ⎪⎝⎭∑∑L LL O方法3 递推法.将n D 改写为1211101110111n na a D a ++++=+LL M M M Ln =按c 拆开12111111111a a ++L L M M M L +1211011011na a a ++L L M M M L由于12111111111a a ++L L M M M L1,,1i n r r i n -=-=L 12111a a L121n a a a -=L1211011011na a a ++L L M M M Ln =按c 展开1n n a D -因此n D =1n n a D -121n a a a -+L 为递推公式,而111D a =+,于是n D =1n n a D -121n a a a -+L =12n a a a L 11211n n n D a a a a --⎛⎫+ ⎪⎝⎭L=12n a a a L 2122111n n n n D a a a a a ---⎛⎫++⎪⎝⎭L =L L=12n a a a L 11211n D a a a ⎛⎫+++⎪⎝⎭L =12n a a a L 121111n a a a ⎛⎫++++ ⎪⎝⎭L。

相关文档
最新文档