上海市宝山区2011年中考数学模拟试题
2011年上海市宝山区初中数学一模卷试题及参考答案【纯word版,完美打印】

宝山区2010学年第一学期期末 九年级数学质量检测试卷(满分150分,考试时间100分钟)一、 选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸的相应题号的选项上用2B 铅笔填涂] 1.下列算式中,正确的是( ▲ ).(A )24±=; (B )532=+; (C )2818=-; (D )2332=-. 2.下列方程中,有实根的是( ▲ ).(A )012=+-x x ; (B )023=+x ; (C )111-=-x x x ; (D )02=-+x x . 3.关于二次函数2)1(+=x a y 的图像,下列说法中,正确的是( ▲ ). (A )是一条开口向上的抛物线; (B )顶点坐标为(1,0);(C )可以由二次函数2ax y =的图像向上平移1个单位得到; (D )可以由二次函数2ax y =的图像向左平移1个单位得到.4.已知一个斜坡的坡角为α,坡度为5.2:1,那么下列结论中,正确的是( ▲ ).(A )5.2tan =α; (B )52tan =α ; (C )52cot =α; (D )52sin =α.5.已知△ABC 与△DEF 相似,且∠A=∠D ,那么下列结论中,一定成立的是( ▲ ).(A )∠B=∠E ; (B )DFAC DE AB =; (C )相似比为DE AB ; (D )相似比为EF BC.6.已知C 是直线AB 上一点,且21=,那么下列结论中,正确的是( ▲ ).(A )-=; (B )=; (C )AC AB 21=; (D )AC AB 21-=.二、 填空题:(本大题共12题,每题4分,满分48分)[将答案直接填在答题纸相应的题号后] 7.计算:=32)2(a ▲ .8.不等式组⎩⎨⎧≥->+01012m m 的解集是 ▲ .9.因式分解:1+--b a ab = ▲ . 10.已知函数1)(+=x xx f ,则=)2(f ▲ . 11.如图1,已知抛物线2x y =,把该抛物线向上平移,使平移后的抛物线经过点A (1,3),那么平移后的抛物线的表达式是 ▲ .12.抛物线1442+++=a ax ax y (0≠a )的顶点坐标是 ▲ .13.已知一个二次函数的图像具有以下特征:(1)经过原点;(2)在直线1=x 左侧的部分,( 图1 )图像下降,在直线1=x 右侧的部分,图像上升.试写出一个符合要求的二次函数解析式. ▲14.已知A 、B 是抛物线122-+=x x y 上的两点(A 在B 的左侧),且AB 与x 轴平行, AB = 4,则点A 的坐标为 ▲ .15.已知△ABC 中,AB =AC =6,31cos =B ,则边BC 的长度为 ▲ .16.如图2,已知平行四边形ABCD , E 是边AB的中点,联结AC 、DE 交于点O . 记向量a AB =,=,则向量OE = ▲ (用向量、17.如图3,已知ABC ∆中,︒=∠90ACB ,D 是边AB 的中点,AB CE ⊥, 垂足为点E ,若53sin =∠DCE ,则=A cot ▲ .18.如图4,平面直角坐标系中,已知矩形OABC ,O 为原点,点A 、C 分别在x 轴、y 轴上,点B 的坐标为(1,2),连结OB ,将△OAB 沿直线OB 翻折,点A 落在点D 的位置. 则点D 的坐标为 ▲ .三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分,满分52分)19.解方程:11)1(212=--+x xx20.图5所示的工件叫燕尾槽,它的横断面是一个等腰梯形, ∠ABC 叫做燕尾角,AD 叫做外口,BC 叫做里口,点A 到 BC 的距离叫做燕尾槽深度. 经测量,AD=10cm ,燕尾角 为50.2°,燕尾槽深度为6cm ,试求里口BC 的长.【备用数据:768.02.50sin =︒,640.02.50cos =︒,20.12.50tan =︒】21.如图6,已知菱形ABCD ,点G 在BC 的延长线上, 联结AG ,与边CD 交于点E ,与对角线BD 交于点F , 求证: FG EF AF ⋅=2.22.如图7,已知梯形ABCD 中,AB ∥CD ,∠ABC =90°,CD =1.C( 图6 )( 图5 )( 图3 )CAD EB( 图4 )( 图2 )(1)若BC =3,AD=AB ,求∠A 的余弦值;(2)联结BD ,若△ADB 与△BCD 相似,设x A =cot ,y AB =, 求y 关于x 的函数关系式.23.如图8,已知正方形网格中每个小正方形的边长为1,点O 、M 、N 、A 、B 、C 都是小正方形的顶点.(1)记向量=,=,试在该网格中作向量22-=; (2)联结AD ,试判断以A 、B 、D 为顶点的三角形与ABC ∆是否相似, (3)联结CD ,试判断BDC ∠与ACB ∠的大小关系,并证明你的结论.24.如图9,小杰在一个智能化篮球场的罚球区附近练习投篮,球出手前,他测得篮框(A )的仰角为16.7°、篮球架底端(B )的俯角为24.2°,又已知篮框距离地面约3米. (1)请在答题纸上把示意图及其相关信息补全,并求小杰投篮时与篮框的水平距离; (2)已知球出手后的运动路线是抛物线的一部分,若球出手时离地面约2.2米,球在空中运行的水平距离为2.5米时,达到距离地面的最大高度为3.45米,试通过计算说明球能否准确落入篮框.【注:篮球架看作是一条与地面垂直的线段,篮框看作是一个点;投篮时球、眼睛看作是在一条与地面垂直的直线上. 备用数据:29.07.16sin =︒, 96.07.16cos =︒, 30.07.16tan =︒;41.02.24sin =︒, 91.02.24cos =︒, 45.02.24tan =︒;】四、(本大题共2题,第25题12分,第26题14分,满分26分)( 图8 )25.(本题满分12分,第(1)小题满分4分,第(2)小题满分8分)如图10,已知抛物线 c bx x y ++-=2过点A (2,0),对称轴为y 轴,顶点为P . (1) 求该抛物线的表达式,写出其顶点P 的坐标,并画出其大致图像;(2) 把该抛物线先向右平移m 个单位,再向下平移m 个单位(m > 0 ),记新抛物线的顶点为B ,与y 轴的交点为C .① 试用m 的代数式表示点B 、点C 的坐标; ② 若∠OBC =45°,试求m 的值.26.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图11,已知2tan =∠MON ,点P 是MON ∠内一点,OM PC ⊥,垂足为点C ,2=PC ,6=OC ,A 是OC 延长线上一点,联结AP 并延长与射线ON 交于点B .(1)当点P 恰好是线段AB 的中点时,试判断△AOB 的形状,并说明理由; (2)当CA 的长度为多少时,△AOB 是等腰三角形;(3)设k ABAP =,是否存在适当的k ,使得k S S OBPC APC =∆四边形,若存在,试求出k 的值;若不存在,试说明理由. 宝山区2010学年第一学期期末九年级数学质量检测评分参考( 图10 )三、 选择题:(本大题共6题,每题4分,满分24分)1. C. 2. B . 3. D . 4. B . 5. D. 6. A .四、 填空题:(本大题共12题,每题4分,满分48分)7. 68a . 8. . 9. ()()11--b a . 10. 22-. 11. 22+=x y . 12. ()1,2-. 13. ()2,3-. 14.x x y 22-=(答案不唯一).15. 4. 16. . 17. 2. 18. .三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分)19. 解:0122=-+x x ……………………3分 ()()0112=+-x x ……………………2分 ……………………2分经检验: 是增根舍去, 是原方程的根。
2011上海市中考数学试卷【答案+解析】知识讲解

2011年上海市中考数学试卷一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.2.(2011•上海)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.3.(2011•上海)下列二次根式中,最简二次根式是()A.B.C.D.4.(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.(2011•上海)下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等6.(2011•上海)矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD 为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内二、填空题(本大题共12题,每题4分,共48分)7.(2011•上海)计算:a2•a3=_________.8.(2011•上海)因式分解:x2﹣9y2=_________.9.(2011•上海)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=_________.10.(2011•上海)函数的定义域是_________.11.(2011•上海)如果反比例函数(k是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是_________.12.(2011•上海)一次函数y=3x﹣2的函数值y随自变量x值的增大而_________(填“增大”或“减小”).13.(2011•上海)有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是_________.14.(2011•上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.(2011•上海)如图,AM是△ABC的中线,设向量,,那么向量=_________(结果用、表示).16.(2011•上海)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=_________.17.(2011•上海)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC= _________.18.(2011•上海)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D 逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.三、解答题(本大题共7题,满分78分)19.(2011•上海)计算:.20.(2011•上海)解方程组:.21.(2011•上海)如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若tan∠C=,求弦MN的长.22.(2011•上海)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是_________;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是_________(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_________;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_________名.23.(2011•上海)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.24.(2011•上海)已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.25.(2011•上海)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.2011年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.考点:有理数的除法。
2011年上海市中考数学试题及答案完整版(word)

2011年上海市初中毕业统一学业考试数学卷满分150分 考试时间100分钟一、选择题(本大题共6题,每题4分,共24分) 1.下列分数中,能化为有限小数的是( ). (A)13; (B) 15; (C) 17; (D) 19. 2.如果a >b ,c <0,那么下列不等式成立的是( ). (A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D) a bc c> . 3.下列二次根式中,最简二次根式是( ).(A)(B) (C) (D) .4.抛物线y =-(x +2)2-3的顶点坐标是( ). (A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 5.下列命题中,真命题是( ).(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等.6.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.二、填空题(本大题共12题,每题4分,共48分) 7.计算:23a a ⋅=__________.8.因式分解:229x y -=_______________.9.如果关于x 的方程220x x m -+=(m 为常数)有两个相等实数根,那么m =______.10.函数y =_____________. 11.如果反比例函数ky x=(k 是常数,k ≠0)的图像经过点(-1,2),那么这个函数的解析式是__________. 12.一次函数y =3x -2的函数值y 随自变量x 值的增大而_____________(填“增大”或“减小”).13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是__________.14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.如图1,AM 是△ABC 的中线,设向量AB a =,BC b =,那么向量AM =____________(结果用a 、b 表示).16. 如图2, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.17.如图3,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.18.Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD (图4).把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =_________.图1 图2 图3 图4三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:0(3)1-.20.(本题满分10分)解方程组:222,230.x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2,CD 平行于AB ,并与弧AB 相交于点M 、N .(1)求线段OD 的长;(2)若1tan 2C ∠=,求弦MN 的长.图522.(本题满分10分,第(1)、(2)小题满分各2分,第(3)、(4)小题满分各3分)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图6)、扇形图(图7).(1)图7中所缺少的百分数是____________;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是________________(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_____________;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_______________名.10%20%35%25%10%百分数年龄段(岁)25岁以下25~3536~4546~6060岁以上图6 图7赞同31%很赞同39%不赞同18%一般23.(本题满分12分,每小题满分各6分)如图,在梯形ABCD 中,AD //BC ,AB =DC ,过点D 作DE ⊥BC ,垂足为E ,并延长DE 至F ,使EF =DE .联结BF 、CD 、AC . (1)求证:四边形ABFC 是平行四边形;(2)如果DE 2=BE ·CE ,求证四边形ABFC 是矩形.24.(本题满分12分,每小题满分各4分) 已知平面直角坐标系xOy (如图1),一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M . (1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标. 图125.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13EMP ∠=. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图2011年上海市初中毕业统一学业数学卷答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分)题号1 2 3 4 5 6答案B ACD D C 二、填空题 (本大题共12题,每题4分,满分48分)题号 7 8 9 10 11 12 13 14 15 16 17 18 答案a 5(x +3y )(x -3y )1x ≤3y = -x2 增大85 20%a +21b 54680或120三、解答题 (本题共30分,每小题5分) 19. (本题满分10分) [解] (-3)0-27+|1-2|+231+=1-33+2-1+3-2= -23。
上海市宝山区、嘉定区2011学年第二学期初三数学二模试卷附答案1

上海市宝山区、嘉定区2011学年中考预测数学试卷(测试时间:100分钟,满分150分) 2012.4. 考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.考试不使用计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确的代号填涂在答题纸的相应位置上】 1.下列计算正确的是 ( ).(A )422a a a =+; (B )236a a a =÷; (C )32a a a =⋅; (D )532)(a a =. 2.如果b a <,0<c ,那么下列不等式成立的是( ).(A )c b c a +<+; (B ) c b c a +-<+-; (C )bc ac <; (D )cbc a <. 3.一次函数1-=x y 的图像不.经过( ). (A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限.4.在研究反比例函数图像与性质时,由于计算粗心,小明误认为(2-,3)、(2,3-)、(2-,3-)、 (3,2-)、(23-,4)五个点在同一个反比例函数的图像上,后来经检查发现其中有一个点不在, 这个点是( ).(A )(2,3-); (B )(2-,3); (C )(2-,3-); (D )(23-,4). 5.如图1,在编号为错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
的四个三角形中,关于x 轴对称的两个三角形是( ).(A )错误!未找到引用源。
和错误!未找到引用源。
; (B )错误!未找到引用源。
和错误!未找到引用源。
; (C )错误!未找到引用源。
2011中考数学考前模拟题及答案精选10套试题试卷_7

2011年中考模拟试卷数学卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间120分钟。
2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场号、座位号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,只需上交答题卷。
一、仔细选一选(本题10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确的选项前的字母填在答卷中的相应的格子内,注意可以用多种不同的方法来选取正确的答案。
1.2011年3月5日第十一届全国人民代表大会第四次会议在京召开,会议期间议案560多件,提案5762件,充分体现了广大政协委员为发展社会主义民主、推动科学发展、促进社会和谐建言献策的政治责任感。
用科学计数法表示收到的提案数量(保留2个有效数字)( ▲ ) (原创) A . B . C . D . 2.如图1,给你用一副三角板画角,不可能画出的角的度数是: ( ▲ )(原创)A .105°B .75°C .155°D .165° 3.现给出下列四个命题:①无公共点的两圆必外离②位似三角形是相似三角形③菱形的面积等于两条对角线的积④三角形的三个内角中至少有一内角不小于60⑤对角线相等的四边形是矩形其中选中是真命题的个数的概率是( ▲ )(原创)A .51 B .52 C .53 D .544.一个几何体是由一些大小相同的小正方块摆成的,三视图如图所示,则组成这个几何体的小正方块有( ▲ )(原创) A 、4个 B 、5个 C 、6个 D 、7个5.已知线段a 和锐角α∠ ,求作ABC Rt ∆ ,使它的一边为a ,一锐角为α∠ ,满足上述条件的大小不同的可以画这样的三角形( ▲ )。
(原创)A .1个B .2个C .3个D .4个6.在平行四边形ABCD 中,E 为CD 上一点,DE:EC=1:2,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则=∆∆∆ABF EBF DEF S S S ::( ▲ )(原创) A .1:3:9 B .1:5:9 C .2:3:5 D .2:3:93107.5⨯3108.5⨯41057.0⨯310762.5⨯图1BCAE 1E 2 E 3D 4D 1D 2D 3(第10题图)7. 已知点A 的坐标为(2,3),O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转900得OA 1,再将点A 1作关于X 轴对称得到A 2,则A 2的坐标为( ▲ )(原创) A .(-2,3)B .(-2,-3)C .(-3,2)D .(3, 2)8. 给出下列命题:①反比例函数xy 2=的图象经过一、三象限,且y 随x 的增大而减小;②对角线相等且有一个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图);④相等的弧所对的圆周角相等.其中正确的是( ▲ )(习题摘录改编) (A )③④ (B )①②③ (C )②④ (D )①②③④9.如图,两个反比例函数y = k 1x和y = k 2x在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB的面积为( ▲ )(改编)A .k 1+k 2B .k 1-k 2C .k 1·k 2 D.k 1k 210. 如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则A .n S =14n ABC S △B .n S =13n +ABC S △ C .n S =()121n +ABC S △ D .n S =()211n +ABC S △ ( ▲ )(习题摘录)A 、6B 、62C 、24D 、4 二、认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。
宝山区2011学年第一学期九年级数学一模试卷(0113)

2011学年第一学期期末考试九年级数学试卷(满分150分,考试时间100分钟)考生注意:1. 本试卷含四个大题,共26题;2. 考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一. 选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是符合题目要求的,请把符合题目要求的选项的代号填涂在答题纸的相应位置上.】 1.下列各式中,正确的是( ▲ ). (A )4222a a a =+; (B )a a a =-23; (C )532a a a =⋅;(D )222)(b a b a +=+.2.下列各数中,是无理数的为( ▲ ).(A )6; (B )38; (C )0π; (D )︒60cos . 3.关于二次函数122+-=x y 的图像,下列说法中,正确的是( ▲ ). (A )对称轴为直线1=x ; (B )顶点坐标为(2-,1);(C )可以由二次函数22x y -=的图像向左平移1个单位得到; (D )在y 轴的左侧,图像上升,在y 轴的右侧,图像下降.4.已知△ABC ∽△DEF ,顶点A 、B 、C 分别与D 、E 、F 对应,若△ABC 和△DEF 的周长 分别为24、36,又BC =8,则下列判断正确的是( ▲ ).(A )12=DE ; (B )12=EF ; (C )18=DE ; (D )18=EF . 5.飞机在空中测得地面上某观测目标A 的俯角为α,且飞机与目标A 相距12千米,那么这时飞机离地面的高度为( ▲ ).(A )αsin 12; (B )αcos 12; (C )αtan 12; (D )αcot 12. 6.下列关于向量的说法中,不.正确..的是( ▲ ). (A )33a a = ; (B )3()33a b a b +=+;(C )若b k a =(k 为实数),则a ∥b ; (D )若b a 3=,则b a 3=或b a 3-=.二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.计算:=-23▲ .8.已知向量a 、x 满足x a x a +=-)(31,则x = ▲ .(用向量a 表示) 9.分解因式:=-+224x x ▲ .10.已知抛物线1)1(2+-=x a y 的顶点是它的最高点,则a 的 取值范围是 ▲ .11.如图1,已知抛物线2x y =,把该抛物线沿y 轴方向平移,若平移后的抛物线经过点A (2,2),那么平移后的抛物线 的表达式是 ▲ .12.已知抛物线222++-=x x y 的顶点为A ,与y 轴交于点B ,C 是其对称轴上的一点,O 为原点,若四边形ABOC 是等腰 梯形,则点C 的坐标为 ▲ .13.如图2,已知平行四边形ABCD ,E 是边AB 的中点,联结AC 、DE 交于点O . 则OCAO的值为 ▲ . 14.已知一个斜坡的坡角为α,坡度为3:1,则αcot 的值为 ▲ .15.如图3,ABC ∆中,点D 、E 、F 分别在边BC 、AC 、AB 上,且DE ∥AB ,DF ∥AC ,若2:1:=DC BD ,ABC ∆的面积为92cm ,则四边形AEDF 的面积为 ▲ 2cm . 16.如图4,已知梯形ABCD 中,AB ∥CD ,AB ⊥BC ,且AD ⊥BD ,若AB =3,CD=1,那么A ∠的正弦值为 ▲ .17.如图5,已知△ABC 中,点D 、E 分别在边AB 、AC 上,且DB AD 2=,EC AE =.若设a AB =,b BC =,则DE = ▲ .(用向量a 、b 表示) 18.已知△ABC 中,∠C=90°,AB=9,32cos =A ,把△ABC 绕着点C 旋转,使得点A 落在点A ’,点B 落在点B ’. 若点A ’在边AB 上,则点B 、B ’的距离为 ▲ . 三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分) 19.先化简,再求值: )111()1112(2+-÷---+a a a a a ,其中2=a . 20.已知432z y x ==, (1) 求zyx 2-的值; (2) 若y z x -=+3,求x 值.ADBCEO(图2)Ay2O 112 3 x(图1)ADBCE (图5)ADBCF E(图3)(图4)ABCD21.已知一个二次函数的图像经过点A (-1,0)、B (0,3),且对称轴为直线1=x , (1) 求这个函数的解析式;(2) 指出该函数图像的开口方向和顶点坐标,并说明图像的变化情况.22.如图6,已知△ABC 中,AB=AC ,点E 、F 在边BC 上, 满足∠EAF=∠C ,求证:BF·CE= AB 2;23.如图7,已知△ABC 的边BC 长15厘米,高AH 为10厘米,长方形DEFG 内接于△ABC ,点E 、F 在边BC 上,点D 、G 分别在边AB 、AC 上. (1) 设x DG =,长方形DEFG 的面积为y ,试求y 关于x 的函数解析式,并写出定义域;(2) 若长方形DEFG 的面积为36,试求这时AB AD 的值.24.据新华社12月13日电,参加湄公河联合巡逻执法的中国巡逻船顺利返航.已知在巡逻过程中,某一天上午,我巡逻船正在由西向东匀速行驶,10:00巡逻船在A 处发现北偏东53.1°方向,相距10海里的C 处有一个不明物体正在向正东方向移动,10:15巡逻船在B 处又测得该物体位于北偏东18.4°方向的D 处.若巡逻船的速度是每小时36海里, (1) 试在图8中画出点D 的大致位置,并求不明物体移动的速度;(2) 假设该不明物体移动的方向和速度保持不变,巡逻船航行的方向和速度也不变, 试问什么时间该物体与我巡逻船之间的距离最近?【 备用数据:8.01.53sin =︒, 6.01.53cos =︒, 75.01.53cot =︒;32.04.18sin =︒, 95.04.18cos =︒, 34.18cot =︒;】ABCEF(图6)GCHDFE AB(图7)北东ACB(图8)四、(本大题共2题,第25题12分,第26题14分,满分26分) 25.(本题共3小题,4分+5分+3分,满分12分)我们知道,互相垂直且有公共原点的两条数轴构成平面直角坐标系.如果坐标系中两条坐标轴不垂直,那么这样的坐标系称为“斜坐标系”.如图9,P 是斜坐标系xOy 中的任意一点,与直角坐标系相类似,过点P 分别作两坐标轴的平行线,与x 轴、y 轴交于点M 、N ,若M 、N 在x 轴、y 轴上分别对应实数a 、b ,则有序数对(a ,b )叫做点P 在斜坐标系xOy 中的坐标.(1) 如图10,已知斜坐标系xOy 中,∠xOy=60°,试在该坐标系中作出点A (-2,2), 并求点O 、A 之间的距离;(2) 如图11,在斜坐标系xOy 中,已知点B (4,0)、点C (0,3),P (x ,y )是线段BC 上的任意一点,试求x 、y 之间一定满足的一个等量关系式;(3) 若问题(2)中的点P 在线段BC 的延长线上,其它条件都不变,试判断上述x 、y 之间的等量关系是否仍然成立,并说明理由.26.(本题共3小题,3分+6分+5分,满分14分)如图12,已知线段AB ,P 是线段AB 上任意一点(不与点A 、B 重合),分别以AP 、BP 为边,在AB 的同侧作等边△APD 和△BPC ,联结BD 与PC 交于点E ,联结CD . (1) 当BC ⊥CD 时,试求∠DBC 的正切值;(2) 若线段CD 是线段DE 和DB 的比例中项,试求这时PBAP的值; (3) 记四边形ABCD 的面积为S ,当P 在线段AB 上运动时,S 与BD 2是否成正比例, 若成正比例,试求出比例系数;若不成正比例,试说明理由.xPy NOM(图9)x-1y1O 1(图10)xP (x ,y )y COB (图11)ABPCDE(图12)ABPCDE(备用图)宝山区2011学年第一学期期末考试九年级数学参考答案一、选择题1.C; 2.A; 3.D; 4.B; 5.A; 6.D. 二、填空题7.91; 8.a 21-; 9.)1)(1)(2(2-++x x x ; 10.1>a ; 11.22-=x y ;12.)1,1(-; 13.21; 14.3; 15.4; 16. 33; 17. b a 2161+-; 18. 54。
2011年宝山(嘉定)区初三数学二模试卷(含答案)

=10(天)
(1 分)
10(1 x) 2 6.4
x 0 .2
或
(1 分)
x 1.8 (不合题意舍去)
答:平均每学年学生减少参加社会实践活动时间的百分率为 20 %
(1 分)
5
上海中考网
上海 e 度教育社区
22、设圆心为 O ,连接 BO 、 CO 交 AB 于 D ∵ C 是弧 AB 的中点, CO 是半径 ∴ AD BD , CO AB
3 统计量 该班级男生 7 6 5 4 3 2 1 人数(人)
女生 男生
O
0
1
2
3
4
5
次数(次)
(图 9)
平均数 (次) 中位数 (次) 众 数 (次) 方差 „„ „„
3
3
4
2
(表 1)
上海中考网
上海 e 度教育社区
24. (本题满分 12 分,每小题各 4 分) 如图 10, 已知抛物线 y x 2 bx c 与 x 轴负半轴交于点 A , 与 y 轴正半轴交于点
2 2
4、C;5、D;6、C Nhomakorabea3 x ;12、 k 1 ; 2
5 1 ;17、 ;18、 2 2
13、 y 2( x 3) 3 ;14、 2 y y 1 0 ;15、 a b ;16、
3 7 、3 7 、3 4 2 .
三、解答题: 19、解:(1) 3 3 2
3 1 3 1 2 2
(2 分+2 分+2 分+2 分)
9 3 2
(2 分)
20、解:由(2)得, x y 0 , x y 2 ; (2 分)
最新初中中考数学题库 2011数学上海宝山模拟卷试卷

宝山区2010年九年级学业模拟考试数学试题(满分: 150 分,考试时间:100分钟)考生注意:1.答题时,考生务必按答题要求在答题纸规定的位置上作答,在本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂] 1.下列运算正确的是( ▲ )(A) 10a ÷52a a = (B) 422a a a =+ (C) 222)(b a b a +=+ (D) 632)(a a =2.1=x 是下列哪个方程的解?( ▲ )(A) 1112-=-x x x (B) x x -=23(C) 01=+x (D) 1=+y x 3.下列不等式组中,解集为12<≤-x 的是( ▲ ) (A) ⎩⎨⎧>-≥+0102x x (B) ⎩⎨⎧<-≥-0102x x (C) ⎩⎨⎧>-≥+0102x x (D) ⎩⎨⎧>-≥-0102x x4.已知0<k ,0>b ,那么一次函数b kx y +=的大致图像是( ▲ )5.已知四边形ABCD ,下列条件中,不.能确定四边形ABCD 是平行四边形的是( ▲ ) (A) AB ∥CD 且AD ∥BC ; (B) AB ∥CD 且 AB = CD ; (C) AB ∥CD 且AD = B C ; (D) AB ∥CD 且C A ∠=∠. 6.已知两个相似三角形的相似比是1︰2,则下列判断中,错误..的是( ▲ ) (A) 对应边的比是1:2; (B) 对应角的比是1:2; (C) 对应周长的比是1:2; (D) 对应面积的比是1:4; 二、填空题:(本大题共12题,每题4分,满分48分)Oyx(A)Oyx(C)Oyx(B)Oyx(D)[请将结果直接填入答题纸的相应位置] 7.计算:=-219▲ .8.因式分解:a a 43-= ▲ .9.用配方法解方程261x x -=时,方程的两边应该同加上 ▲ ,才能使得方程左边 配成一个完全平方式.10.经过点A (2, 1)且与直线y x =-平行的直线表达式为 ▲ . 11.解方程2232=---x x x x 时,如果设y xx =-2,那么原方程可以化为关于y 的整式方程.这个整式方程是 ▲ .12.某公司承担了制作600个上海世博会道路交通指引标志的任务, 原计划x 天完成,实际平均每天多制作了10个,因此提前5天完成任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年学业考试数学模拟卷
(时间:100分钟,满分:150分)
考生注意:
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂]
1.下列根式中,与2为同类二次根式的是(▲) (A )
2
1;
(B )a 2; (C )2.0; (D )12.
2.关于二次函数2)1(2+-=x y 的图像,下列判断正确的是(▲)
(A )图像开口向上; (B )图像的对称轴为直线1=x ; (C )图像有最低点; (D )图像的顶点坐标为(1-,2). 3.关于等边三角形,下列说法不.
正确的是(▲) (A )等边三角形是轴对称图形; (B )等边三角形是中心对称图形; (C )等边三角形是旋转对称图形; (D )等边三角形都相似.
4.把一块周长为20cm ,面积为202
cm 的纸片裁成四块形状、大小完全相同的小三角形纸片(如图1),则每块小三角形纸片的周长和面积分别为(▲) (A )10cm ,52
cm ; (B )10cm ,102
cm ; (C )5cm ,52
cm ; (D )5cm ,102
cm .
5.已知1e 、2e 是两个单位向量,向量12e =,22e -=,那么下列结论中正确的是(▲)
(
A )21e e =; (B
)
-=; (C =; (D =. 6.图2反映了一辆汽车从甲地开往乙地的过程中,汽车离开甲地的距离s (千米)与所用时间t (分)之间的函数关系.已知汽车在途中停车加油一次,根据图像,下列描述中,不.
正确的是(▲) (A )汽车在途中加油用了10分钟; (B )汽车在加油前后,速度没有变化;
(C )汽车加油后的速度为每小时90千米; (D )甲乙两地相距60千米.
二、填空题:(本大题共12题,每题4分,满分48分)
[在答题纸相应题号后的空格内直接填写答案] 7.计算:=⋅-a a 2)( ▲ .
8.计算:=---1
12m m m m ▲ .
9.在实数范围内分解因式:222--x x = ▲ . 10.方程x x -=+32的解为: ▲ .
11.已知12)(3-=x x f ,且3)(=a f ,则=a ▲ .
12.已知函数2-+=k kx y 的图像经过第一、三、四象限,则k 的取值范围是 ▲ . 13.把抛物线x x y 22-=向左平移一个单位,所得抛物线的表达式为: ▲ .
14.已知关于x 的方程042=+-m x x ,如果从1、2、3、4、5、6六个数中任取一个数作为
方程的常数项m ,那么所得方程有实数根的概率是 ▲ .
15.如图3,已知梯形ABCD 中,AB ∥CD ,AB=5,CD=3,AD=BC=4,则=∠DAB cos ▲ . 16.如图4,小芳与路灯相距3米,她发现自己在地面上的影子(DE )长2米,如果小芳
的身高为1.6
17.如图5,已知AB 是⊙O 的直径,⊙O 1、⊙O 2
的直径分别是OA 、OB ,⊙O 3与⊙O 、
⊙O 1、⊙O 2均相切,则⊙O 3与⊙O 的半径之比为 ▲ .
18.已知A 是平面直角坐标系内一点,先把点A 向上平移3个单位得到点B ,再把点A 绕
点B 顺时针方向旋转90°得到点C ,若点C 关于y 轴的对称点为(1,2),那么点A 的坐标是 ▲ .
三、解答题:(本大题共7题,满分78分)
[将下列各题的解答过程,做在答题纸上]
19.(本题满分10分) 计算:13
1
2
)23(6)8()13(-+--+-.
20.(本题满分10分,每小题满分5分)
如图6,已知一个正比例函数与一个反比例函数的 图像在第一象限的交点为A (2,4). (1)求正比例函数与反比例函数的解析式; (2)平移直线OA ,平移后的直线与x 轴交于点B , 与反比例函数的图像在第一象限的交点为C (4,n ). 求B 、C 两点的距离.
21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)
如图7,△ABC 中,AB=AC ,
4cos ∠ABC ,点D 在边BC 上,BD =6,CD=AB .
(1) 求AB 的长; (2) 求ADC ∠的正切值.
22.(本题满分10分,每小题各5分)
如图8,已知B 是线段AE 上一点,ABCD 和BEFG 都是正方形,联结AG 、CE . (1) 求证:AG =CE ; (2) 设CE 与GF 的交点为P ,
求证:AG PE CG PG =.
23.(本题满分12分,每小题各4分)
为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图9所示(其中男生收看
3次的人数没有标出).
根据上述信息,解答下列各题:
(1) 该班级女生人数是 ▲ ,女生收看“两会”新闻次数的中位数是 ▲ ; (2) 对于某个群体,我们把一周内 收看某热点新闻次数不低于3次的人 数占其所在群体总人数的百分比叫做 该群体对某热点新闻的“关注指数”.
如果该班级男生对“两会”新闻 的“关注指数”比女生低5%,试求 该班级男生人数;
(3) 为进一步分析该班级男、女生 收看“两会”新闻次数的特点,小明 给出了男生的部分统计量(如表1).
根据你所学过的统计知识,适当 计算女生的有关统计量,进而比较该 班级男、女生收看 “两会”新闻次数 的波动大小.
F
(图8)
(图9)
(表1)
24.(本题满分12分,每小题各4分)
如图10,已知抛物线c bx x y ++-=2与x 轴负半轴交于点A ,与y 轴正半轴交于点B ,且OB OA =.
(1) 求c b +的值;
(2) 若点C 在抛物线上,且四边形OABC 是 平行四边形,试求抛物线的解析式;
(3) 在(2)的条件下,作∠OBC 的角平分线,
与抛物线交于点P ,求点P 的坐标.
25.(本题满分14分,第
(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)
如图11,已知⊙O 的半径长为1,PQ 是⊙O 的直径,点M 是PQ
延长线上一点,以点M 为圆心作圆,与⊙O 交于A 、B 两点,联结P A 并延长,交⊙M 于另外一点C .
(1) 若AB 恰好是⊙O 的直径,设OM=x ,AC=y ,试在图12中画出符合要求的大致图形,并求y 关于x 的函数解析式;
(2) 联结OA 、MA 、MC ,若OA ⊥MA ,且△OMA 与△PMC 相似,求OM 的长度和⊙M 的半径长;
(3) 是否存在⊙M ,使得AB 、AC 恰好是一个正五边形的两条边?若存在,试求OM 的长度和⊙M 的半径长;若不存在,试说明理由.
图12
备用图。