宝马可变气门升程技术讲解
可变配气相位与气门升程

凸轮轴和节气门的工作示意图
我们最熟悉的可变气门升程系统无疑 就是本田的i-vtec技术了,本田也是 最早将可变气门升程技术发扬光大的 厂商。本田的可变气门升程系统结构 和工作原理并不复杂,工程师利用第 三根摇臂和第三个凸轮即实现了看似 复杂的气门升程变化。 当发动机达到一定转速时,系 统就会控制连杆将两个进气摇臂和那 个特殊摇臂连接为一体,此时三个摇 臂就会同时被高角度凸轮驱动,而气 门升程也会随之加大,单位时间内的 进气量更大,从而发动机动力更强。 这种在一定转速后突然的动力爆发也 能够增加驾驶乐趣,缺点则是动力输 出不够线性。 而随后像奥迪,三菱和丰田等厂商也都研发出了自己的可变气门升程技术,它同样 是通过增加凸轮轴上的凸轮来实现了气门升程的分段可调。
谢谢! 谢谢!
车辆3班
可变配气相位
我们知道,发动机转速越高,每个汽缸一个周期内留给吸气和排气的绝对时 间也越短,因此想要达到较好的充气效率,这时发动机需要尽可能长的吸气 和排气时间。显然,当转速越高时,要求的重叠角度越大。也就是说,如果 配气机构的设计是对高转速工况优化的,发动机容易在较高的转速下,获得 较大的峰值功率。 但在低转速工况下,过大的重叠 角则会使得废气过多的泻入进气 岐管,吸气量反而会下降,气缸 内气流也会紊乱,此时ECU也会 难以对空燃比进行精确的控制, 从而导致怠速不稳,低速扭矩偏 低。相反,如果配气机构只对低 转速工况优化,发动机的就无法 在高转速下达到较高的峰值功率。 所以传统的发动机都是一个折衷 方案,不可能在两种截然不同的 工况下都达到最优状态。
呼吸之道
可变配气相位与气门升程
参加过长跑比赛同学都知道,呼吸的快慢以及深浅对体能 发挥的影响——太急促或刻意的屏息都有可能增加疲劳感,使 奔跑欲望降低。所以,我们在长跑比赛时往往需要不断按照奔 跑步伐来调整呼吸频率,以便随时为身体提供充足的氧气。 对于汽车发动机而言,这个 道理同样适用。可变配气相位 与气门升程技术就是为了让发 动机能够根据不同的负载情况 的能够自由调整“呼吸”的时 间和深浅程度,从而提升动力 表现,使燃烧更有效率。
宝马VANOS可变气门正时系统

宝马VANOS可变气门正时系统宝马V ANOS可变气门正时系统来源:末知作者:佚名发布时间:2008-01-14宝马的V ANOS系统是一个由车辆发动机管理系统操纵的液压和机械相结合的凸轮轴控制设备。
V ANOS系统基于一个能够调整进气凸轮轴与曲轴相对位置的调整机构。
双V ANOS则增加了对进排气凸轮轴的调整机构。
V ANOS系统根据发动机转速和加速踏板位置来操作进气凸轮轴。
在发动机转速达到最低时,进气门将随后开启以改善怠速质量及平稳度。
发动机处于中等转速时,进气门提前开启以增大扭矩并允许废气在燃烧室中进行再循环从而减少耗油量和废气的排放。
最后,当发动机转速很高时,进气门开启将再次延迟,从而发挥出最大功率。
V ANOS系统极大增强了尾气排放管理能力,增加了输出和扭矩,提供了更好的怠速质量和燃油经济性。
V ANOS系统的最新版是双V ANOS,被用于新M3车型上。
该技术于1992年被首次应用于宝马5系车型的M50发动机上。
『双V ANOS系统即Double V ANOS』在顶置凸轮轴发动机中,凸轮轴通过一根皮带或者链条和齿轮与曲轴相连。
在宝马V ANOS系统发动机内有一根链条和一些链轮。
曲轴驱动排气凸轮上的链轮,排气凸轮链轮被螺栓固定于排气凸轮上,第二套齿轮驱动穿过进气凸轮的第二根链条,进气凸轮上的大链轮没有固定在凸轮上,因为其中间有个大孔,孔内有一套螺旋形的齿,在凸轮的一端有一个外侧也是螺旋形的齿轮,但它太小,无法与大链轮内侧的齿轮相连接。
有一小块杯状带有螺旋形齿轮的金属,其内侧与凸轮相配合,外侧与链轮配合。
V ANOS系统的可变性就是源于齿轮的螺旋形。
杯状装置由作用于受DME(数字式电子发动机管理系统)控制依靠油压的液压机构驱动。
怠速时,凸轮正时延迟。
在非怠速状态下,DME为电磁线圈通电控制油压推动杯状齿轮,在中等转速下推动凸轮提前12.5度,然后在5000转/分时,允许其回到初始位置。
中速运转时推力越大气缸充气越好,扭矩也就越大。
可变气门升程技术的工作原理

可变气门升程技术的工作原理
可变气门技术是一种利用气体中细微变化来控制发动机转速及
功率的一种新型技术,它可极大地提高发动机性能,同时减少汽车污染。
可变气门升程技术是可变气门技术的重要组成部分,在发动机开启过程中起着重要作用。
可变气门升程技术是指控制气门开启时间的技术。
实际上,在汽车发动机的运转过程中,气门的开启时间会改变,这也称为气门升程。
气门升程的改变将直接影响发动机的功率和转速,进而影响汽车的性能。
可变气门升程技术可以改变气门升程进而改变发动机的工作性能。
可变气门升程技术的实现原理是利用电磁阀控制气门升程,由汽车引擎电子控制系统(ECU)控制电磁阀的工作。
ECU根据引擎的转速,燃料喷射量和相关发动机参数进行计算和判断,控制电磁阀来改变气门升程。
可变气门升程技术可以根据发动机需要来调节气门升程,提高发动机性能。
例如,当发动机转速较高时,ECU计算得出气门应在更高位置升起,以适应转速的增加,从而获得更大的功率。
另外,当发动机转速较低时,ECU计算得出气门需低于其正常位置,即电磁阀允许气门在低位置升起,从而获得更低的排放。
可变气门升程技术不仅可提高发动机性能,而且还可减少汽车排放。
ECU根据发动机运行参数,控制气门的开启时间来改变气门升程,从而有效地改变燃烧的完整性,当发动机处于高转速和低转速时,都可以达到节能减排的目的。
总而言之,可变气门升程技术是一种新型的技术,可以在控制发动机转速及功率的同时,提高发动机性能,减少汽车污染。
它有效地改变气门升程,提高发动机性能,达到节能减排的目的。
如今,它已经被广泛应用于汽车发动机,为汽车性能和污染减少做出了重大贡献。
可变气门升程技术的工作原理

可变气门升程技术的工作原理
可变气门升程技术是一项有效的提高汽车性能的重要技术,它能够改善汽车发动机的燃油燃烧效率、缩短汽车动力反应时间,从而节约燃料,提高汽车动力表现和排放性能。
本文就可变气门升程技术的工作原理介绍有关的知识。
可变气门升程技术是一项采用气门工作调整技术,应用在汽车发动机上的一种技术,其基本原理是:改变汽车发动机的气门升程,就可以改变发动机在各种转速下的性能表现。
可变气门升程技术的工作原理是:在汽车发动机上安装一个可变气门升程装置,这个装置可以调节气门升程,从而控制汽车发动机所释放的气体空间,从而改变汽车发动机的性能。
可变气门升程技术的具体实现是:在汽车发动机上安装一个装置,该装置由控制电路、传感器和拉杆组成。
通过拉杆可以改变气门在开启和关闭时的时间,从而改变汽车发动机的性能。
可变气门升程技术有助于改善汽车发动机的工作性能,有效地控制发动机的怠速时的燃油消耗,缩短汽车动力反应时间,改善汽车动力学性能,从而提高汽车的性能和油耗。
此外,采用可变气门升程技术的汽车发动机可以做到简单高效,减少发动机故障可能,提高发动机维护的可靠性,降低汽车使用成本,由此可见,采用可变气门升程技术后,可以有效地提高汽车的安全性、经济性和环保性。
综上所述,可变气门升程技术是一项有效的提高汽车性能的重要
技术,它的工作原理是:通过控制汽车发动机气门升程,从而改变汽车发动机的性能。
可变气门升程技术在节约燃料、提高汽车动力性能、改善节气门工作性能、延长发动机使用寿命、改善环保等方面都具有重要作用。
可变气门正时技术

可变气门正时技术可变气门正时技术几乎已成为当今发动机的标准配置,为了进一步挖掘传统燃机的潜力,工程人员又在此基础上研发出可变气门升程技术,当二者有效的结合起来时,则为发动机在各种工况和转速下提供了更高的进、排气效率。
提升动力的同时,也降低了油耗水平。
● 配气相位机构的原理和作用我们都知道,发动机的配气相位机构负责向气缸提供汽油燃烧做功所必须的新鲜空气,并将燃烧后的废气排出,这一套动作可以看做是人体吸气和呼气的过程。
从工作原理上讲,配气相位机构的主要功能是按照一定的时限来开启和关闭各气缸的进、排气门,从而实现发动机气缸换气补给的整个过程。
那么气门的原理和作用又应该怎么理解呢?我们可以将发动机的气门比作是一扇门,门开启的大小和时间长短,决定了进出的人流量。
门开启的角度越大,开启的时间越长,进出的人流量越大,反之亦然。
同样的道理用于发动机上,就产生了气门升程和正时的概念。
气门升程就好象门开启的角度,气门正时就好象门开启的时间。
以立体的思维观点看问题,角度加时间就是一个空间的大小,它也决定了在单位时间的进、排气量。
● 可变气门正时和升程技术可以使发动机的“呼吸”更为顺畅自然发动机的气门通常由凸轮轴带动,对于没有可变气门正时技术的普通发动机而言,进、排气们开闭的时间都是固定的,但是这种固定不变的气门正时却很难顾与到发动机在不同转速和工况时的需要。
前面说过发动机进、排气的过程犹如人体的呼吸,不过固定不变的“呼吸”节奏却阻碍了发动机效率的提升。
如果你参加过长跑比赛,就能深刻体会到呼吸节奏的把握对体能发挥的重要性——太急促或刻意的屏息都可能增加疲劳感,使奔跑欲望降低。
所以,我们在长跑比赛时往往需要不断按照奔跑步伐来调整呼吸频率,以便时刻为身体提供充足的氧气。
对于汽车发动机而言,这个道理同样适用。
可变气门正时和升程技术就是为了让发动机在各种负荷和转速下自由调整“呼吸”,从而提升动力表现,提高燃烧效率。
● 可变气门正时技术前面说过气门正时控制着气门的开启时间,那么VVT(可变气门正时)技术是如何工作的呢?它又是怎样达到提升效率、节约燃油的效果呢?——气门重叠角对发动机性能的影响当发动机处在高转速区间时,四冲程发动机的一个工作冲程仅需千分之几秒,这么短的时间往往会引起发动机进气不足和排气不净,影响发动机的效率。
宝马VANOS发动机技术 电子气门控制系统的工作原理

宝马VANOS发动机技术电子气门控制系统的工作原理电子气门控制系统的工作原理电子气门控制系统的工作原理与人类在身体紧张时的状态类似。
假设您去跑步。
您身体所吸进的空气质量将由肺来调节。
您会不由自主地深吸气并由此为肺提供较多的空气,以便在身体中进行能量转换。
如果您现在由跑步换成一种较慢的步法,例如散步,则身体需要的能量和空气相对减少。
您的肺将以平缓呼吸的方式对此进行自动调节。
在这种情况下,如果您在嘴上堵上一块手帕呼,吸将非常费力。
在电子气门控制系统的新鲜空气进气装置中“取消了”节气门(与手帕类似)。
气门升程肺根据空气需要量进行调节。
发动机可以自由呼吸。
在发动机电子气门控制系统进气过程中,节气门几乎一直打开一个合适的角度,以保证出现一个50 mbar 的近似真空。
负荷控制通过气门的关闭时刻实现。
与通过节气门实现负荷控制的普通发动机相比,在进气系统中只产生一个较小的真空,也就是说省去了产生真空的能耗,通过进气过程中较小的功率损失获得较高的效率。
与柴油发动机不同在常规汽油发动机中,进气量通过加速踏板和节气门进行调节并按化学计算比例ë =1 喷射所需要的燃油量。
在带电子气门控制系统的发动机上所吸进的空气量由气门的开启升程和开启持续时间决定。
通过精确控制供油量这里也能实现按ë =1 运行。
与此相反,带汽油直接喷射和浓度分区功能的发动机,在较宽的负荷范围内以低燃油空气混合比工作。
昂贵且易受硫腐蚀的废气后处理装置,例如直喷式汽油发动机上使用的在带有电子气门控制系统的发动机上因此就不需要了。
宝马VANOS发动机技术图中每个进气门分别有两组凸轮控制,一组是高速凸轮,一组是低速凸轮。
红色圆框内就是可变气门行程的控制机构。
当发动机在低转速范围时,红色的控制活塞是落在气门座内的。
这样高速凸轮只能驱动气门座向下行程而不能带动整个气门动作,整个气门由低速凸轮驱动气门顶向下行程,这样获得的气门开度就较小。
当发动机在高转速范围时,红色的控制活塞在液压的驱动下从气门座推入到气门顶中,等于是把气门座和气门刚性的连接在一起,当高速凸轮驱动气门座时就能带动气门向下行程获得较大的气门开度。
发动机可变气门技术探析

发动栅 可变 号门 技术搞析
云 南交通职 业技 术 学 院 叶升 强
[ 摘 要] 本 文介绍 了各 大型汽车公 司的技 术 系统 , Va l v e t r o n i c系统是 宝马汽车公 司的杰作 , 这 个系统能够使得发动机在 吸收新 鲜空
气的 时候更加 通畅 , 而且还 可以对这 个系统进行连续性 的微 型调整 。本文还提 出 了随着这种 可变的气 门技术 的 日趋成熟 于是逐 渐
被 高性能的发动机利用 , 这 样 就 能 逐 渐 提 高发 动 机 的 动 力性 和 燃料 的 经 济 性 , 逐 渐 降低 排 放 指 标 。
[ 关键词 ] 发 动机 可变气 门技 术 气 门正时技 术
0 . 引言
机 。
பைடு நூலகம்
依据环境 变化而变化 的技术 内容有很 多 , 比如说有可变气 门技术 、 可变进 气系统 、 可变增压 系统等等 。本文主要介 绍的是 在现代汽 车上 主要 应 用到 的可 变 气 门技 术 。 1 . 可 变 气 门 技术 在 早期 时 候 的 运 用 从 最近 的时代 来看 , V V T ( V a r i a b l e V a l v e T i m i n g ) 也 就是 发动机 的 可变 气 门正 时技术在现 代的轿车上 广泛应用 。提高进气 的充量 , 使 得 充 气量 的系数 提高 是发动机 可变气 门正 时技术 在轿 车上显 示 出的优 势, 发动机 的扭 矩可 以进 一步提高 , 同时还 可以提高发 动机的功率 , 汽 车 的发 动机还 可以借 助这可 变气 门正时 技术更 加 自由地变 换动力 模 式, 例 如停 车怠速等 , 这样也就 同时降低 了内燃机对空气 的污染 。最早 解 决这 个 问题 的是宝 马公 司和丰 田公 司 , 这两个 公 司推 出的 V A NO S 与V V T — i 技术 是他们 的 自豪之作 , 但 如果究其 根源的话 , V T E C 型 号的 发动 机是最早 解决发动机 可变气 门技 术的发 动机 , 是本 田公司在八 十 年代推 出的 , 这款 发动 机的表 现非常令人满意 。 首 先介 绍本 田公 司 的VT E C技 术 系统 , 就 是可变 气 门正时和 升程 电子 控制系统 。丰 田公 司在一 九八 九年 推出 V T E C系统技术作 为 自己 公 司的专有 技术 , 这项技术可 以控制 气门升程和气正时 , 气 门升程 和气 正 时可 以随 着发动机 的运转速度 、 负载荷度 和水温等 等运行 的参 数的 变化 而做出适 当的调整 , 使得发 动机 在低速行驶时可 以发 出大扭矩 , 在 高速行 驶 的时候发 出高功 率。V T E C系统 的发 动机用两 组不 同的气 门 驱动 凸轮 , 一组 是中低速度 用的 , 一组 是给高 速度 用 的, 这两组驱 动凸 轮可 以采用 电子控制系统 , 通过这 个系统 的 自动操作来 自动转换 驱动 凸轮 。轿车 中利用这个 系统 , 就可 以满足发动 机在 中低 速度运行 时和 高速 度运行时 对不 同配气 相位和对不 同进气量 的要求 , 使 得发动机 在 任何一 种速度运转 的状态 下保 持动力性 和经济性 及低排放 率的统一 , 保证运 行时 的最佳状态 。V T E C这项 技术 系统 的控制方 式是 由电子控 制单元 E U C 进行控 制 , E U C 接 受转 速 、 进气 压力 、 车速 和水温等等 发动 机传感器 的参 数 , 并对这些参数进行处 理 , 处理后再输 出相对应 的控制 信号 , 再利 用电磁阀门来调节摇臂 的活塞液压系统 , 这样来控制 发动机 根据 不 同的行 驶速度采用 不同 的凸轮 , 从而影 响进气 门的开放程度 和 开 放 时 间” 。 其次是 宝 马的 V AN O S 技 术系统 。这个 技术 系统 是可 以调整进 气 凸轮轴 和曲轴 的位 置的 , 使 得在不 同情 况下进气 凸轮轴 和曲轴的位 置 相对应 。宝 马公司第一次使用这项技术是 在一九九二年 的宝 马五 系列 的 搭 载 M五 十 发 动 机 上 。 现 在 宝 马推 出 了 VA N OS的 新 技 术 即 双 V A NO S , 双V AN O S 技 术调整 了排 气凸轮 轴的机构 , 就是进气 凸轮轴 的 操作是 根据发 动机 转速 和踏板位置来 确定的 , 当发动机 的转 速处 于最 低的时候 , 进气 门就会开启改善怠速质量 和增 加平 稳度 ; 当发动机处 于 中转速 度时 , 进 气门就会提前 开启来 增大扭矩并 且允许排 出的废气在 燃烧室 内再进行循 环利用从而可 以减少轿 车的耗油量和减少轿车 的废 气排放 量 ; 当发 动机运转速 度很高 的时候 , 进气 门就会再 次延迟开启 , 这样就能发挥 出更大 的功率 。 最 后是 丰 田 的 V V T — i 技 术 系统 。VV T — i 的 全称 是 Va r i a b l e Va l v e T i mi n g i n t e l l i g e n t , 翻 译 成 中文 就 是 智 能 可 变 配 气 正 时 , 这项技术系统是 丰 田特 有的并且在 世界技术上 领先 的发 动机技术 系统 , 可 以连续 的调 节气 门正 时 , 但是 不可 以调节 气门升程 。该技术 的工作原理 就是 当发 动机从低速 度迈 向高速度 的时候 , 电子计 算机就会 自动 的把机 油压人 进 气的 凸轮 轴 , 然后驱 动齿轮 内的小涡轮 , 在这样 的压力下 , 小涡轮和 齿 轮壳旋转 就会有一 定的角度 , 当凸轮轴 在六十度 范围 内往前 或者往 后旋转 时 , 就可 以改变进气 门开启的时间 , 从而达 到连续 调节气门正时 的 目的 。 2 . 二 十一 世 纪 的 可 变气 门 技 术 首先要 介绍 的是 丰 田的 V V T L — i 技术 , 这项技 术 的全 称是 V a r i a b l e Va l v e T i mi n g&L i t f I n t e l l i g e n t 。这 项技 术是 在原 来 V V T — i 技术 上 改进 的, 就 是 在 原 来 型 号 的 发 动 机 的 凸 轮 轴 上 增 加 了可 以 切 换 不 同 角 度 而 且 大小不一致 的凸轮 , 而且还 采用了摇臂 机制来决定 是否要 到最大角 或 者最小 角的凸轮 , 这样可 以做到连续 的改变发动机 的正时重 叠时间 和两阶段式的升程 。这项技 术与原来技术不 同的是现在 技术的摇臂里 是用 油压来决定每个 销移 动到哪里 , 现代 的VV T L — i 技术结合 了V VT — i 技 术的连续 式的可变 正时与重叠 角技术 , 这可 以说是 比较完美 的发动
双凸轮轴可变气门正时系统

双凸轮轴可变气门正时系统Double-VANOSDouble-VANOS:双凸轮轴可变气门正时系统。
Double-VANOS 是由 BMW 开发的双凸轮轴可变气门正时系统,这是宝马技术发展领域中 的又一项成就:Double-VANOS 双凸轮轴可变气门正时系统根据油门踏板和发动机转速控制 扭矩曲线, 进气和排气气门正时则根据凸轮轴上可控制的角度按照发动机的运行条件进行无 级的精准调节。
在低发动机转速时,移动凸轮轴的位置,使气门延时打开,提高怠速质量并改进功率输 出的平稳性。
在发动机转速增加时,气门提前打开:增强扭矩,降低油耗并减少排放。
高发 动机转速时,气门重新又延时打开,为全额功率输出提供条件。
Double-VANOS 双凸轮轴可变气门正时系统还控制循环返回进气歧管的废气量以增强燃 油经济性。
系统在发动机预热阶段使用一套专用参数以帮助三元催化转换器更快达到理想工 作温度并降低排放。
整个过程由车辆的汽油发动机电子控制系统(DME)控制。
双 VVT市面上的绝大部分气门正时系统都可以实现进气门正时在一定范围内的无级可调, 而一 部分发动机在排气门也配备了 VVT 系统,从而在进、排气门都实现了气门正时无级可调(也 就是 D-VVT,双 VVT 技术),进一步优化了燃烧效率。
传统的 VVT 技术通过合理的分配气门开启的时间确实可以有效提高发动机的效率和燃 油经济性,但是这项技术也有局限性和自身的瓶颈。
不过在此基础上,通过引入可变气门升 程技术可以弥补 VVT 的缺憾,从而使发动机的呼吸更为顺畅、自然。
我们都知道,发动机实质的动力表现是取决于单位时间内气缸的进气量。
前面说过,气 门正时代表了气门开启的时间,而气门升程则代表了气门开启的大小。
从原理上看,可变气 门正时技术也是通过改变进气量来改善动力表现的, 但是气门正时只能提前或者推迟气门开 启的时间, 并不能有效改善气缸内单位时间的进气量, 因此对于发动机动力性的帮助是有限 的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们想大家解析了关于汽车发动机可变气门正时技术,简单来说它是通过电脑控制发动机气门的开启时间,利用进气门与排气门不同的开启时间来控制汽车发动机的效率与经济性,但这种技术对于汽车发动机性能方面的提升却不大。
随着汽车行业的发展,发动机的性能如何已经成为一款车能否取得成功的关键,这也就促使各大汽车厂家的工程师们对发动机技术进行了进一步研究。
通过研究后,他们发现了可以弥补发动机可变气门正时技术不足的方法,而这也就是我们今天这节技术大讲堂要说的发动机可变气门升程技术。
众所周知,发动机的动力表现主要取决于单位时间内汽缸的进气量,上一节技术大讲堂我们说过,气门正时代表了气门开启的时间,而气门升程则代表的是气门开启的大小,从原理上看,可变气门正时技术也是通过改变进气量来改善动力表现的,但实际上气门正时则只能增加或者缩小气门开启时间,并不能有效改善汽缸内单位时间的进气量,从数学角度上看,气门正时是将分母和分子同时等比例放大,而这对于数字的扩大或缩小则没有任何改善,也正式因此对于可变气门正时技术队于发动机动力性的帮助并不大。
而当气门开启大小也可以实现可变调节的话,那么就可以针对不同的转速使用合适的气门开启大小,从而提升发动机在各个转速内的动力性能,这就是和可变气门正时技术相辅相承的可变气门升程技术。
正如我们在用皮管接水时,当我们将皮管口的面积变小后,从皮管中喷出的水压力将变大,水流出的力道也将不同,发动机可变气门升程技术利用的就是这种原理,让混合气的雾化更加的充分,燃烧也更完全。
目前市场上使用具有可变气门升程技术发动机的厂家共有三个,分别是本田(Vtec/i-Vtec)、日产(VVEL)和宝马(Valvetronic)。
本田可变气门升程技术:Vtec/i-Vtec本田是最早将可变气门升程技术应用到车载发动机上的厂商,而且不同于其它厂商先使用可变气门正时,后追加可变气门升程技术的做法,本田的工程师在研发项目之初就将这两种技术同步进行。
结构简单、设计巧妙是本田可变气门升程机构的特点。
不过虽然本田是最早使用这种技术的汽车厂家,但直到现在并没有太大的进步,依然停留在只有两段和三段可调的程度,而像宝马、日产和丰田的厂家虽然使用这套技术的时间要晚一些,但是现在他们已经开始使用连续可变气门升程技术。
目前,本田及讴歌目前在国内发售的车型共有SOHC及DOHC两种结构的发动机,它们虽然都配有VTEC或i-VTEC系统。
飞度、锋范以及思域搭载的都是本田的R系列发动机,采用的是SOHC单顶置凸轮轴结构,两个进气气门和两个排气气门均由一根凸轮轴驱动。
首先要说明的是目前大部分可变气门升程技术都被应用在进气气门端,本田的R系列也不例外。
上图中可以看到,两个进气气门摇臂中间还有一个特殊的摇臂,它对应的是凸轮轴上的一个高角度凸轮,而在发动机低转速时两个进气摇臂和这个特殊摇臂是分离的、互无关系,进气摇臂只由低角度凸轮驱动,因此进气气门打开的升程较小,这有助于提高低转速时的燃油经济性。
但当发动机达到一定转速时,由电子液压控制的连杆会将两个进气摇臂和那个特殊摇臂连接为一体,此时三个摇臂就会同时被高角度凸轮驱动,而气门升程也会随之加大,单位时间内的进气量更大,从而发动机动力更强。
除了R系列发动机外,国内本田的思铂睿、雅阁和CR-V的2.4L车型均搭载的是DOHC双顶置凸轮轴结构的K系列发动机,同样都装备了可变气门升程技术。
此外本田的VTEC系统可在DOHC双顶置凸轮轴发动机的进排气端均进行气门升程的调节,不过这功能并非所有本田DOHC发动机均有,只限定某些车型。
工作原理和R系列发动机的进气端完全相同,都是通过三根摇臂的链接与分离实现的,不过既然排气气门升程也可得到提升,就表示高转速下排气效果将更高,可以更默契的和提高效率的进气气门协作来增强发动机的动力输出。
日产可变气门升程技术:VVEL如果说本田是可变气门升程技术的先驱者的话,那么日产绝对可以说是这项技术的后来者,直至2007年末第四代G37的上市,日产才开始使用自己的可变气门升程技术VVEL。
它被首先应用到了日产的VQ系列发动机上,而之后VK系列发动机则成为了日产奇侠第二款使用可变气门升程技术的发动机。
不过可惜的是,目前为止日产在自己的低端车型发动机上还没有使用VVEL技术。
本田的VETC是利用不同的凸轮来实现不同转速下气门升程的改变,而日产则是在驱动气门运动的摇臂上做文章。
为了实现连续可变这个功能就必须研发出一种可无级改变工作状况的机构,日产的VVEL系统利用一个简单的螺杆和螺套达到了这个目的。
螺杆我们可以理解为日常生活中常见的螺栓,而螺套就是拧在螺栓上的螺母,螺母随着转动就可沿着螺栓上的螺纹上下运动,换个角度来看这就是一种无级调节方式。
日产的工程师就是将一组螺杆(螺栓)和螺套(螺母)加到了发动机的气门摇臂上来使气门升程连续(无级)可变的。
日产的这套VVEL连续可变气门升程系统在一定范围内(这个范围的大小由螺杆的长度和输出凸轮的角度来决定)可实现无级连续调节,针对不同的发动机转速都有相应的气门升程,这种形式无疑更加灵活自主,不过目前VVEL系统只应用在进气端,因此还存在进化的余地。
宝马可变气门升程技术:Valvetronic与日产的VVEL可变气门升程技术相比,宝马的Valvetronic可变气门升程技术就要让我们熟悉的多,这个宝马在2001年发布的可变气门升程技术现在被广泛的应用到宝马旗下车型上。
和日产的VVEL一样,宝马的Valvetronic也是目前少数可以实现连续可变的气门升程技术之一。
宝马的Valvetronic系统同样是依靠改变摇臂结构来控制气门升程。
传统的发动机大多都是利用凸轮轴上的凸轮挤压摇臂带动气门挺杆来使气门上下运动,而宝马的工程师在凸轮轴与传统摇臂间加装了一根偏心凸轮轴,利用偏心凸轮轴上的凸轮位置的改变来实现气门升程的改变。
汽修资料/日产的VVEL的作用范围取决于螺杆长度,而宝马的Valvetronic的气门升程范围则由偏心凸轮的角度及高度而定,据官方介绍,这套系统可以将气门升程最大增加10mm,这对高转速下增大进气量是很有帮助的。
不过宝马的Valvetronic和VVEL一样,目前也只应用在发动机的进气端,因此研发出更强大、更轻巧、可以用于发动机排气端的新型Valvetronic系统也许正是宝马现在在做的事情。
总结:通过介绍我们已经详细的了解了发动机可变气门正时/升程的基本原理,可变气门正时的高效性和可变气门升程的动力性都是它们典型的特点。
随着汽车技术的发展,目前可变气门正时/升程技术已经不再是一个新鲜的技术了,它们除了被应用在进气端外,甚至在部分品牌车型的排气端上也已经开始使用这两种技术。
而像菲亚特、奥迪、保时捷、丰田、三菱以及斯巴鲁等厂家也开始在自己的车辆上使用可变气门正时/升程技术,但我更希望看到的是随着中国汽车市场的扩大,自主品牌技术的逐渐提升,这两项已经不算新的发动机技术可以早日应用到自主品牌发动机上。
大家发表的互动观点(3人发表)我们想大家解析了关于汽车发动机可变气门正时技术,简单来说它是通过电脑控制发动机气门的开启时间,利用进气门与排气门不同的开启时间来控制汽车发动机的效率与经济性,但这种技术对于汽车发动机性能方面的提升却不大。
随着汽车行业的发展,发动机的性能如何已经成为一款车能否取得成功的关键,这也就促使各大汽车厂家的工程师们对发动机技术进行了进一步研究。
通过研究后,他们发现了可以弥补发动机可变气门正时技术不足的方法,而这也就是我们今天这节技术大讲堂要说的发动机可变气门升程技术。
众所周知,发动机的动力表现主要取决于单位时间内汽缸的进气量,上一节技术大讲堂我们说过,气门正时代表了气门开启的时间,而气门升程则代表的是气门开启的大小,从原理上看,可变气门正时技术也是通过改变进气量来改善动力表现的,但实际上气门正时则只能增加或者缩小气门开启时间,并不能有效改善汽缸内单位时间的进气量,从数学角度上看,气门正时是将分母和分子同时等比例放大,而这对于数字的扩大或缩小则没有任何改善,也正式因此对于可变气门正时技术队于发动机动力性的帮助并不大。
而当气门开启大小也可以实现可变调节的话,那么就可以针对不同的转速使用合适的气门开启大小,从而提升发动机在各个转速内的动力性能,这就是和可变气门正时技术相辅相承的可变气门升程技术。
正如我们在用皮管接水时,当我们将皮管口的面积变小后,从皮管中喷出的水压力将变大,水流出的力道也将不同,发动机可变气门升程技术利用的就是这种原理,让混合气的雾化更加的充分,燃烧也更完全。
目前市场上使用具有可变气门升程技术发动机的厂家共有三个,分别是本田(Vtec/i-Vtec)、日产(VVEL)和宝马(Valvetronic)。
本田可变气门升程技术:Vtec/i-Vtec本田是最早将可变气门升程技术应用到车载发动机上的厂商,而且不同于其它厂商先使用可变气门正时,后追加可变气门升程技术的做法,本田的工程师在研发项目之初就将这两种技术同步进行。
结构简单、设计巧妙是本田可变气门升程机构的特点。
不过虽然本田是最早使用这种技术的汽车厂家,但直到现在并没有太大的进步,依然停留在只有两段和三段可调的程度,而像宝马、日产和丰田的厂家虽然使用这套技术的时间要晚一些,但是现在他们已经开始使用连续可变气门升程技术。
目前,本田及讴歌目前在国内发售的车型共有SOHC及DOHC两种结构的发动机,它们虽然都配有VTEC或i-VTEC系统。
飞度、锋范以及思域搭载的都是本田的R系列发动机,采用的是SOHC单顶置凸轮轴结构,两个进气气门和两个排气气门均由一根凸轮轴驱动。
首先要说明的是目前大部分可变气门升程技术都被应用在进气气门端,本田的R系列也不例外。
从上图中可以看到,两个进气气门摇臂中间还有一个特殊的摇臂,它对应的是凸轮轴上的一个高角度凸轮,而在发动机低转速时两个进气摇臂和这个特殊摇臂是分离的、互无关系,进气摇臂只由低角度凸轮驱动,因此进气气门打开的升程较小,这有助于提高低转速时的燃油经济性。
但当发动机达到一定转速时,由电子液压控制的连杆会将两个进气摇臂和那个特殊摇臂连接为一体,此时三个摇臂就会同时被高角度凸轮驱动,而气门升程也会随之加大,单位时间内的进气量更大,从而发动机动力更强。
除了R系列发动机外,国内本田的思铂睿、雅阁和CR-V的2.4L车型均搭载的是DOHC双顶置凸轮轴结构的K系列发动机,同样都装备了可变气门升程技术。
此外本田的VTEC系统可在DOHC双顶置凸轮轴发动机的进排气端均进行气门升程的调节,不过这功能并非所有本田DOHC发动机均有,只限定某些车型。
工作原理和R系列发动机的进气端完全相同,都是通过三根摇臂的链接与分离实现的,不过既然排气气门升程也可得到提升,就表示高转速下排气效果将更高,可以更默契的和提高效率的进气气门协作来增强发动机的动力输出。