1.圆的基本性质
圆的性质及相关定理

圆的性质及相关定理圆是几何学中的基本图形之一,它具有许多独特的性质和定理。
在本文中,我们将探讨圆的性质以及与之相关的一些定理。
一、圆的定义与基本性质圆可以被定义为平面上所有到一个给定点距离相等的点的集合。
这个给定点被称为圆心,而到圆心的距离被称为半径。
圆的基本性质包括以下几点:1. 圆的直径是通过圆心的一条线段,它的两个端点都在圆上。
直径的长度是半径长度的两倍。
2. 圆的周长是圆上任意两点之间的弧长,它等于圆的直径乘以π(pi)。
周长也可以被称为圆的周长。
3. 圆的面积是圆内部所有点的集合。
圆的面积等于半径的平方乘以π。
二、圆的相关定理在圆的研究中,有一些重要的定理被广泛应用。
下面我们将介绍其中几个。
1. 弧长定理弧长定理指出,在同一个圆上,两个弧所对应的圆心角相等时,它们的弧长也相等。
这个定理可以用来求解弧长,也可以用来证明一些与圆有关的性质。
2. 弧度制与角度制弧度制是一种用弧长来度量角度大小的方法。
在弧度制中,一个圆的周长被定义为2π弧度。
而角度制是我们常用的度量角度大小的方法。
两者之间可以通过一定的换算关系进行转换。
3. 切线定理切线定理是指与圆相切的直线与半径所构成的角是直角。
这个定理在解决与圆相关的几何问题时非常有用,可以帮助我们确定切线的位置和方向。
4. 正切定理正切定理指出,与圆相切的半径与切线所构成的角的正切值等于切线上相应弧所对应的角的正切值。
这个定理可以用来求解与切线相关的角度问题。
5. 弦切角定理弦切角定理是指,当一个弦与切线相交时,切线与弦所夹的角等于弦上所对应的弧所对应的角的一半。
这个定理可以用来求解与弦和切线相关的角度问题。
三、圆的应用圆的性质和定理在实际生活中有着广泛的应用。
以下列举几个例子:1. 圆的运动轨迹当一个点以固定的速度绕着另一个点旋转时,它的轨迹是一个圆。
这个性质被广泛应用在天文学中,用来描述行星、卫星等天体的运动。
2. 圆形建筑与设计圆形建筑具有独特的美学效果和结构稳定性。
圆的性质与相关定理

圆的性质与相关定理圆是几何学中的一种基本图形,它不仅在数学中有着重要的地位,也在日常生活中随处可见。
圆的性质和相关定理为我们理解和应用圆提供了基础。
本文将从多个角度探讨圆的性质和相关定理。
一、圆的基本性质圆是由一组等距离于圆心的点组成的。
圆心是圆的中心点,所有的点到圆心的距离都相等,这一性质被称为半径。
半径的长度决定了圆的大小。
圆上的任意一点到圆心的距离称为半径。
圆上的任意两点之间的距离称为弦,而弦的长度决定了圆的直径。
直径是圆上最长的弦,它的长度等于两倍的半径。
二、圆的周长和面积圆的周长是指圆的边界长度,也被称为圆周。
根据圆周的性质,我们可以得出圆的周长公式:C = 2πr,其中C表示圆的周长,r表示圆的半径。
这个公式告诉我们,圆的周长与其半径成正比。
圆的面积是指圆所占据的平面的大小。
根据圆的性质,我们可以得出圆的面积公式:A = πr²,其中A表示圆的面积,r表示圆的半径。
这个公式告诉我们,圆的面积与其半径的平方成正比。
三、圆的切线和切点切线是与圆相切的直线。
根据圆的性质,切线与半径垂直相交。
圆上的切点是切线与圆相交的点。
根据圆的性质,切点与半径在切点处的切线垂直相交。
四、圆的相交和相切当两个圆相交时,它们的圆心之间的距离小于两个圆的半径之和,但大于两个圆的半径之差。
当两个圆的圆心之间的距离等于两个圆的半径之和时,它们相切于一个点。
当两个圆的圆心之间的距离大于两个圆的半径之和时,它们不相交。
五、圆的切圆和切线当一个圆与另一个圆相切时,它们的圆心之间的距离等于两个圆的半径之和。
在这种情况下,我们可以通过连接两个圆心,并将连接线延长到圆的外部,找到两个圆的切线。
这两条切线与连接线垂直相交。
六、圆的角度和弧度圆的角度是指圆心所对应的弧所占据的比例。
圆的角度被度量为360度。
圆的弧度是指圆心所对应的弧所占据的长度比例。
圆的弧度被度量为2π弧度。
根据圆的性质,我们可以得出角度和弧度之间的转换关系:1弧度=180/π度。
圆的基本性质汇总

圆的基本性质汇总圆是平面上的一种特殊几何图形,具有许多基本性质。
以下是圆的一些基本性质的汇总。
1.定义性质:圆是由平面上每个点到一个固定点的距离相等的点的集合。
这个固定点被称为圆心,而相等的距离被称为半径。
2.弧:圆上的两个点之间的连线称为圆弧。
圆弧的长度等于圆心角的度数与圆的半径之积,也可以通过欧几里得的原理求解。
3.圆心角:圆心角是圆上的两条射线所夹的角,其中包括圆心的角。
圆心角的度数可以通过弧度公式求解,也可以用度数来表示。
一个圆的完整圆心角为360度或2π弧度。
4.圆上的点:圆上的任何点与圆心的距离等于圆的半径。
5.弦:两点在圆上的连线称为弦,可以是圆的直径(通过圆心的直径是对称的),也可以是其他长度小于直径的弦。
6.切线:切线是从圆上的一个点到圆的切点的直线。
7.弦弧定理:如果两条弦在圆的内部相交,那么它们所对应的弧是相等的。
8.切线定理:从一个点到圆的切点的切线是与半径垂直的。
如果两条切线相交,那么相交的角是外角,并且等于它们所对应的弧的一半。
9.弧长:弧长是圆上的一段弧的长度,可以通过圆心角的度数和圆的半径计算得到。
10.反弧:如果圆上的一段弧的两个端点相交,那么这段弧与它们所对应的圆心角称为反弧。
11.弓形:弓形是由一段弧和连接弧两个端点的线段组成的图形。
12.圆与直线的关系:一个圆与一条直线可以有三种关系。
如果圆和直线没有交点,那么它们是相离的;如果圆和直线有一个交点,那么它们是相切的;如果直线穿过圆,那么它们是相交的。
13.圆的面积:圆的面积公式为πr²,其中r是圆的半径。
这个公式可以通过将圆划分为无数个小扇形来计算。
14.圆周长:圆的周长等于直径乘以π,或者等于2πr,其中r是圆的半径。
15.圆的切线长度:如果从外部一点到圆的切点的切线与半径相交,那么切线长度是切点到圆心的距离的平方根乘以2以上是圆的一些基本性质的汇总。
理解这些性质对于解决与圆相关的数学问题非常重要,也有助于我们更好地理解三角学、几何学和数学中的其他概念和原理。
圆的性质及相关定理

圆的性质及相关定理圆是几何学中的一个基本概念,是由平面上所有距离等于定值的点构成的图形。
在这篇文章中,我们将探讨圆的性质及相关定理,帮助读者更好地理解和应用圆的知识。
一、圆的基本性质1. 圆心和半径:每个圆都有一个圆心和一个半径。
圆心是圆上所有点的中心位置,通常用字母O表示。
半径是从圆心到圆上的任意点的距离,通常用字母r表示。
2. 直径:直径是通过圆心的任意两点间的线段。
直径的长度等于半径的两倍。
3. 弧:圆上两点之间的弧是连接这两点的圆上的一部分。
圆上的弧可以根据其长度分为弧长和弧度。
4. 弦:弦是连接圆上任意两点的线段。
直径是最长的弦。
5. 弧度和角度:弧度是一个与圆的半径相关的度量单位,用符号rad表示。
角度是以度为单位的度量,用符号°表示。
二、圆的定理1. 切线定理:从圆外一点引一条切线,切线与半径的连线垂直。
2. 切线与弦定理:切线和弦的交点处的角等于从该点到弦的两个割线所夹的弧对应的角。
3. 弧中角定理:在同一个圆上,弧所对的圆心角相等,而弧所对的弦所夹的角则相等。
4. 圆心角定理:在同一个圆上,圆心角是其所对弧的两倍。
5. 弧长定理:同样大小的圆心角所对应的弧长相等。
6. 切割圆定理:如果有两个弧相交于圆心,它们所对的圆心角互补(和为180°)。
三、应用示例1. 计算圆的面积:圆的面积公式为A = πr²,其中A表示面积,π是一个近似值,约等于3.14,r为半径。
2. 计算圆的周长:圆的周长公式为C = 2πr,其中C表示周长,π是一个近似值,约等于3.14,r为半径。
3. 判断点是否在圆内:计算点到圆心的距离,如果小于半径,则点在圆内。
4. 判断两个圆是否相交:计算两个圆心之间的距离,如果小于两个半径之和,则两个圆相交。
总结:本文介绍了圆的基本性质和相关定理。
通过学习圆的性质,我们可以更好地理解和应用圆的知识,解决与圆相关的几何问题。
希望本文对读者有所帮助,并在几何学学习中起到指导作用。
圆的基础知识

圆的基础知识圆是几何学中的重要概念之一,它拥有许多独特的性质和特征。
本文将围绕圆的基础知识展开,介绍圆的定义、性质、公式以及与圆相关的一些重要概念。
一、圆的定义圆是由平面上到一个固定点的距离等于该固定距离的所有点组成的集合。
这个固定点叫做圆心,固定距离称为半径。
圆可以用圆心和半径来唯一确定。
二、圆的性质1. 圆的直径是圆上任意两点之间的最长距离,它等于半径的两倍。
2. 圆的周长是圆周上的任意一点到圆心的距离的累加,它等于2π乘以半径,其中π是一个无理数,约等于3.14159。
3. 圆的面积是圆内所有点与圆心的距离的累加,它等于π乘以半径的平方。
4. 圆的任意弧长与圆心的夹角成正比,即弧长等于圆周长乘以弧所对的圆心角的度数除以360度。
5. 圆上的任意两条弦所对的圆心角相等。
三、圆的公式1. 圆的周长公式:C = 2πr,其中C代表周长,r代表半径。
2. 圆的面积公式:A = πr²,其中A代表面积,r代表半径。
这两个公式是圆的基本公式,可以用来计算圆的周长和面积。
四、与圆相关的重要概念1. 弧:圆上两点之间的一段弧。
弧可以通过弧长和圆心角来描述。
2. 圆心角:以圆心为顶点的角,在圆周上取两点,以圆心为中心所夹的角度。
3. 弦:圆上连接两点的线段。
4. 切线:与圆只有一个交点的直线。
5. 弦切角:一条弦所对的圆心角与该弦切线所对的圆心角的夹角。
圆作为几何学中的重要概念之一,广泛应用于数学、物理、工程等领域。
在实际应用中,我们可以利用圆的性质和公式解决各种问题,比如计算圆的周长和面积、求解弦长、切线问题等。
同时,圆也是许多其他几何形状的基础,比如圆柱、圆锥、圆环等。
圆是由平面上到一个固定点的距离等于该固定距离的所有点组成的集合。
圆具有许多独特的性质和特征,包括直径、周长、面积等。
圆的公式可以用来计算周长和面积。
与圆相关的重要概念包括弧、圆心角、弦、切线等。
圆在数学和实际应用中有着广泛的应用和重要性。
圆的基本性质

圆的基本性质圆是几何学中最基本的图形之一,具有许多独特的性质和特征。
在本文中,我将介绍圆的基本性质,包括圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等。
通过了解这些基本性质,我们可以更好地理解和运用圆形。
1. 圆的定义圆是由一条与一个固定点距离相等的点构成的集合。
这个固定点被称为圆心,圆心到圆上的任意一点的距离被称为半径。
圆内部的点到圆心的距离都小于半径,而圆外部的点到圆心的距离都大于半径。
2. 圆的半径和直径圆的半径是从圆心到圆上任意一点的距离。
圆的直径是通过圆心,并且两个端点都在圆上的线段。
圆的直径是半径的两倍,也是圆的最长线段。
3. 圆心和弧圆心是圆的中心点。
圆上的弧是由圆上的两个点以及它们之间的弧长所确定的。
圆的弧可以被度量为角度,弧度或弧长。
4. 圆的面积圆的面积是圆内部所包围的空间。
圆的面积公式为:面积= π * r²,其中π(pi)是一个无理数,约等于3.14159,r是圆的半径。
这个公式表明,圆的面积正比于半径的平方。
5. 圆的周长圆的周长是圆上所有点之间的距离总和。
圆的周长也被称为圆周长或圆的周长。
圆的周长公式为:周长= 2 * π * r,其中2πr是一个圆的直径。
6. 圆的切线在圆上的每个点上都有一个与切线相切的方向。
切线是与圆只有一个交点的直线,且与圆的切点处于圆上的切线角度为90度。
7. 圆的弦圆上的任意两个点之间的线段被称为弦。
最长的弦是圆的直径。
8. 圆的弧度弧度是一种用于度量圆上弧长的单位。
一个圆的弧长等于半径的弧度数乘以圆心角的弧度。
总结:在几何学中,圆拥有许多独特的性质和特征。
通过了解圆的定义、圆的半径和直径、圆心和弧、圆的面积和周长等基本性质,我们可以更好地理解和应用圆形。
圆在许多领域中都有广泛的应用,如工程、建筑、数学等。
掌握圆的基本性质对于解决与圆相关的问题非常重要。
通过学习和应用这些性质,我们可以更好地理解圆,并在实际生活和学习中运用它们。
圆的基本概念与性质

圆的基本概念与性质圆是几何学中最基本的图形之一,它具有独特的形状和性质。
本文将对圆的基本概念和一些重要性质进行详细介绍。
一、圆的定义圆是由平面上距离一个固定点一定距离的所有点组成的集合。
这个固定点被称为圆心,而这个距离被称为半径。
二、圆的常用符号在几何学中,圆常用符号“O”表示圆心,用字母“r”表示半径。
因此,一个圆可以用符号“O(r)”表示。
三、圆的性质1. 圆的对称性由于圆的定义是以一个固定点为中心,所有距离这个点相等的点的集合,因此圆具有天然的对称性。
任意一条直径将圆分成两个等边的半圆,半圆上的所有点与圆心的距离相等。
2. 圆的直径、半径和弦在圆中,直径是通过圆心并且两端点都在圆上的线段;半径是从圆心到圆上的任意一点的线段,它等于圆的半径;弦是圆上连接两个点的线段,不经过圆心。
3. 圆的周长和面积圆的周长定义为圆上的一条完整弧所对应的长度,可以用公式C =2πr来计算,其中C表示周长,r表示半径。
圆的面积定义为圆内所有点所组成的区域的大小,可以用公式A = πr²来计算,其中A表示面积,r表示半径。
4. 圆的切线和法线圆上的切线是与圆相切的直线,它只与圆在切点相交。
切线与半径构成的夹角为90度。
法线是与切线垂直的直线,它通过切点并与切线垂直相交。
5. 圆的弧度制和度数制圆的弧度制是一种用弧长比半径的面度来度量角度的方式。
一个圆的弧长等于半径的弧度数。
度数制是人们常见的度量角度的方式,一个圆被等分为360度,1度等于圆的1/360。
四、圆的相关定理和应用1. 圆上的三角形圆上的三角形是指三个顶点都在圆上的三角形。
它有很多特殊性质,如圆上的两条弧所对应的角相等,半径与割线所包围的弧所对应的角相等等。
2. 切线定理和切割定理切线定理指的是切线与半径的关系,即切线的平方等于切点处外切圆的半径与切点到圆心的距离之积。
切割定理指的是弦分割定理和切线分割定理,它们描述了切线和弦所分割的弧长和线段之间的关系。
数学中的圆的性质

数学中的圆的性质数学中的圆是一个非常重要的概念,它具有许多独特的性质和特征。
本文将深入探讨圆的性质,并通过具体的例子加以说明。
1. 圆的定义与基本性质圆由平面上所有到一个固定点的距离相等的点构成。
这个固定点称为圆心,到圆心的距离称为半径。
圆的基本性质包括:(1)圆的直径是任意两点在圆上的距离中最大的。
(2)圆的半径相等。
(3)圆的周长是圆心到圆上一点的距离的两倍,即2πr(其中r为半径)。
(4)圆的面积是πr²。
例如,考虑一个半径为5个单位的圆。
根据定义,圆上的任意一点到圆心的距离都是5个单位。
圆的半径也是5个单位,周长为10π个单位,面积为25π个单位。
2. 圆与其他几何图形的关系圆与其他几何图形之间存在着密切的关系,例如直线、正方形和三角形。
(1)圆与直线的关系:直线可以与圆相交于两个点、一个点或没有交点。
当直线与圆相交于两个点时,这条直线被称为切线。
(2)圆与正方形的关系:正方形的四个顶点可以构成一个圆。
这个圆被称为内切圆,也就是正方形内部与正方形的四条边都相切的圆。
(3)圆与三角形的关系:三角形中可以有一个外接圆,即一个圆与三角形的三条边都相切。
此外,三角形也可以有一个内切圆,即一个圆与三角形的三条边的延长线相切。
3. 圆的重要定理在数学中,圆的性质可以由一系列重要的定理来描述。
以下是其中的两个:(1)圆的切线定理:如果一个直线与圆相切于圆上一点P,那么这条切线垂直于通过点P的半径。
(2)圆的弦线定理:如果一条弦通过圆的中心,那么它一定是圆的直径。
这些定理对于解决与圆相关的问题非常有用。
例如,在旋转几何中经常使用到切线定理。
4. 圆的应用圆的性质在实际生活中有许多应用。
以下是一些常见的例子:(1)建筑设计:建筑设计中常常需要使用圆形结构,例如圆形天井、圆形拱门等。
圆的性质可以帮助工程师和设计师在设计过程中合理地计算和安排结构的大小和位置。
(2)钟表:钟表的表盘通常是圆形的,钟表上的刻度也是按照圆的性质设计的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(分类)第22讲 圆的基本性质 知识点1 圆的有关概念及性质 知识点2 垂径定理及其推论 知识点3 圆心角、弧、弦之间的关系知识点4 圆周角定理及推论 知识点5 圆内接四边形的性质知识点1 圆的有关概念及性质 知识点2 垂径定理及其推论(2018襄阳)如图,点A ,B ,C ,D 都在半径为2的⊙O 上,若OA ⊥BC , ∠CDA =30°,则弦BC 的长为( D )A .4B .CD .(2018枣庄)8.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,6,2==BP AP ,030=∠APC ,则CD 的长为( C )A .15B .52C .152D .8(2018衢州)如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( D )A .3cmB .2.5cm D(2018广州)7.如图4,AB 是圆O 的弦,OC ⊥AB,交圆O 于点C ,连接OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( D )A. 40°B. 50°C. 70°D. 80°(2018威海)10.如图,O ☉的半径为5,AB 为弦,点C 为AB 的中点,若30ABC =∠°,则弦AB 的长为( D )A.12B.5 D.(2018•自贡)如图,若△ABC 内接于半径为R 的⊙O ,且∠A=60°,连接OB 、OC ,则边BC 的长为( D )A .B .C .D .(2018武汉)10.如图,在⊙O 中,点C 在优弧AB ⌒上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( D ) A .32B .23C .235 D .265(2018安顺)9.已知O 的直径10CD cm =,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( C )A .B .C .或D .或(2018遂宁)如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若,则BE 的长是(B )A 、5B 、6C 、7D 、8(2018张家界)6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,cm CD cm OC 8,5==,则=AE ( A ) A cm 8 B cm 5 C cm 3 D cm 2(2018毕节)19.如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E,∠ACE 的度数为__30°____.(2018龙东地区)答案5(2018玉林)(2018嘉兴)14.如图,量角器的O 度刻度线为AB .将一矩形直尺与量角器部分重叠、使直尺一边与量角器相切于点C ,直尺另一边交量角器于点D A ,,量得cm AD 10=,点D 在量角器上的读数为︒60.则该直尺的宽度为(2018绍兴、义乌)13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB =∠°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了_______15_____步(假设1步为0.5米,结果保留整数).(1.732,π取3.142)(2018宜宾)15.如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E 且DE 交AC 于点F , DB 交AC 于点G ,若EFAE =34, 则CGGB =5(2018孝感)答案:2或14(2018·金华/丽水).如图1是小明制作的一副弓箭, 点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm.沿AD 方向拉弓的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1E O时,有AD 1=30cm, ∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 10-510 cm.【解答】(1)如图2,连结B 1C 1 , B 1C 1与AD 1相交于点E ,∵D 1是弓弦B 1C 1的中点, ∴AD 1=B 1D 1=C 1D 1=30cm ,由三点确定一个圆可知,D 1是弓臂B 1AC 1的圆心, ∵点A 是弓臂B 1AC 1的中点,∴∠B 1D 1D=,B 1E=C 1E ,AD 1⊥B 1C 1 ,在Rt △B 1D 1E 中,B 1E= cm ,则 B 1C 1=2B 1E=30 cm 。
故答案为:30( 2 )如图2,连结B 2C 2 , B 2C 2与AD 1相交于点E 1 ,∵使弓臂B 2AC 2为半圆, ∴E 1是弓臂B 2AC 2的圆心, ∵弓臂B 2AC 2长不变,∴ ,解得cm,在Rt △ 中,由勾股定理可得cm则 cm即 cm故答案为:(2018舟山)(2018扬州)15.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB(2018巴中)17. 如图7所示,O 的两弦AB 、CD 交于点P ,连接AC 、BD ,得:16:9A C P D B PS S ∆∆=,则:AC BD .(2018海南)答案:(2,6)知识点3 圆心角、弧、弦之间的关系(2018凉山州)A(2018咸宁)B知识点4 圆周角定理及推论 (2018柳州)(2018·聊城)7.如图,O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若60A ∠=,85ADC ∠=,则C ∠的度数是( D )A .25B .27.5C .30D .35 (2018赤峰)(2018陕西)9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°OBC(2018青岛)5.如图,点A B C D 、、、在O 上,140AOC ∠=︒,点B 是AC 的中点,则D ∠的度数是( D )A .70︒B .55︒C .35.5︒D .35︒(2018白银、武威、张掖)9.如图,A 过点(0,0)O ,C ,(0,1)D ,点B 是x 轴下方A 上的一点,连接BO ,BD ,则OBD ∠的度数是( B )A .15B .30C .45D .60(2018随州)60°(2018菏泽)6.如图,在O 中,OC AB ⊥,32ADC ∠=,则OBA ∠的度数是( D )A .64B .58C .32D .26(2018遵义)12.如图,四边形 ABCD 中,AD//BC ,∠ABC=90°,AB=5,BC=10,连接 AC 、BD ,以 BD 为直径的圆交 AC 于点 E.若 DE=3,则 AD 的长为( D ) A.5 B.4 C.3√5D.2√(吉林省卷)答案:29(2018·广东省卷)11.同圆中,已知AB ⌒所对的圆心角是100o ,则AB ⌒所对的圆周角是______o .(2018·黄冈)11.如图,ABC △内接于O ,AB 为O 的直径,60CAB ∠=,弦AD 平分CAB ∠,若6AD =,则AC =.(2018·甘肃)(2018杭州)14.如图,AB 是O 的直径,点C 是半径OA 的中点,过点C 作DE AB ⊥,交O 于D 、E 两点,过点D 作直径DF ,连结AF ,则DFA ∠= 30° .(2018·陕西)(2018·南充)5.如图,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则B ∠的度数是( A )A .58B .60C .64D .68(2018衢州)如图,点A ,B ,C 在⊙O 上,∠ACB=35°,则∠AOB 的度数是(B )A .75°B .70°C.65°D .35°(2018·泰安)14. 如图,是的外接圆,,,则的直径..为__________.(2018·无锡)16、如图,点A 、B 、C 都在圆O 上,OC ⊥OB ,点A 在劣弧⌒BC 上,且OA=AB ,则∠ABC= 15° .(2018·盐城)7.如图,AB 为O 的直径,CD 是O 的弦,35ADC ∠=,则CAB ∠的度数为( C )A .35B .45C .55D .65(2018南通)15.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC =3,AB =5,OD ⊥BC 于点D ,则OD的长为2 .知识点5 圆内接四边形的性质(2018通辽)答案:D(2018济宁)(2018曲靖)n °(2018铜仁)(2018北京)12. 如图,点A ,B ,C ,D 在⊙O 上,D C B C=,︒=∠30CAD ,︒=∠50ACD ,则=∠ADB 70 。
(2018株洲)16、如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM = 。
第16题图(2018威海)16.,在扇形CAB 中,CD AB ⊥,垂足为D ,E ☉是ACD △的内切圆,连接AE ,BE ,则AEB ∠的度数为135°.(2018邵阳)(2018淮安)8.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是( C )A.70°B.80°C.110°D.140°(2018苏州)答案:D(2018烟台)答案:C。