多项式乘法基础练习(1)

合集下载

七年级数学上册综合算式专项练习题多项式的乘法练习

七年级数学上册综合算式专项练习题多项式的乘法练习

七年级数学上册综合算式专项练习题多项式的乘法练习多项式的乘法是数学中非常重要的一个概念。

在七年级数学上册中,我们学习了多项式的加法和减法,现在将进一步学习多项式的乘法。

本篇文章将为大家提供综合算式专项练习题,帮助大家巩固多项式的乘法运算技巧。

1. 将下列多项式相乘(1) $(3x+2)(x-4)$解析:使用分配律,将 $3x$ 乘以 $x-4$,再将 $2$ 乘以 $x-4$,最后将两个结果相加。

解答:$3x \cdot x + 3x \cdot (-4) + 2 \cdot x + 2 \cdot (-4) = 3x^2 - 12x + 2x - 8 = 3x^2 - 10x - 8$(2) $(2x-5)(x^2+3x-1)$解析:同样使用分配律,将 $2x$ 乘以 $x^2+3x-1$,再将 $-5$ 乘以$x^2+3x-1$,最后将两个结果相加。

解答:$2x \cdot x^2 + 2x \cdot 3x + 2x \cdot (-1) - 5 \cdot x^2 - 5 \cdot3x - 5 \cdot (-1) = 2x^3 + 6x^2 + (-2x) - 5x^2 - 15x + 5 = 2x^3 + x^2 - 17x+ 5$2. 将下列多项式相乘(1) $(4x-3)^2$解析:这个乘法形式实际上是一个平方的形式,即 $(a-b)^2 = a^2 - 2ab + b^2$。

解答:将 $4x-3$ 视为 $a$,则 $(4x-3)^2 = (4x)^2 - 2(4x)(-3) + (-3)^2 = 16x^2 + 24x + 9$(2) $(2x+1)(2x-1)$解析:这个乘法形式实际上是一个差的形式,即 $(a-b)(a+b) = a^2 - b^2$。

解答:$(2x)^2 - (1)^2 = 4x^2 - 1$3. 将下列多项式相乘(1) $(a-2)(a+2)$解析:这个乘法形式同样是一个差的形式。

多项式与多项式的乘法

多项式与多项式的乘法
(a+b)(m+n)=am+an+bm+bn
实质上是转化为单项式×多项式 的运算
不要漏乘;正确确定各符号;结 果要最简
(x-1)2在一般情况下不等于x2-12.
[义务教育教科书]( R J ) 八 上 数 学 课 件
第十四章 整式的乘法与因式分解
14.1.4 整式的乘法
第3课时 整式的除法
导入新课
例2 已知am=12,an=2,a=3,求am-n-1的值. 解:∵am=12,an=2,a=3, ∴am-n-1=am÷an÷a=12÷2÷3=2.
方法总结:解此题的关键是逆用同底数幂的除法, 对am-n-1进行变形,再代入数值进行计算.
解:去括号,得40x-8x2=34-8x2+6x, 移项,得40x-6x=34, 合并同类项,得34x=34, 解得 x=1.
拓展提升
8.某同学在计算一个多项式乘以-3x2时,算成了加
上-3x2,得到的答案是x2-2x+1,那么正确
的计算结果是多少? 解:设这个多项式为A,则
A+(-3x2)=x2-2x+1, ∴A=4x2-2x+1.
am ÷an=am-n
验证:因为am-n ·an=am-n+n=am,所以am ÷an=am-n.
知识要点 同底数幂的除法
一般地,我们有
am ÷an=am-n (a ≠0,m,n都是正整数,且m>n)
即 同底数幂相除,底数不变,指数相减.
想一想:am÷am=? (a≠0) 答:am÷am=1,根据同底数幂的除法法则可得am÷am=a0.
3.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b
满足( C )

七年级数学下册 2.1.4 多项式的乘法练习 (新版)湘教版

七年级数学下册 2.1.4 多项式的乘法练习 (新版)湘教版

多项式的乘法第1课时单项式与多项式相乘要点感知单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即:m(a+b+c)=__________.预习练习填空:(1)m(a+b-c)=__________;(2)x(-5x-2y+1)=__________;(3)2x(3x2-4x+1)=2x·3x2-2x·4x+2x·1=__________.知识点1 单项式乘以多项式1.下列说法正确的是( )A.单项式乘以多项式的积可能是一个多项式,也可能是单项式B.单项式乘以多项式的积仍是一个单项式C.单项式乘以多项式的结果的项数与原多项式的项数相同D.单项式乘以多项式的结果的项数与原多项式的项数不同2.计算-3x2(4x-3)的结果是( )A.-12x3+9x2B.-12x3-9x2C.-12x2+9x2D.-12x2-9x23.下列计算正确的是( )A.(6xy2-4x2y)·3xy=18xy2-12x2yB.(-x)(2x+x2-1)=-x3-2x2+1C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2yD.(a n+1-b)·2ab=2a n+2b-2ab24.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3B.2x+9C.8x-3D.18x-35.计算:(3x2-14x-1)·(-2x3)=__________.6.计算:(1)(2013·上海)2(a-b)+3b=__________;(2)4x·(2x2-3x+1)=__________.7.计算:(1)-6x(x-3y); (2)5x(2x2-3x+4); (3)3x(x2-2x-1)-2x2(x-2).8.已知某长方形的长为(a+b)cm,它的宽比长短(a-b)cm,求这个长方形的周长与面积.知识点2 利用多项式的乘法进行化简求值9.当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.110.(2012·怀化)当x=1,y=15时,3x(2x+y)-2x(x-y)=__________.11.已知ab2=-3,则-ab(a2b5-ab3-b)=__________.12.先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.13.如图,表示这个图形面积的代数式是( )A.ab+bcB.c(b-d)+d(a-c)C.ad+cb-cdD.ad-cd14.设P=a2(-a+b-c),Q=-a(a2-ab+ac),则P与Q的关系是( )A.P=QB.P>QC.P<QD.互为相反数15.已知x2-2=y,则x(x-3y)+y(3x-1)-2的值是( )A.-2B.0C.2D.416.计算:(1)-2ab·(3a2-2ab-b2); (2)(-2y)3(4x2y-2xy2);(3)(4xy2-x2y)·(3xy)2; (4)(-6x2y)2·(14x3y2-29x2y+2xy).17.要使(x2+ax+1)(-6x3)的展开式中不含x4项,求a的值.18.现规定一种运算:a*b=ab+a-b,其中a,b为有理数.求a*(a-b)+(b+a)*b的值.19.设计一个商标图案如图中阴影部分所示,长方形ABCD中,AB=a,BC=b,以点A为圆心,AD为半径作圆与BA的延长线相交于点F,求商标图案的面积.20.化简:2[(m-1)m+m(m+1)][(m-1)m-m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?21.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米?22.某同学在计算一个多项式A乘以-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2-4x+1.(1)这个多项式A是多少?(2)正确的计算结果是多少?参考答案要点感知 ma+mb+mc预习练习 (1)ma+mb-mc (2)-5x2-2xy+x (3)6x3-8x2+2x1.C2.A3.D4.A5.-6x5+12x4+2x36.(1)2a+b(2)8x3-12x2+4x7.(1)原式=-6x2+18xy.(2)原式=10x3-15x2+20x.(3)原式=3x3-6x2-3x-2x3+4x2=x3-2x2-3x.8.由题意可得,这个长方形的宽为(a+b)-(a-b)=2b(cm).所以这个长方形的周长为:2(a+b+2b)=2a+6b(cm).面积为:(a+b)×2b=2ab+2b2(cm2).9.B 10.5 11.3312.原式=6a3-12a2+9a-6a3-8a2=-20a2+9a.当a=-2时,原式=-20×4-9×2=-98.13.C 14.A 15.B16.(1)原式=-6a3b+4a2b2+2ab3.(2)原式=-32x2y4+16xy5.(3)原式=(4xy2-x2y)·9x2y2=36x3y4-9x4y3.(4)原式=9x7y4-8x6y3+72x5y3.17.原式=-6x5-6ax4-6x3.因为不含x4项,所以-6a=0,即a=0.18.原式=a(a-b)+a-(a-b)+(b+a)b+(b+a)-b=a2-ab+a-a+b+b2+ab+b+a-b=a2+a+b2+b.19.S=ab+14πb2-12b(a+b)=ab+14πb2-12ab-12b2=12ab+(14π-12)b2.20.原式=2(m2-m+m2+m)(m2-m-m2-m)=-2×2m×2m2=-8m3.观察-8m3,则原式表示一个能被8整除的数,或原式=(-2m)3,则表示一个偶数的立方.21.(1)防洪堤坝的横断面积为:12[a+(a+2b)]·12a=14a(2a+2b)=12a2+12ab(平方米).(2)堤坝的体积为:(12a2+12ab)×600=300a2+300ab(立方米).22.(1)这个多项式A是:(x2-4x+1)-(-3x2)=4x2-4x+1.(2)正确的计算结果是:(4x2-4x+1)·(-3x2)=-12x4+12x3-3x2.第2课时多项式与多项式相乘要点感知1 多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.即(a+b)(m+n)=__________.预习练习1-1 计算:(a+1)(b+1)=__________.要点感知2 两个多项式相乘的结果若有同类项,应__________,使结果化为最简形式.预习练习2-1 计算:(x-2y)(2x+y)=__________.知识点多项式乘以多项式1.计算(x+2)(x-3)的结果是( )A.x2+5x-6B.x2-5x-6C.x2+x-6D.x2-x-62.若(x+3)(x-5)=x2+mx-15,则m的值为( )A.-5B.-2C.5D.23.下列计算正确的是( )A.(a+5)(a-5)=a2-5B.(x+2)(x-3)=x2-6C.(x+1)(x-2)=x2-x-2D.(x-1)(x+3)=x2-3x-34.若(x+m)(x-5)的积中不含x的一次项,则m的值为( )A.0B.5C.-5D.5或-55.下列各式中,结果错误的是( )A.(x+2)(x-3)=x2-x-6B.(x-4)(x+4)=x2-16C.(2x+3)(2x-6)=2x2-3x-18D.(2x-1)(2x+2)=4x2+2x-26.已知a+b=2,ab=1,化简(a-2)(b-2)的结果为( )A.1B.2C.-1D.-27.设M=(x-3)(x-7),N=(x-2)(x-8),则M与N的关系为( )A.M<NB.M>NC.M=ND.不能确定8.化简(x+3)(x-4)-(x+6)(x-1)的结果为__________.9.若a2+a+2 013=2 014,则(5-a)(6+a)=__________.10.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.11.如图,长方形ABCD的面积为__________(用含x的化简后的结果表示).12.计算:(1)(3a+b)(a-2b); (2)(x+5)(x-1); (3)(x+y)(x2-xy+y2);(4)(0.1m-0.2n)(0.3m+0.4n); (5)(12x+2)(4x-12).13.先化简,再求值:(x-4)(x-2)-(x-1)(x+3),其中x=-52.14.方程(x-3)(x+4)=(x+5)(x-6)的解是( )A.x=9B.x=-9C.x=6D.x=-615.若6x2-19x+15=(ax+b)(cx+d),则ac+bd等于( )A.36B.15C.19D.2116.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.17.一个长方形的长为2x cm,宽比长少4 cm,若将长和宽都增加3 cm,则面积增大了__________cm2,若x=3,则增加的面积为__________cm2.18.观察下列各式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,…请你猜想(x-1)(x n+x n-1+…+x2+x+1)=__________.(n为正整数)19.计算:(1) (a+3)(a-1)+a(a-2); (2)(-4x-3y2)(3y2-4x);(3)(2x+5y)(3x-2y)-2x(x-3y); (4)5x2-(x-2)(3x+1)-2(x+1)(x-5).20.对于任意自然数n,多项式n(n+5)-(n-3)(n+2)的值能否被6整除.21.如图,学校的课外生物小组的实验园地是一块长35米,宽26米的长方形,为了行走方便和便于管理,现要在中间修建同样宽的道路,路宽均为a米,余下的作为种植面积,求种植面积是多少?22.已知|2a+3b-7|+(a-9b+7)2=0,试求(14a2-12ab+b2)(12a+b)的值.23.小青和小芳分别计算同一道整式乘法题:(2x+a)(3x+b),小青由于抄错了第一个多项式中a的符号,得到的结果为6x2-13x+6,小芳由于抄错了第二个多项式中x的系数,得到的结果为2x2-x-6,则这道题的正确结果是__________.24.计算下列各式,然后回答问题.(a+2)(a+3)=__________;(a+2)(a-3)=__________;(a-2)(a+3)=__________;(a-2)(a-3)=__________.(1)从上面的计算中总结规律,写出下式结果:(x+a)(x+b)=__________;(2)运用上述规律,直接写出下列各题结果.①(x+2 013)(x-2 012)=__________;②(x-2 013)(x-2 012)=__________.参考答案要点感知1 am+an+bm+bn预习练习1-1 ab+a+b+1要点感知2 合并预习练习2-1 2x2-3xy-2y21.D2.B3.C4.B5.C6.A7.B8.-6x-69.29 10.-7-14 11.x2+5x+6 12.(1)原式=3a2-6ab+ab-2b2=3a2-5ab-2b2.(2)原式=x2-x+5x-5=x2+4x-5.(3)原式=x3-x2y+xy2+x2y-xy2+y3=x3+y3.(4)原式=0.03m2+0.04mn-0.06mn-0.08n2=0.03m2-0.02mn-0.08n2.(5)原式=2x2-14x+8x-1=2x2+314x-1.13.(x-4)(x-2)-(x-1)(x+3)=x2-6x+8-(x2+2x-3)=-8x+11.把x=-52代入原式,得原式=-8x+11=-8×(-52)+11=31.14.B 15.D 16.1 17.12x-3 33 18.x n+1-119.(1)原式=a2-a+3a-3+a2-2a=2a2-3.(2)原式=-4x·3y2-4x·(-4x)-3y2·3y2-3y2·(-4x)=(-4x)2-(3y2)2=16x2-9y4.(3)原式=6x2+11xy-10y2-2x2+6xy=4x2+17xy-10y2.(4)原式=5x2-(3x2-5x-2)-2(x2-4x-5)=5x2-3x2+5x+2-2x2+8x+10=13x+12.20.因为n(n+5)-(n-3)(n+2)=n2+5n-(n2-n-6)=n2+5n-n2+n+6=6n+6=6(n+1),所以,对于任意自然数n,多项式n(n+5)-(n-3)(n+2)的值都能被6整除.21.利用平移将横向的道路都平移到BC上,纵向的道路都平移到CD上,则不难发现剩余部分恰好是一个长为(35-a)米,宽为(26-a)米的长方形,所以种植面积为:(35-a)(26-a)=910-61a+a2(平方米).22.原式=18a3+14a2b-14a2b-12ab2+12ab2+b3=18a3+b3.依题意,得2370,970.a ba b+-=-+=⎧⎨⎩解得2,1.ab==⎧⎨⎩所以原式=18×23+13=2.23.6x2+5x-624.a2+5a+6 a2-a-6 a2+a-6 a2-5a+6(1)x2+(a+b)x+ab(2)①x2+x-4 050 156②x2-4 025x+4 050 156。

数学课程多项式运算练习题及答案

数学课程多项式运算练习题及答案

数学课程多项式运算练习题及答案1. 多项式的基本概念在数学中,多项式是由常数项、幂函数和系数的乘积相加而成的表达式。

多项式运算是数学的一个重要部分,它们在代数、几何等领域都具有广泛的应用。

接下来,我们将为你提供一些多项式运算的练习题及其答案。

2. 多项式的加减法练习题题目1:将多项式 P(x) = 2x^3 - 4x^2 + 5x + 3 与 Q(x) = -x^3 + 3x - 2 相加。

题目2:计算多项式 P(x) = x^4 - 2x^3 + 3x^2 - 4x + 5 和 Q(x) = -2x^4 + 4x^3 - 6x^2 + 8x - 10 之差。

答案1:P(x) + Q(x) = 2x^3 - 4x^2 + 5x + 3 - x^3 + 3x - 2 = x^3 - 4x^2 + 8x + 1答案2:P(x) - Q(x) = (x^4 - 2x^3 + 3x^2 - 4x + 5) - (-2x^4 + 4x^3 -6x^2 + 8x - 10) = 3x^4 - 6x^3 + 9x^2 - 12x + 153. 多项式的乘法练习题题目3:计算多项式 P(x) = 2x^2 - 3x + 1 和 Q(x) = x^3 - 2x + 3 的乘积。

题目4:将多项式 P(x) = (x^2 + 2x + 3)(2x^2 - x - 1) 展开并进行合并同类项。

答案3:P(x) * Q(x) = (2x^2 - 3x + 1) * (x^3 - 2x + 3) = 2x^5 - 4x^3 + 6x^2 - 3x^4 + 6x^2 - 9x + x^3 - 2x + 3 = 2x^5 - 3x^4 + x^3 + 12x^2 - 11x + 3答案4:(x^2 + 2x + 3)(2x^2 - x - 1) = 2x^4 - x^3 - x^2 + 4x^3 - 2x^2 - 2x + 6x^2 - 3x - 3 = 2x^4 + 3x^3 + 3x^2 - 5x - 34. 多项式的除法练习题题目5:将多项式 P(x) = 2x^3 - 5x^2 + 3x + 4 除以 Q(x) = x - 2,并求商和余数。

初一数学多项式的乘法试题

初一数学多项式的乘法试题

初一数学多项式的乘法试题1.计算:(a+2b)(a-b)=_________;【答案】a2+ab-2b2【解析】根据多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn,计算即可.(a+2b)(a-b)= a2-ab+2ab -2b2 =a2+ab-2b2.【考点】本题考查的是多项式乘以多项式点评:解答本题的关键是熟练掌握多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意不要漏项,漏字母,有同类项的合并同类项.2.计算:(3a-2)(2a+5)=________;【答案】6a2+11a-10【解析】根据多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn,计算即可.(3a-2)(2a+5)= 6a2+15a-4a-10=6a2+11a-10.【考点】本题考查的是多项式乘以多项式点评:解答本题的关键是熟练掌握多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意不要漏项,漏字母,有同类项的合并同类项.3.计算:(3x-y)(x+2y)=________.【答案】3x2+5xy-2y【解析】根据多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn,计算即可.(3x-y)(x+2y)=3x2+6xy- xy-2y=3x2+5xy-2y.【考点】本题考查的是多项式乘以多项式点评:解答本题的关键是熟练掌握多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意不要漏项,漏字母,有同类项的合并同类项.4.(x+a)(x-3)的积的一次项系数为零,则a的值是()A.1B.2C.3D.4【答案】C【解析】先根据多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn,去括号,再根据积的一次项系数为零即可得到结果.(x+a)(x-3)=x2-3x+ax-3a,∵一次项系数为零,∴,,,故选C.【考点】本题考查的是多项式乘以多项式点评:解答本题的关键是熟练掌握多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意不要漏项,漏字母,有同类项的合并同类项.5.下面计算中,正确的是()A.(m-1)(m-2)=m2-3m-2B.(1-2a)(2+a)=2a2-3a+2C.(x+y)(x-y)=x2-y2D.(x+y)(x+y)=x2+y2【答案】C【解析】根据多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn,依次分析各项即可。

多项式的乘法典型例题(整理)

多项式的乘法典型例题(整理)

多项式的乘法多项式的乘法的法则: 一般地,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项。

然后把所得的积相加。

整式的乘法运算与化简多项式的乘法 转化为单项式与多项式相乘 代数式的化简求值典型例题一.整式的计算1.)1-n -m )(n 3m (+2.若c bx ax x x ++=+-2)3)(12(,求c b a ,,的值.二.确定多项式中字母的值1.多项式)32)(8x mx -+(中不含有x 的一次项,求m 的值?2.若))(23(22q px x x x +++-展开后不含3x 和2x 项,求q p ,的值。

三.与方程相结合 解方程:8)2)(2(32-=-+x x x x四.化简求值:化简并求值:)3(2)42)(2(22--++-m m m m m ,其中2=m五.图形应用 1.有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片,如果要拼成一个长为(2a +b ),宽为(a +2b )的大长方形,则需要C 类卡片 张.2.如图所示的正方形和长方形卡片若干张,拼成一个长为(a+3b ),宽为(2a+b )的矩形,需要这三类卡片共________ 张.3.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( )A .a 2-b 2=(a +b )(a -b )B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-ab =a (a -b )补充练习一.选择题1.若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a2.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=q B.p=±q C.p=-q D.无法确定3.方程(x+4)(x-5)=x2-20的解是()A.x=0B.x=-4C.x=5D.x=404.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36B.15C.19D.21二.填空题1.(3x-1)(4x+5)=__________.2.当k=__________时,多项式x-1与2-kx的乘积不含一次项.3.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.4.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.三.简答题1.求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.2.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.。

3.3《多项式的乘法(1)》参考教案1

3.3《多项式的乘法(1)》参考教案1

3.3 多项式的乘法(1)参考教案
一、背景介绍及教学资料
本教材在单项式的乘法之后直接安排多项式的乘法,显得贴切自然,多项式乘以多项式是整式乘法的一部分.本课时利用对同一面积不同表达和分配律的运用两个方面,探索多项式相乘的运算法则,进而体会分配律的重要作用,以及转化思想,并从理解的角度掌握多项式乘法法则.
二、教学设计
【教学内容分析】
本节课从同一面积的不同表达入手,通过分析讨论,进一步体会分配律的作用的情况下得到多项式相乘法则.由法则可知:(1)多项式与多项式相乘的结果仍是多项式;(2)结果的项数应该是原两个多项式项数的积(没有经过合并同类项之前),检验项数常常作为检验解题过程是否的一个有效方法.
【教学目标】
1、经历探索多项式乘法法则的过程,理解多项式乘法法则.
2、学会用多项式乘法法则进行计算.
3、培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想.
【教学重点、难点】
重点是掌握多项式的乘法法则并加以运用.
难点是理解多项式乘法法则的推导过程和运用法则进行计算.
【教学准备】
展示课件.
【教学过程】。

2.1.4多项式的乘法(1)

2.1.4多项式的乘法(1)

(4)已知a2(2ax-3ay)=2a6-3a3,则x= 4 ,y= 1 .
13
3、先化简,再求值: (1)、2a(a-b)-b(2a-b)+2ab,其中a=2,b= -3
当 a=2,b= -3时 原式= 2a2 – 2ab + b2 = 2×4-2×2×(-3)+9 = 8 + 12+ 9 = 29 (2)-2 xy
原式的值为 3×23×(-1) +2×22×(-1)2 = -24+8 = -16.
4. 先化简,再求值:yn(yn +9y-12)-3(3yn+1-4yn),
其中y=-3,n=2. 解: yn(yn + 9y-12)-3(3yn+1-4yn)
= y2n+9yn+1-12yn-9yn+1+12yn = y2n
例1. 下列各题的解法是否正确,如果错了,指出错
在什么地方,并改正过来.
1 2 1 3 3 1 a 3b3c ① -2a b × - 4 ab c = 2 a b 2 ×
2
2 3 3 2 2 3 3 ② × 3a b 1 - ab c = -3a b 3a b - 3a b ca
系数化为1,得x=2.
2. 解方程:2x(x+1)=2x2-5
解:去括号得: 2x2+2x=2x2-5
移项合并得: 解得: 2x=-5 x=-2.5
中考 试题
已知A=2x,B是多项式,在计算B+A时, 小马虎同学把B+A看成了B÷A,结果得x2+0.5x, 3+x2+2x 2 x 则B+A=____________. 解析:
因为 A= 2x,B÷A=x2+0.5x,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 多项式的乘法(1)
姓名: 班级: 第 小组
【学习目标】1、掌握多项式与多项式相乘的法则。

2、会运用单项式与单项式、单项式与多项式、多项式与多项式相乘的法则
化简整式
【课前自学,课中交流】
1、23(21)x x -⋅-+ (2)22
3(93)x ax a ⨯-+ (3)(3)5(21)a a a +--
2、如图所示,有四个大小不同的小长方形,拼成一个大长方形。

(1) 4个小长方形的和是多少?
(2)拼成的大长方形的面积是多少?
方法一: (按一个大长方形计算)
方法二: (分割成两个长方形计算)
方法三: (分割成四个长方形计算)
还有其它方法吗?
(3)观察这四个小长方形面积之和与大长方形面积有什么关系?
由上面问题我们可以发现:( )( )=
归纳: 多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的 另一个多项式的每一项,再把所得的积 。

2、计算
(1)(1)(1)x x +- (2) (31)(2)x x ++ (3)2
()a b +
3、先化简,在求值:
(2x-1)(-3x)-(1-3x)(1+2x),其中x=2
n m a m n
a b
n a m b
【课中尝试提高】
1、计算
(1)
(x-y)(m-n) (2)(2a-5b)(a+5b)
(3)2
(2a-b) (4)
2、先化简、再求值:(23)(31)6(4)a a a a -+--,其中a=
3、一副宣传画的长为a (cm ),宽为b (cm )。

把它贴在一块长方形木板上,四周刚好留出2cm 的边框宽,请你算一算这块木板的面积是多少?
4、某校有一块边长为a 的正方形花圃,它有两横一纵宽度均为b 的3条人行通道(如图)把花圃分隔成6块,问该花圃的实际种花面积是多少?
5、观察下列各式的计算结果与相乘的两个多项式之间的关系:
()()()()()()2222356
4268651130
x x x x x x x x x x x x ++=++++=++++=++
你发现有什么规律?按你发现的规律填空。

()()()235__________________x x x x ++=+++⨯
你能很快说出与()()x a x b ++相等的多项式吗?先猜一猜,再用多项式相乘的运算法则验证 521(2)()252x y x y -+172。

相关文档
最新文档