乘法公式提高练习试题
初中数学八年级上册乘法公式练习题含答案

初中数学八年级上册乘法公式练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列各式能用平方差公式进行计算的是()A.(x−3)(−x+3)B.(a+2b)(2a−b)C.(a−1)(−a−1)D.(x−3)22. 若x2+2(m−5)x+16是完全平方式,则m的值是( )A.5B.9C.9或1D.5或13. 下列等式中:① (a−b)2n=(b−a)2n (n为正整数);② (−1+2x)(−1−2x)=4x2−1;③(a−b)2=−(b−a)2;④(ab−2b)(−ab−2b)=2b2−a2b2;正确的个数是( )A.1个B.2个C.3个D.4个4. 如图a,边长为a的大正方形中有一个边长为b的小正方形,小明将图a的阴影部分拼成了一个矩形,如图b,这一过程可以验证()A.a2+b2−2ab=(a−b)2B.a2+b2+2ab=(a+b)2C.2a2+b2−3ab=(2a−b)(a−b)D.a2−b2=(a+b)(a−b)5. 如图能验证的公式是()A.(a−b)(a+b)=a2−b2B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−b2=(a−b)(a+b)6. 已知a 3+b 3=9,a +b =3,则ab =( )A.2B.3C.4D.67. 下列运算中,错误的运算有( )①(2x +y)2=4x 2+y 2,②(a −3b)2=a 2−9b 2,③(−x −y)2=x 2−2xy +y 2,④(x −12)2=x 2−2x +14.A.1个B.2个C.3个D.4个8.的计算结果为() A.B. C. D.9. 使m 2+m +7是完全平方数的所有整数m 的积是( )A.84B.86C.88D.9010. 下列乘法公式的运用,不正确的是( )A.B. C.D.11. 观察右边的图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来进行乘法运算的公式,这个公式是________.12. 分解因式:(2x −3y)3+(3x −2y)3−125(x −y)3=________.13. 计算:(x +2y)(x −2y)=________.14. 已知,ab =6,则a 2+b 2的值是________ .15. 有一个完全平方数44 (44)⏟2014个4.88 (89)⏟2013个8,它是________的平方.16. 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证________(填写序号).①(a+b)2=a2+2ab+b2②(a−b)2=a2−2ab+b2③a2−b2=(a+b)(a−b)④(a+2b)(a−b)=a2+ab−2b2.17. 已知n2是完全平方数,n3是立方数,则n的最小正数值是________.18. 化简:6(7+1)(72+1)(74+1)(78+1)(716+1)+1=________.19. (x−y+9)(x+y−9)=________.20. 如图,在一块边长为a的正方形纸片的四角各剪去一个边长为b的正方形,若a=3.6,b=0.8,则剩余部分的面积为________.21. 是否存在这样一个正整数,当它加上100时是一个完全平方数,当它加上129时是另一个完全平方数?若存在,请求出这个正整数;若不存在,请说明理由.22. 乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式________(用式子表达)(4)运用你所得到的公式,计算:10.3×9.7(x+2y−3)(x−2y+3).23. 如图,四边形ABCD是正方形,P是对角线BD上一点,过P点作直线MN和EF,分别平行于AB、BC,交两组对边于点M、N、E、F,则四边形PFDN、PEBM都是正方形,四边形PEAN、PMCF都是矩形,设正方形PEBM的边长为a,正方形PFDN的边长为b(a<b).(1)用代数式分别表示正方形PEBM和正方形PFDN的面积之和以及矩形PEAN与矩形PMCF的面积之和,并判定两个面积之和的大小.(2)当点P在什么位置时,它们的面积之和相等?(3)用含a、b的代数式表示S△EMD.24. 求证:四个连续自然的积与1之和必定是一个完全平方数.25. 有-块边长为a m的正方形空地,现准备将这块空地的四周均留出b m宽修筑围坝,中间建喷水池.请计算出喷水池的面积.26. 图(1)是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图(2)的形状拼成一个正方形.(1)你认为图(2)中阴影部分的正方形的边长等于多少?________;(2)请用两种不同的方法求图(2)中阴影部分面积.方法一:________;方法二:________;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m−n)2,4mn.________;(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求(a−b)2的值.27. 已知x=2007,求(23x+3)(3−23x)+(23x−1)(23x+1)的值.28. 已知x+y=7,xy=6,试求:(1)x−y的值;(2)x3y+xy3的值.29. 用简便方法计算:(1)20122−4024×2011+20112(2)20192−2018×2020.30. 计算:(2x−y)(4x2+y2)(2x+y)31. 三个两位的完全平方数连在一起写,得到一个六位的完全平方数,求所有这样的六位完全平方数.32. 将甲、乙两人现在的年龄按从左至右的顺序排列得到一个四位数,这个数为完全平方数,再过31年,将他们的年龄已同样的方式排列又得到一个四位数,这个数仍为完全平方数.试求出甲、乙现在的年龄.33. 如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于________;②请用两种不同的方法表示图②中阴影部分的面积:方法1:________;方法2:________;③观察图②,直接写出三个代数式(m+n)2,(m−n)2,mn之间的等量关系:________;(2)根据(1)题中的等量关系,解决如下问题:若m+n=6,mn=4,求(m−n)2的值.34. 如图1,边长为a的大正方形中有一个边长为b的小正方形(a>b),图2是由图1中阴影部分拼成的一个长方形.(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是________;(2)如果大正方形的边长a比小正方形的边长b多3,它们的面积相差57,试利用(1)中的公式,求a,b的值.35. 如图,求阴影部分的面积,它可以验证哪个公式?36. 利用乘法公式简便计算:20072−2006×2008.37. 阅读理解:若x满足(30−x)(x−10)=160,求(30−x)2+(x−10)2的值.解:设30−x=a,x−10=b,则(30−x)(x−10)=ab=160,a+b=(30−x)+(x−10)=20,(30−x)2+(x−10)2=a2+b2=(a+b)2−2ab=202−2×160=80.解决问题:(1)若x满足(2020−x)(x−2016)=2,则(2020−x)2+(x−2016)2=________;(2)若x满足(2021−x)2+(x−2018)2=2020,求(2021−x)(x−2018)的值;(3)如图,在长方形ABCD中,AB=20,BC=12,点E,F是BC,CD上的点,且BE=DF=x,分别以FC,CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为160平方单位,则图中阴影部分的面积和为________平方单位.38. (x−2y)(2y+x)39. 请你求出2(3+1)(32+1)(34+1)(38+1)的值.40. 运用整式乘法公式计算:(1)1001×999+1;(2)20102−2011×2009.参考答案与试题解析初中数学八年级上册乘法公式练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】平方差公式【解析】本题是平方差公式的应用,在所给的两个式子中,必须有一项完全相同,有一项相反才可用平方差公式.【解答】解:A、B中不存在相同的项,C、−1是相同的项,互为相反项是a与−a,所以(a−1)(−a−1)=1−a2.D、(x−3)2符合完全平方公式.因此A、B、D都不符合平方差公式的要求;故选C.2.【答案】C【考点】完全平方公式【解析】完全平方公式:(a±b)2=a2±2ab+b2这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故2(m−5)=±8,∴m=9或1.【解答】解:∵(x±4)2=x2±8x+16,∴在x2+2(m−5)x+16中,2(m−5)=±8,解得:m=9或1.故选C.3.【答案】A【考点】完全平方公式与平方差公式的综合【解析】此题暂无解析【解答】解:①(a−b)2n=[(b−a)2]n=(b−a)2n (n为正整数),故①正确;②(−1+2x)(−1−2x)=1−4x2,故②错误;③(a−b)2=(b−a)2,故③错误;④(ab−2b)(−ab−2b)=4b2−a2b2;故④错误.所以正确的等式有1个.故选A.4.【答案】D【考点】平方差公式的几何背景【解析】利用正方形的面积公式可知阴影部分面积为a2−b2,根据矩形面积公式可知阴影部分面积为(a+b)(a−b),二者相等,即可解答.【解答】如图b,阴影部分的面积=(a+b)(a−b);如图a,阴影部分的面积=a2−b2;这一过程可以验证:a2−b2=(a+b)(a−b).5.【答案】C【考点】完全平方公式的几何背景【解析】由大正方形的面积-小正方形的面积=剩余部分的面积,进而可以证明平方差公式.【解答】解:S I=a2−2S II−S III,即(a−b)2=a2−2(a−b)b−b2=a2−2ab+b2.故选:C.6.【答案】A【考点】立方公式【解析】首先利用立方差公式得出原式=(a+b)(a2−ab+b2),进而利用完全平方公式得出关于a+b与ab的形式,求出即可.【解答】解:a3+b3=(a+b)(a2−ab+b2),=(a+b)(a2+2ab+b2−3ab),=(a+b)[(a+b)2−3ab],∵a3+b3=9,a+b=3,∴3×(32−3ab)=9,解得:ab=2.故选A.7.【答案】D【考点】完全平方公式【解析】直接利用完全平方公式分别判断各式得出答案即可.【解答】解:①(2x+y)2=4x2+y2+4xy,故此选项错误;②(a −3b)2=a 2−6ab +9b 2,故此选项错误;③(−x −y)2=x 2+2xy +y 2,故此选项错误;④(x −12)2=x 2−x +14,故此选项错误.故错误的有4个.故选:D .8.【答案】A【考点】平方差公式完全平方公式与平方差公式的综合【解析】首先把199×1999变为(1992−1)(1992+1),然后利用平方差公式化简,最后合并即可求出结果.【解答】解:19922−199+1993=19922⋅(1992−1)(1992+1)=19922−19922+=故选A .9.【答案】A【考点】完全平方数【解析】因为m 2+m +7是完全平方数,所以可设m 2+m +7=k 2(k 为正整数),则m 2+m +7−k 2=0,解得m =−1±√4k 2−272,由m 为整数,应有4k 2−27=n 2(n 为正整数),据此求解.【解答】解:设m 2+m +7=k 2(k 为正整数),则m 2+m +7−k 2=0,解得,m =−1±√4k 2−272,∵ m 为整数,∴ 4k 2−27=n 2(n 为正整数),∴ (2k +n)(2k −n)=27,∴ {2k +n =272k −n =1或{2k +n =92k −n =3, 解得{n =13k =7或{n =3k =3, ∴ m 1=−7,m 2=6,m 3=−2,m 4=1,∴ m 1m 2m 3m 4=−7×6×(−2)×1=84.故选A .10.【答案】D【考点】平方差公式完全平方公式完全平方公式与平方差公式的综合【解析】分别利用平方差公式及完全平方公式化简得到结果,即可做出判断.【解答】解:A选项运用平方差公式(2a+b)(2a−b)=(2a)2−b2=4a2−b2B选项运用平方差公式(−2a+3)(3+2a)=32−(2a)2=9−4a2C选项是运用了完全平方公式计算正确;D选项运用完全平方公式计算(−1−3x)2=(1−3x)2=1+6x+9x2,所以D选项错误.故选D.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】(a+b)2=a2+2ab+b2【考点】完全平方公式的几何背景【解析】此题观察一个正方形被分为四部分,把这四部分的面积相加就是边长为a+b的正方形的面积,从而得到一个公式.【解答】解:由图知,大正方形的边长为a+b,∴大正方形的面积为,(a+b)2,根据图知,大正方形分为:一个边长为a的小正方形,一个边长为b的小正方形,两个长为b,宽为a的长方形,∵大正方形的面积等于这四部分面积的和,∴(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.12.【答案】15(2x−3y)(3x−2y)(y−x)【考点】立方公式【解析】利利用立方差公式A3+B3+C3−3ABC=(A+B+C)(A2+B2+C2−BC−CA−AB),从而得出A3+B3+C3=3ABC,即(2x−3y)3+(3x−2y)3−125(x−y)3符合上述公式,即可得出答案.【解答】解:∵A3+B3+C3−3ABC=(A+B+C)(A2+B2+C2−BC−CA−AB),若A+B+C=0,便有A3+B3+C3=3ABC,令A=2x−3y,B=3x−2y,C=5y−5x,则符合上述条件,易得A3+B3+C3=3ABC.∴(2x−3y)3+(3x−2y)3−125(x−y)3=3(2x−3y)(3x−2y)[5(y−x)],=15(2x−3y)(3x−2y)(y−x),故答案为:15(2x−3y)(3x−2y)(y−x).13.【答案】x2−4y2【考点】平方差公式【解析】符合平方差公式结构,直接利用平方差公式计算即可.【解答】解:(x+2y)(x−2y)=x2−4y2.故答案为:x2−4y2.14.【答案】244【考点】完全平方公式完全平方公式与平方差公式的综合【解析】已知第一个等式左边利用完全平方公式展开,将ab的值代入计算即可求出a2+b2的值.【解答】(a+b)2=a2+2ab+b2=256,ab=6∴a2+b2=24A故答案为24415.【答案】13(2×101007+10−1007)【考点】完全平方数【解析】先将式子变形为19×(4×102014+4+10−2014),再根据完全平方公式即可得到原式=[13(2×101007+10−1007)]2.依此即可求解.【解答】解:44 (44)⏟2014个4.88 (89)⏟2013个8=4×11...11+8×0.11...1+0.00...1(2014个1)=49×(99...9)+89×(0.99...9)+0.00...1(2014个9)=49×(102014−1)+89×(1−0.00...1)+0.00 (1)=49×102014−49+89−89×10−2014+10−2014=19×(4×102014+4+10−2014)=[13(2×101007+10−1007)]2.故答案为:13(2×101007+10−1007).16.【答案】③【考点】平方差公式的几何背景【解析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2−b2;第二个图形阴影部分是一个长是(a+b),宽是(a−b)的长方形,面积是(a+b)(a−b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2−b2,图乙中阴影部分的面积=(a+b)(a−b),而两个图形中阴影部分的面积相等,∴a2−b2=(a+b)(a−b).故可以验证③.故答案为:③.17.【答案】648【考点】完全平方数立方公式【解析】根据n2是完全平方数、n3是立方数即可设n=2m2=3k3(m,k是正整数),则k是偶数,即可求得n的最小正数值,即可解题.【解答】解:∵n2是完全平方数,n3是立方数,∴设n=2m2=3k3(m,k是正整数).由此k应是偶数,又要求n的最小正数值,∴只需取k=2,4,6试算,再注意m为3的倍数,即n为9的倍数,∴只需从6,12,试算即可,当k=6时,n=648即为所求.故答案为:648.18.【答案】732【考点】平方差公式【解析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式=(7−1)(7+1)(72+1)(74+1)(78+1)(716+1)+1=(72−1)(72+1)(74+1)(78+1)(716+1)+1=(74−1)(74+1)(78+1)(716+1)+1=(78−1)(78+1)(716+1)+1=(716−1)(716+1)+1=732−1+1=732.故答案为:73219.【答案】x2−y2+18y−81【考点】平方差公式完全平方公式【解析】先变形,再根据平方差公式进行计算,最后根据完全平方公式展开即可.【解答】解:原式=[−(y−9)][x+(y−9)]=x2−(y−9)2=x2−y2+18y−81,故答案为:x2−y2+18y−81.20.【答案】10.4【考点】完全平方公式的几何背景【解析】直接利用已知图形,用总面积减去4个正方形面积进而得出答案.【解答】解:由题意可得:剩余部分的面积为:a2−4b2=(a+2b)(a−2b),将a=3.6,b=0.8代入上式可得:原式=(3.6+2×0.8)(3.6−2×0.8)=10.4.故答案为:10.4.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:假设存在这样的正整数m,由题意得:m+100=x2①;m+129=y2②,②-①得y2−x2=29.所以(y+x)(y−x)=29×1.只有当x +y =29,y −x =1时,成立,即{x +y =29y −x =1, 解得:{y =15x =14, 所以m =x 2−100=142−100=196−100=96,∴ 存在正整数96,当它加上100时是一个完全平方数,当它加上129时是另一个完全平方数.【考点】完全平方数【解析】利用分解因式求不定方程的整数解,再求m 的值,进而得出答案.【解答】解:假设存在这样的正整数m ,由题意得:m +100=x 2①;m +129=y 2②,②-①得y 2−x 2=29.所以(y +x)(y −x)=29×1.只有当x +y =29,y −x =1时,成立,即{x +y =29y −x =1, 解得:{y =15x =14, 所以m =x 2−100=142−100=196−100=96,∴ 存在正整数96,当它加上100时是一个完全平方数,当它加上129时是另一个完全平方数.22.【答案】a 2−b 2a −b ,a +b ,(a +b)(a −b)(a +b)(a −b)=a 2−b 2(4)10.3×9.7=(10+0.3)(10−0.3)=100−0.09=99.91;(x +2y −3)(x −2y +3)=[x +(2y −3)][x −(2y −3)]=x 2−(2y −3)2=x 2−(4y 2−12y +9)=x 2−4y 2+12y −9.【考点】平方差公式的几何背景【解析】(1)阴影部分的面积等于大正方形的面积减去小正方形的面积,据此即可写出;(2)宽是第一个图中的矩形的宽,长是两矩形的长的和,根据矩形的面积公式即可得到;(3)根据(1)(2)表示的两个图形的面积相等,即可得到公式;(4)10.3×9.7=(10+0.3)(10−0.3),(x +2y −3)(x −2y +3)=[x +(2y −3)][x −(2y −3)],再利用(3)得到的公式,即可计算.【解答】解:(1)a 2−b 2;(2)宽是:a−b,长是:a+b,面积是:(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)10.3×9.7=(10+0.3)(10−0.3)=100−0.09=99.91;(x+2y−3)(x−2y+3)=[x+(2y−3)][x−(2y−3)]=x2−(2y−3)2=x2−(4y2−12y+9)=x2−4y2+12y−9.23.【答案】解:(1)正方形PEBM和正方形PFDN的面积之和为:a2+b2;矩形PEAN与矩形PMCF的面积之和为:ab+ab=2ab;a2+b2−2ab=(a−b)2>0,∴正方形PEBM和正方形PFDN的面积之和大于矩形PEAN与矩形PMCF的面积之和;(2)当点P在中点时,它们的面积之和相等;(3)S△EMD=12(a+b)2−12b(a+b)−14a2=12a2+ab+12b2−12ab−12b2−14a2=1 4a2+12ab.【考点】完全平方公式的几何背景【解析】(1)根据正方形及矩形的面积公式即可得出答案;(2)当a=b时面积相等;(3)根据直角三角形面积公式即可求解.【解答】解:(1)正方形PEBM和正方形PFDN的面积之和为:a2+b2;矩形PEAN与矩形PMCF的面积之和为:ab+ab=2ab;a2+b2−2ab=(a−b)2>0,∴正方形PEBM和正方形PFDN的面积之和大于矩形PEAN与矩形PMCF的面积之和;(2)当点P在中点时,它们的面积之和相等;(3)S△EMD=12(a+b)2−12b(a+b)−14a2=12a2+ab+12b2−12ab−12b2−14a2=1 4a2+12ab.24.【答案】证明:设最小的自然数为n,则有n×(n+1)×(n+2)×(n+3)+1=[n×(n+3)]×[(n+1)×(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.故四个连续自然的积与1之和必定是一个完全平方数.【考点】完全平方数【解析】可设最小的自然数为n,则四个连续自然数的积加l,可以写成n×(n+1)×(n+ 2)×(n+3)+1,再转化为[n×(n+3)]×[(n+1)×(n+2)]+1=(n2+3n)(n2+ 3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.从而得以证明.【解答】证明:设最小的自然数为n,则有n×(n+1)×(n+2)×(n+3)+1=[n×(n+3)]×[(n+1)×(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.故四个连续自然的积与1之和必定是一个完全平方数.25.【答案】(a2−4ab+4b2)m2或(a−2b)2m2.【考点】完全平方公式的几何背景【解析】利用正方形的面积减去四周围坝的面积,四个角处都多减了一次,所以再加上四个边长为b的小正方形的面积就是喷泉水池的面积,即可得出答案.【解答】解:喷泉水池的面积为:a2−4ab+4b2或(a−2b)2.26.m−n,(m−n)2,(m+n)2−4mn,(m−n)2=(m+n)2−4mn.m−n,(m−n)2,(m+n)2−4mn(m+n)2−4mn=(m−n)2(4)(a−b)2=(a+b)2−4ab=72−4×5=29.【考点】完全平方公式的几何背景【解析】(1)根据观察图形,可得小正方形的边长;(2)根据正方形的面积公式,可得方法一,根据面积的和差,可得方法二;(3)根据同一图形的面积的两种表示方法,可得答案;(4)根据规律,可得答案.【解答】解:(1)图(2)中阴影部分的正方形的边长等于多少?m−n;(2)请用两种不同的方法求图(2)中阴影部分面积.方法一:(m−n)2;方法二:(m+n)2−4mn;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m−n)2,4mn.(m+n)2−4mn=(m−n)2;(4)(a−b)2=(a+b)2−4ab=72−4×5=29.27.【答案】解:(23x+3)(3−23x)+(23x−1)(23x+1),=9−49x2+49x2−1,=8,所以,x=2007时,原式=8.【考点】平方差公式【解析】利用平方差公式计算,再把x=2007代入进行计算即可得解.【解答】解:(23x+3)(3−23x)+(23x−1)(23x+1),=9−49x2+49x2−1,=8,所以,x=2007时,原式=8.28.解:(1)(x−y)2=(x+y)2−4xy=25∴x−y=±5.(2)x2+y2=(x+y)2−2xy=37,所以原式=xy(x2+y2)=222.【考点】完全平方公式【解析】此题暂无解析【解答】解:(1)(x−y)2=(x+y)2−4xy=25∴x−y=±5.(2)x2+y2=(x+y)2−2xy=37,所以原式=xy(x2+y2)=222.29.【答案】解:(1)原式=20122−2×2012×2011+20112 =(2012−2011)2=1.(2)原式=20192−(2019−1)×(2019+1)=20192−(20192−1)=1.【考点】完全平方数平方差公式完全平方公式【解析】此题暂无解析【解答】解:(1)原式=20122−2×2012×2011+20112 =(2012−2011)2=1.(2)原式=20192−(2019−1)×(2019+1)=20192−(20192−1)=1.30.【答案】解:原式=(2x−y)(2x+y)(4x2+y2)=(4x2−y2)(4x2+y2)=16x4−y4.【考点】平方差公式先交换位置,再根据平方差公式进行计算即可.【解答】解:原式=(2x−y)(2x+y)(4x2+y2)=(4x2−y2)(4x2+y2)=16x4−y4.31.【答案】解:两位的完全平方数只有:16,25,36,49,64,81,如果一个数的十位数字是奇数且是完全平方数,则个位数字一定是6,也就是16在个位和十位位置,完全平方数具有:奇数的平方是8n+1型;偶数的平方为8n或8n+4型,且根据是8的倍数的特征是整数末三位是8的倍数,而任意三个两位的完全平方数连在一起写,是8的倍数的只有166464,646416,故所有这样的六位完全平方数是:166464,646416.【考点】完全平方数【解析】首先得出所有的两位的完全平方数,再利用完全平方数的特征奇数的平方是8n+1型;偶数的平方为8n或8n+4型,进而得出答案.【解答】解:两位的完全平方数只有:16,25,36,49,64,81,如果一个数的十位数字是奇数且是完全平方数,则个位数字一定是6,也就是16在个位和十位位置,完全平方数具有:奇数的平方是8n+1型;偶数的平方为8n或8n+4型,且根据是8的倍数的特征是整数末三位是8的倍数,而任意三个两位的完全平方数连在一起写,是8的倍数的只有166464,646416,故所有这样的六位完全平方数是:166464,646416.32.【答案】解:设甲年龄为x岁,乙年龄为y岁,可得,100x+y=m2,100(x+31)+y+31=n2,两式相减得100×31+31=n2−m2,31×101=(n−m)(n+m),∴{n+m=101n−m=31,解得,{n=66m=35,∴100x+y=352=1225,∴x=12,y=25,故甲年龄为12+31=42岁,乙年龄为25+31=56岁.【考点】完全平方数【解析】设甲年龄为x岁,乙年龄为y岁,可得100x+y=m2,100(x+31)+y+31=n2,两式相减因式分解后得到31×101=(n−m)(n+m),得到方程组后解答即可.解:设甲年龄为x 岁,乙年龄为y 岁,可得,100x +y =m 2,100(x +31)+y +31=n 2,两式相减得100×31+31=n 2−m 2,31×101=(n −m)(n +m),∴ {n +m =101n −m =31, 解得,{n =66m =35, ∴ 100x +y =352=1225,∴ x =12,y =25,故甲年龄为12+31=42岁,乙年龄为25+31=56岁.33.【答案】m −n ,(m −n)2,(m +n)2−4mn ,(m +n)2−(m −n)2=4mn(m −n)2的值为20【考点】完全平方公式的几何背景【解析】(1)①根据拼图即可得图②中的阴影部分的正方形的边长;②根据正方形和长方形的面积即可用两种不同的方法表示图②中阴影部分的面积: ③结合图②,即可写出三个代数式(m +n)2,(m −n)2,mn 之间的等量关系;(2)根据(1)题中的等量关系,若m +n =6,m =4,即可求(m −n)2的值.【解答】①观察图②中的阴影部分的正方形的边长为:m −n .故答案为m −n ;②两种不同的方法表示图②中阴影部分的面积:方法1:(m −n)2;方法2:(m +n)2−4mn故答案为:(m −n)2、(m +n)2−4mn ;③观察图②,三个代数式(m +n)2,(m −n)2,mn 之间的等量关系:(m +n)2=(m −n)2+4mn .故答案为:(m +n)2=(m −n)2+4mn ;根据(1)题中的等量关系:把m +n =6,m =4代入:(m +n)2=(m −n)2+4mn ,∴ (m −n)2=36−16=20.答:(m −n)2的值为20.34.【答案】a 2−b 2=(a +b)(a −b)解:由题意可得:a −b =3.∵ a 2−b 2=(a +b)(a −b)=57.∴ a +b =19.∴ {a +b =19,a −b =3.解得{a =11,b =8.∴a,b的值分别是11,8.【考点】平方差公式的几何背景【解析】(1)根据两个图形的面积即可列出等式;(2)根据题意得到a−b=3,由面积相差57得到a+b=19,解a与b组成的方程组求解即可.【解答】解:(1)图1阴影面积=a2−b2,图2的阴影面积=(a+b)(a−b)a2−b2=(a+b)(a−b)故答案为:a2−b2=(a+b)(a−b)35.【答案】解:由图可得:(a−b)2=a2−2ab−b2.【考点】完全平方公式的几何背景【解析】观察图形可以看出,阴影部分是一个正方形,阴影部分的面积=(a−b)2;从图中还可以发现,阴影部分是一个大正方形减两个长方形减一个小正方形得到的,阴影部分的面积=大正方形的面积−2个长方形的面积-小正方形的面积,即可解答.【解答】解:由图可得:(a−b)2=a2−2ab−b2.36.【答案】解:原式=20072−(2007−1)(2007+1)=20072−20072+1=1.【考点】平方差公式【解析】原式变形后,利用平方差公式即可得到结果.【解答】解:原式=20072−(2007−1)(2007+1)=20072−20072+1=1.37.【答案】12(2)设2021−x=c,x−2018=d,则(2021−x)2+(x−2018)2=c2+d2=2020,c+d=(2021−x)+(x−2018)=3,∴2(2021−x)(x−2018)=2cd=(c+d)2−(c2+d2)=32−2020=−2011,∴(2021−x)(x−2018)=cd=−2011.2384【考点】完全平方公式的几何背景完全平方公式【解析】1【解答】解:(1)设2020−x=a,x−2016=b,则(2020−x)(x−2016)=ab=2,a+b=(2020−x)+(x−2016)=4,∴(2020−x)2+(x−2016)2=a2+b2=(a+b)2−2ab=42−2×2=12.故答案为:12.(2)设2021−x=c,x−2018=d,则(2021−x)2+(x−2018)2=c2+d2=2020,c+d=(2021−x)+(x−2018)=3,∴2(2021−x)(x−2018)=2cd=(c+d)2−(c2+d2)=32−2020=−2011,∴(2021−x)(x−2018)=cd=−2011.2(3)由题意得,CF=20−x,CE=12−x,CF⋅CE=(20−x)(12−x)=160,∴图中阴影部分的面积和为:(20−x)2+(12−x)2.设20−x=e,12−x=f,则(20−x)(12−x)=ef=160,e−f=(20−x)−(12−x)=8,(20−x)2+(12−x)2=e2+f2=(e−f)2+2ef=82+2×160=384.故答案为:384.38.【答案】解:(x−2y)(2y+x)=x2−(2y)2=x2−4y2.【考点】平方差公式【解析】根据平方差公式(a+b)(a−b)=a2−b2进行计算即可.解:(x−2y)(2y+x)=x2−(2y)2=x2−4y2.39.【答案】解:2(3+1)(32+1)(34+1)(38+1),=(3−1)(3+1)(32+1)(34+1)(38+1),=(32−1)(32+1)(34+1)(38+1),=(34−1)(34+1)(38+1),=(38−1)(38+1),=316−1,.【考点】平方差公式【解析】根据平方差公式,可把2看成是(3−1),再根据平方差公式即可算出结果.【解答】解:2(3+1)(32+1)(34+1)(38+1),=(3−1)(3+1)(32+1)(34+1)(38+1),=(32−1)(32+1)(34+1)(38+1),=(34−1)(34+1)(38+1),=(38−1)(38+1),=316−1,.40.【答案】解:(1)1001×999+1=(1000+1)×(1000−1)+1=10002−12+1=1000000;(2)20102−2011×2009=20102−(2010+1)×(2010−1)=20102−(20102−1)=1.【考点】平方差公式【解析】(1)把所求式子中1001变形为(1000+1)和999变形为(1000−1),得到两数之和与两数之差的积满足平方差公式的特点,从而利用平方差公式计算即可求出值;(2)把所求式子中的2001变形为(2000+1),2009变形为(2000−1),得到两数之和与两数之差的积满足平方差公式的特点,从而利用平方差公式计算即可求出值.【解答】解:(1)1001×999+1=(1000+1)×(1000−1)+1=10002−12+1=1000000;(2)20102−2011×2009=20102−(2010+1)×(2010−1)=20102−(20102−1)。
提高小学生乘法技巧的练习题

提高小学生乘法技巧的练习题一、基础乘法运算1. 8 × 6 = ________2. 4 × 9 = ________3. 5 × 3 = ________4. 7 × 2 = ________5. 2 × 10 = ________二、扩展乘法运算1. 35 × 2 = ________2. 12 × 5 = ________3. 6 × 8 = ________4. 21 × 4 = ________5. 17 × 3 = ________三、乘法口诀表填入适当的数字:× 1 2 3 4 5 6 7 8 9 10----------------------------------------------1 | 123456789 102 | 2 4 6 8 10 12 14 16 18 203 | 3 6 9 12 15 18 21 24 27 304 | 4 8 12 16 20 24 28 32 36 405 | 5 10 15 20 25 30 35 40 45 506 | 6 12 18 24 30 36 42 48 54 607 | 7 14 21 28 35 42 49 56 63 708 | 8 16 24 32 40 48 56 64 72 809 | 9 18 27 36 45 54 63 72 81 9010| 10 20 30 40 50 60 70 80 90 100四、填空练习1. 12 × ________ = 962. ________ × 7 = 493. 9 × ________ = 814. ________ × 4 = 245. 15 × ________ = 75五、解决问题1. 小明每天早上骑自行车上学,一共耗时10分钟。
七年级数学乘法公式测试题

7.4乘法公式同步练习【基础能力训练】一、平方差公式1.下列多项式乘法中,可以用平方差公式计算的是()A.(2x+3y)(2x-13y)B.(x-y)(y-x)C.(-4a+3b)(3b-4a)D.(a-b-c)(-a-b-c)2.下列计算正确的是()A.(2y+6)(2y-6)=4y2-6 B.(5y+12)(5y-12)=25y2-14C.(2x+3)(2x-3)=2x2-9 D.(-4x+3)(4x-3)=16x2-9 3.判断正误:(1)(3a-bc)(-bc-3a)=b2c2-9a2()(2)(x+1x)(x-1x)=x2-1 ()4.(3x-4y)(4y+3x)=(_____)2-(_____)2=_______.5.(x+1)(x-1)(x2+1)=_______.6.(2m-3n)(_____)=4m2-9n27.(-3x+2y)(_______)=-9x2+4y28.计算(a4+b4)(a2+b2)(b-a)(a+b)的结果是()A.a8-b8B.a6-b6C.b6-a8D.b6-a69.化简(a+b)2-(a-b)2的结果是()A.0 B.-2ab C.2ab D.4ab10.在下列等式中,A和B应表示什么式子?(1)(a+b+c)(a-b+c)=(A+B)(A-B)(2)(x+y-z)(x-y+z)=(A+B)(A-B)11.为了应用平方差公式计算(2x+y+z)(y-2x-z),下列变形正确的是()A.[2x-(y+z)] 2B.[2x+(y+z)][2x-(y+z)]C.[y+(2x+z)][y-(2x+z)] D.[z+(2x+y)][z-(2x+y)]12.计算:(1)(5m-6n)(-6n-5m)(2)(12x2y2+3m)(-3m+12x2y2)13.计算:(1)898×902 (2)303×297 (3)9.9×10.1 (4)30.8×29.214.计算:(1)(x+y)(x-y)+(y-z)(y+z)+(z-x)(z+x)(2)(3m2+5)(-3m2+5)-m2(7m+8)(7m-8)-(8m)2二、完全平方公式15.下列计算正确的是()A.(x+y)2=x2+y2B.(m-n)2=m2-2mn-n2C.(a+2)2=a2+2a+4 D.(m-3)2=m2-6m+916.已知m≠n,下列等式中计算正确的有()①(m-n)2=(n-m)2②(m-n)2=-(n-m)2③(m+n)(m-n)=(-m-n)·(-m+n)④(-m-n)2=-(m-n)2A.1个B.2个C.3个D.4个17.下列各式中,计算结果为1-2xy2+x2y4的是()A.(-1-x2y2)2B.(1-x2y2)2C.(-1+x2y2)2D.(xy2-1)2 18.计算(4a-3b)(-4a-3b)的结果为()A.16a2-9b2B.-16a2+9b2C.16a2-24ab+9b2D.-16a-24ab-9b219.计算:(1)(14a-13b)2(2)(-x2+3y2)2(3)(-a2-2b)2(4)(0.2x+0.5y)220.计算:(1)198×202 (2)5052【综合创新训练】一、创新应用21.化简求值:4x(x2-2x-1)+x(2x+5)(5-2x),其中x=-1.22.化简求值:(3x+2y)(3x-2y)-(3x+2y)2+(3x-2y)2,其中x=,y=-12.23.解方程:(x-3)(x+1)=x(2x+3)-(x2+1)24.解不等式:(x-4)2-(x-3)(x+4)<2(3x+2)二、巧思妙解25.1232-124×12226.22004200420052003-⨯27.1.23452+0.76552+2.469×0.7655 三、综合测试28.(-23a+3b)(23a+3b)(-23a-3b)(-23a+3b)29.(1+a+b)230.(m+2n-p)231.(3a-b)2-(2a+b)2+5b232.已知x+y=4,xy=2,求x2+y2的值.33.已知x2+4x+y2-2y+5=0,求x,y的值.四、探究学习观察下面各式规律:12+(1×2)2+22=(1×2+1)222+(2×3)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2……写出第n行的式子,并证明你的结论.答案:【基础能力训练】1.D 2.B 3.(1)∨(2)×4.(3x)2(4y)29x2-16y25.x4-1 6.2m+3n 7.3x+2y 8.C 9.D 10.(1)A代表a+c,B代表b (2)A代表x,B代表y-z11.C 12.(1)36n2-25m2(2)14x4y4-9m213.(1)原式=(900-2)(900+2)=9002-22=810 000-4=809 996 (2)原式=(300+3)(300-3)=3002-32=90 000-9=89 991 (3)原式=(10-0.1)(10+0.1)=102-0.12=100-0.01=99.99 (4)原式=(30+0.8)(30-0.8)=302-0.82=900-0.64=899.36 14.(1)0 (2)25-58m415.D 16.B 17.D 18.B19.(1)116a2-16ab+19b2(2)x4-6x2y2+9y4(3)a4+4a2b+4b2(4)0.04x2+0.2xy+0.25y2 20.(1)39 996 (2)255 025【综合创新应用】21.原式=4x3-8x2-4x+10x2-4x3+25x-10x2=-8x2+21x,当x=-1时,原式=-8-21=-29.22.原式=9x2-4y2-(9x2+12xy+4y2)+9x2-12xy+4y2 =9x2-4y2-9x2-12xy-4y2+9x2-12xy+4y2=9x2-24xy-4y2把x=13,y=-12代入得4.23.去括号,得x2+x-3x-3=2x2+3x-x2-1,合并,得x2-2x-3=x2+3x-1,移项,得x2-2x-x2-3x=-1+3,合并同类项,得-5x=2,系数化为1,得x=-25. 24.去括号,得x 2-8x+16-x 2-4x+3x+12<6x+4,移项,得x 2-x 2-8x -4x+3x -6x<4-16-12,•合并同类项,得-15x<-24,系数化为1,得x>85. 25.原式=1232-(123+1)(123-1)=1232-(1232-12)=1.26.原式=220042004(20041)(20041)-+- 2222200420042004(20041)200420041==---+=2004. 27.原式=(1.234 5+0.765 5)2=22=4.28.原式=[(3b )2-(23a )2]×[(-23a )2-(3b )2] =(9b 2-49a 2)(49a 2-9b 2)=-(9b 2-49a 2)(9b 2-49a 2) =-(9b 2-a 2)2=-81b 4+8a 2b 2-1681a 4. 29.原式=[1+(a+b )] 2=1+2(a+b )+(a+b )2=1+2a+2b+a 2+2ab+b 2.30.原式=[(m+2n )-p] 2=(m+2n )2-2p (m+2n )+p 2=m 2+4mn+4n 2-2pm -4pm+p 2.31.原式=9a 2-6ab+b 2-4a 2-4ab -b 2+5b 2=5a 2-10ab+5b 2.32.x 2+y 2=(x+y )2-2xy=42-2×2=12.33.x 2+4x+y 2-2y+5=0,变形为:(x 2+4x+4)+(y 2-2y+1)=0,即(x+2)2+(y -1)2=0,又因(•x+2)2与(y -1)2皆是非负数,所以(x+2)2=0且(y -1)2=0,即x+2=0,y -1=0,解得x=-2,y=1.【探究学习】第n 个式子:n 2+[n (n+1)] 2+(n+1)2=[n (n+1)+1] 2证明:因为左边n 2+[n (n+1)] 2+(n+1)2=n 2+(n 2+n )2+(n+1)2=(n 2+n )2+n 2+n 2+2n+1=(n 2+n )2+•2(n 2+n )+1=(n 2+n+1)2,而右边=(n 2+n+1)2,所以左边=右边,成立.。
初二年级上乘法公式练习题

初二年级上乘法公式练习题一、多位数乘一位数1. 58 × 7 = ______解:首先将个位上的数字7乘以被乘数58的个位上的数字8,得到56,将6写在个位上,将5进位;然后将个位数7乘以被乘数58的十位数5,得到35,加上进位的5,得到40,将0写在十位上,将4进位;最后将个位数7乘以被乘数58的百位数,得到49,再加上进位的4,得到53,将3写在百位上,将5进位。
所以,58 × 7 = 406。
2. 293 × 6 = ______解:首先将个位上的数字6乘以被乘数293的个位上的数字3,得到18,将8写在个位上,将1进位;然后将个位数6乘以被乘数293的十位数9,得到54,加上进位的1,得到55,将5写在十位上,将5进位;最后将个位数6乘以被乘数293的百位数2,得到12,再加上进位的5,得到17,将7写在百位上,将1进位。
所以,293 × 6 = 1758。
二、两位数乘两位数1. 34 × 57 = ______解:将个位数7分别乘以乘数34的个位4和十位3,得到28和21,并将结果相加,得到49,将9写在个位上,将4进位;然后将十位数5分别乘以乘数34的个位4和十位3,得到20和15,并将结果相加,得到35,再加上进位的4,得到39,将9写在十位上,将3进位;最后将个位数7分别乘以乘数34的百位,得到28,并将结果写在百位上。
所以,34 × 57 = 1938。
2. 76 × 28 = ______解:将个位数8分别乘以乘数76的个位6和十位7,得到48和56,并将结果相加,得到104,将4写在个位上,将10进位;然后将十位数2分别乘以乘数76的个位6和十位7,得到12和14,并将结果相加,得到26,再加上进位的10,得到36,将6写在十位上,将3进位;最后将个位数8分别乘以乘数76的百位7,得到56,并将结果写在百位上。
乘法公式——完全平方公式专题训练试题精选(一)附答案

完全平方公式专题训练试题精选(一)一.选择题(共30小题)1.(2014•六盘水)下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2D.m2+m=m32.(2014•本溪)下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a53.(2014•台湾)算式999032+888052+777072之值的十位数字为何?()A.1B.2C.6D.84.(2014•遵义)若a+b=2,ab=2,则a2+b2的值为()A.6B.4C.3D.25.(2014•南平模拟)下列计算正确的是()A.5a2﹣3a2=2 B.(﹣2a2)3=﹣6a6C.a3÷a=a2D.(a+b)2=a2+b2 6.(2014•拱墅区二模)如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,7.(2012•鄂州三月调考)已知,则的值为()A.B.C.D.无法确定8.(2012•西岗区模拟)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x2+y2=x2y2C.x2y+xy2=x3y3D.x2÷x4=x﹣29.(2011•天津)若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=010.(2011•深圳)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x611.(2011•浦东新区二模)下列各式中,正确的是()A.a6+a6=a12B.a4•a4=a16C.(﹣a2)3=(﹣a3)2D.(a﹣b)2=(b﹣a)212.(2010•台湾)若a满足(383﹣83)2=3832﹣83×a,则a值为()A.83 B.383 C.683 D.76613.(2010•钦州)下列各式运算正确的是()A.3a2+2a2=5a4B.(a+3)2=a2+9 C.(a2)3=a5D.3a2•2a=6a314.(2009•娄底)下列计算正确的是()A.(a﹣b)2=a2﹣b2B.a2•a3=a5C.2a+3b=5ab D.3﹣2=115.(2009•海南)在下列各式中,与(a﹣b)2一定相等的是()A.a2+2ab+b2B.a2﹣b2C.a2+b2D.a2﹣2ab+b216.(2009•顺义区一模)下列运算正确的是()A.a2+3a2=4a4B.3a2.a=3a3C.(3a3)2=9a5D.(2a+1)2=4a2+1 17.(2008•海淀区二模)如果实数x,y满足,那么xy的值等于()A.1B.2C.3D.518.(2007•云南)已知x+y=﹣5,xy=6,则x2+y2的值是()A.1B.13 C.17 D.2519.(2007•湘潭)下列计算正确的()A.x2•x3=x6B.(x﹣1)2=x2﹣1 C.D.3x2y﹣x2y=2x2y20.(2005•福州)小马虎在下面的计算中只做对了一道题,他做对的题目是()A.(a﹣b)2=a2﹣b2B.(﹣2a3)2=4a6C.a3+a2=2a5D.﹣(a﹣1)=﹣a﹣121.(2005•日照)某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、b,都有a+b≥2成立.某同学在做一个面积为3 600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备xcm.则x的值是()A.120B.60C.120 D.6022.(2005•黄冈)下列运算中正确的是()A.x5+x5=2x10B.﹣(﹣x)3•(﹣x)5=﹣x8C.(﹣2x2y)3•4x﹣3=﹣24x3y3D.(x﹣3y)(﹣x+3y)=x2﹣9y2 23.(2004•郑州)已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2﹣ab﹣bc﹣ac的值是()A.4B.3C.2D.124.(2004•临沂)如果x﹣=3,那么x2+=()A.5B.7C.9D.1125.(2003•宁夏)当x=﹣2时,代数式﹣x2+2x﹣1的值等于()A.9B.﹣9 C.1D.﹣126.(2001•重庆)已知,的值为()A.B.C.D.无解27.(1999•烟台)已知a+b=3,a3+b3=9,则ab等于()A.1B.2C.3D.428.(1999•南京)下列计算正确的是()A.(a+b)(a2+ab+b2)=a3+b3B.(a+b)2=a2+b2C.(a﹣b)(a2+2ab+b2)=a3﹣b3D.(a﹣b)2=a2﹣2ab+b229.(1998•台州)下列运算正确的是()A.B.(a+b)2=a2+b2C.|2﹣π|=π﹣2 D.(a2)3=a530.若M=3x2﹣8xy+9y2﹣4x+6y+13(x,y是实数),则M的值一定是()A.零B.负数C.正数D.整数完全平方公式专题训练试题精选(一)参考答案与试题解析一.选择题(共30小题)1.(2014•六盘水)下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2D.m2+m=m3考点:幂的乘方与积的乘方;合并同类项;完全平方公式.分析:运用积的乘方,合并同类项及完全平方公式计算即可.解答:解:A、(﹣2mn)2=4m2n2 故A选项正确;B、y2+y2=2y2,故B选项错误;C、(a﹣b)2=a2+b2﹣2ab故C选项错误;D、m2+m不是同类项,故D选项错误.故选:A.点评:本题主要考查了积的乘方,合并同类项及完全平方公式,熟记计算法则是关键.2.(2014•本溪)下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a5考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.解答:解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2•a3=2a5,故D选项正确,故选:D.点评:本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.3.(2014•台湾)算式999032+888052+777072之值的十位数字为何?()A.1B.2C.6D.8考点:完全平方公式.分析:分别得出999032、888052、777072的后两位数,再相加即可得到答案.解答:解:999032的后两位数为09,888052的后两位数为25,777072的后两位数为49,09+25+49=83,所以十位数字为8,故选:D.点评:本题主要考查了数的平方,计算出每个平方数的后两位是解题的关键.4.(2014•遵义)若a+b=2,ab=2,则a2+b2的值为()A.6B.4C.3D.2考点:完全平方公式.分析:利用a2+b2=(a+b)2﹣2ab代入数值求解.解答:解:a2+b2=(a+b)2﹣2ab=8﹣4=4,故选:B.点评:本题主要考查了完全平方公式的应用,解题的关键是牢记完全平方公式,灵活运用它的变化式.5.(2014•南平模拟)下列计算正确的是()A.5a2﹣3a2=2 B.(﹣2a2)3=﹣6a6C.a3÷a=a2D.(a+b)2=a2+b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据合并同类项,幂的乘方,同底数幂的除法及完全平方公式判定.解答:A、5a2﹣3a2=2a2≠2,故选项错误;B、(﹣2a2)3=﹣8a6≠﹣6a6,故选项错误;C,a3÷a=a2,故选项正确;D,(a+b)2≠a2+b2,故选项错误.故选:C.点评:本题主要考查了合并同类项,幂的乘方,同底数幂的除法及安全平方公式的运算,解题的关键是熟记法则运算6.(2014•拱墅区二模)如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,考点:完全平方公式.专题:计算题.分析:运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:解:∵ax2+2x+=4x2+2x++m,∴,解得.故选D.点评:本题考查了完全平方公式,利用公式展开,根据对应项系数相等列式是求解的关键.7.(2012•鄂州三月调考)已知,则的值为()A.B.C.D.无法确定考点:完全平方公式.分析:把已知两边平方后展开求出a2+=8,再求出(a﹣)2的值,再开方即可.解答:解:∵a+=,∴两边平方得:(a+)2=10,展开得:a2+2a•+=10,∴a2+=10﹣2=8,∴(a﹣)2=a2﹣2a•+=a2+﹣2=8﹣2=6,∴a﹣=±,故选C.点评:本题考查了完全平方公式的灵活运用,注意:(a±b)2=a2±2ab+b2.8.(2012•西岗区模拟)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x2+y2=x2y2C.x2y+xy2=x3y3D.x2÷x4=x﹣2考点:完全平方公式;合并同类项;同底数幂的除法.分析:根据完全平方式:(x±y)2=x2±2xy+y2,与幂的运算即可求得答案.解答:解:A、(x﹣y)2=x2﹣2xy+y2,故此选项错误;B、x2+y2≠x2y2,故此选项错误;C、x2y+xy2=xy(x+y),故此选项错误;D、x2÷x4=x﹣2,故此选项正确.故选D.点评:此题考查了幂的性质与完全平方式等知识.题目比较简单,解题要细心.9.(2011•天津)若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=0考点:完全平方公式.专题:计算题;压轴题.分析:首先将原式变形,可得x2+z2+2xz﹣4xy+4xz+4y2﹣4yz=0,则可得(x+z﹣2y)2=0,则问题得解.解答:解:∵(x﹣z)2﹣4(x﹣y)(y﹣z)=0,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=0,∴x2+z2+2xz﹣4xy+4y2﹣4yz=0,∴(x+z)2﹣4y(x+z)+4y2=0,∴(x+z﹣2y)2=0,∴z+x﹣2y=0.故选D.点评:此题考查了完全平方公式的应用.解题的关键是掌握:x2+z2+2xz﹣4xy+4y2﹣4yz=(x+z﹣2y)2.10.(2011•深圳)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x6考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项的法则、完全平方公式、同底数幂的乘法以及幂的乘方的性质即可求得答案.解答:解:A、x2+x3≠x5,故本选项错误;B、(x+y)2=x2+y2+2xy,故本选项错误;C、x2•x3=x5,故本选项错误;D、(x2)3=x6,故本选项正确.故选D.点评:此题考查了合并同类项的法则、完全平方公式、同底数幂的乘法以及幂的乘方的性质.解题的关键是熟记公式.11.(2011•浦东新区二模)下列各式中,正确的是()A.a6+a6=a12B.a4•a4=a16C.(﹣a2)3=(﹣a3)2D.(a﹣b)2=(b﹣a)2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、合并同类项,系数相加即可.B、同底数幂的乘法运算法则解答;C、幂的乘方的计算法则解答;D、完全平方公式的运用.解答:解:A、合并同类项,系数相加,指数与底数均不变.所以a6+a6=2a6.故本选项错误;B、同底数的幂的乘法,底数不变,指数相加.所以a4•a4=a8.故本选项错误;C、幂的乘方,底数不变,指数相乘,所以(﹣a2)3=﹣(﹣a3)2.故本选项错误;D、(a﹣b)2=[﹣(a﹣b)]2=(b﹣a)2.故本选项正确;故选D.点评:本题综合考查了完全平方公式、合并同类项、同底数幂的乘法、幂的乘方与积的乘方.此题是基础题,难度不大.12.(2010•台湾)若a满足(383﹣83)2=3832﹣83×a,则a值为()A.83 B.383 C.683 D.766考点:完全平方公式.分析:首先利用完全平方公式把(383﹣83)2展开,然后根据等式右边的结果即可得到a的值.解答:解:∵(383﹣83)2=3832﹣2×383×83+832,而(383﹣83)2=3832﹣83×a,∴﹣83×a=﹣2×383×83+832,∴a=683.故选C.点评:此题主要考查了完全平方公式,利用公式展开后即可得到关于所求字母的方程,解方程即可解决问题.13.(2010•钦州)下列各式运算正确的是()A.3a2+2a2=5a4B.(a+3)2=a2+9 C.(a2)3=a5D.3a2•2a=6a3考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:分别根据合并同类项、完全平方公式、幂的乘方和积的乘方以及同底数幂的乘法法则计算即可判断正误.解答:解:A、应为3a2+2a2=5a2,故本选项错误;B、应为(a+3)2=a2+6a+9,故本选项错误;C、应为(a2)3=a6,故本选项错误;D、3a2•2a=6a3,正确.故选D.点评:本题考查合并同类项法则,幂的乘方和积的乘方的性质,完全平方公式,需熟练掌握且区分清楚,才不容易出错.14.(2009•娄底)下列计算正确的是()A.(a﹣b)2=a2﹣b2B.a2•a3=a5C.2a+3b=5ab D.3﹣2=1考点:完全平方公式;合并同类项;同底数幂的乘法.分析:根据完全平方公式、同底数幂的乘法、合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、应为(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、a2•a3=a2+3=a5,正确;C、2a与3b不是同类项,不能合并,故本选项错误;D、3与2不是同类二次根式,不能合并,故本选项错误.故选B.点评:本题考查了完全平方公式,同底数幂的乘法,合并同类项,熟练掌握法则和性质是解题的关键,完全平方公式学生出错率比较高.15.(2009•海南)在下列各式中,与(a﹣b)2一定相等的是()A.a2+2ab+b2B.a2﹣b2C.a2+b2D.a2﹣2ab+b2考点:完全平方公式.分析:根据完全平方公式:(a﹣b)2=a2﹣2ab+b2.判定即可.解答:解:(a﹣b)2=a2﹣2ab+b2.故选D.点评:本题考查完全平方公式.(a﹣b)2=a2﹣2ab+b2.易错易混点:学生易把完全平方公式与平方差公式混在一起.16.(2009•顺义区一模)下列运算正确的是()A.a2+3a2=4a4B.3a2.a=3a3C.(3a3)2=9a5D.(2a+1)2=4a2+1考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,同底数幂的乘法法则,积的乘方的性质,完全平方公式,对各选项分析判断后利用排除法求解.解答:解:A、错误,应等于4a2;B、3a2.a=3a3,正确;C、错误,应等于9a6;D、错误,应等于4a2+4a+1.故选B.点评:本题考查了合并同类项、同底数幂的乘法,积的乘方的性质,完全平方公式,熟练掌握法则、性质和公式并灵活运用是解题的关键.17.(2008•海淀区二模)如果实数x,y满足,那么xy的值等于()A.1B.2C.3D.5考点:完全平方公式;非负数的性质:偶次方;非负数的性质:算术平方根;解一元一次方程.专题:计算题.分析:根据已知得出+(y﹣2)2=0,根据算术平方根、完全平方的非负性得出=0,y﹣2=0,求出即可.解答:解:,+(y﹣2)2=0,∴=0,y﹣2=0,∴x=1,y=2∴xy=1×2=2.故选B.点评:本题主要考查对完全平方公式,非负数的性质﹣偶次方、算术平方根,解一元一次方程等知识点的理解和掌握,能得出=0和y﹣2=0是解此题的关键.18.(2007•云南)已知x+y=﹣5,xy=6,则x2+y2的值是()A.1B.13 C.17 D.25考点:完全平方公式.专题:计算题;压轴题.分析:先把所求式子变形为完全平方式,再把题中已知条件代入即可解答.解答:解:由题可知:x2+y2=x2+y2+2xy﹣2xy,=(x+y)2﹣2xy,=25﹣12,=13.故选B.点评:本题考查了同学们对完全平方公式灵活运用能力.19.(2007•湘潭)下列计算正确的()A.x2•x3=x6B.(x﹣1)2=x2﹣1 C.D.3x2y﹣x2y=2x2y考点:完全平方公式;算术平方根;合并同类项;同底数幂的乘法.分析:根据同底数相乘,底数不变指数相加,完全平方公式,算术平方根,合并同类项法则,对各选项分析判断后利用排除法求解.解答:解:A、应为x2•x3=x2+3=x5,故本选项错误;B、应为(x﹣1)2=x2﹣2x+1,故本选项错误;C、应为=3,故本选项错误;D、3x2y﹣x2y=(3﹣1)x2y=2x2y,正确.故选D.点评:本题考查同底数幂的乘法,完全平方公式,算术平方根,合并同类项的法则,熟练掌握运算性质和法则是解题的关键.20.(2005•福州)小马虎在下面的计算中只做对了一道题,他做对的题目是()A.(a﹣b)2=a2﹣b2B.(﹣2a3)2=4a6C.a3+a2=2a5D.﹣(a﹣1)=﹣a﹣1考点:完全平方公式;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:根据完全平方公式,积的乘方的性质进行计算.解答:解:A、错误,应等于a2﹣2ab+b2;B、正确;C、错误,a3与a2不是同类项,不能合并;D、错误,﹣(a﹣1)=﹣a+1.故选B.点评:本题主要考查完全平方公式,积的乘方,合并同类项,去括号法则,熟练掌握性质和法则是解题的关键,运用完全平方公式时同学们经常漏掉乘积二倍项而导致出错.21.(2005•日照)某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、b,都有a+b≥2成立.某同学在做一个面积为3 600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备xcm.则x的值是()A.120B.60C.120 D.60考点:完全平方公式.专题:应用题;压轴题.分析:当一个四边形对角线长为a,b,且相互垂直时,其面积为:.解答:解:由题意得:=3600,则ab=7200,所以有a+b≥2,即a+b≥120.故选A.点评:此题是一道阅读理解类型题目,注意理解题目给出的条件,熟记对角线互相垂直的四边形的面积等于对角线乘积的一半是解题的关键.22.(2005•黄冈)下列运算中正确的是()A.x5+x5=2x10B.﹣(﹣x)3•(﹣x)5=﹣x8C.(﹣2x2y)3•4x﹣3=﹣24x3y3D.(x﹣3y)(﹣x+3y)=x2﹣9y2考点:完全平方公式;合并同类项;同底数幂的乘法;单项式乘单项式.分析:根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,单项式的乘法法则;完全平方公式,对各选项计算后利用排除法求解.解答:解:A、应为x5+x5=2x5,故本选项错误;B、﹣(﹣x)3•(﹣x)5=﹣(﹣x)3+5=﹣x8,正确;C、应为(﹣2x2y)3•4x﹣3=﹣8x6y3•4x﹣3=﹣8x3y3,故本选项错误;D、(x﹣3y)(﹣x+3y)=﹣(x﹣3y)2,故本选项错误.故选B.点评:本题考查合并同类项、同底数幂的乘法,单项式的乘法,完全平方公式,熟练掌握运算法则和性质是解题的关键.23.(2004•郑州)已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2﹣ab﹣bc﹣ac的值是()A.4B.3C.2D.1考点:完全平方公式.专题:压轴题.分析:已知条件中的几个式子有中间变量x,三个式子消去x即可得到:a﹣b=1,a﹣c=﹣1,b﹣c=﹣2,用这三个式子表示出已知的式子,即可求值.解答:解:法一:a2+b2+c2﹣ab﹣bc﹣ac,=a(a﹣b)+b(b﹣c)+c(c﹣a),又由a=x+20,b=x+19,c=x+21,得(a﹣b)=x+20﹣x﹣19=1,同理得:(b﹣c)=﹣2,(c﹣a)=1,所以原式=a﹣2b+c=x+20﹣2(x+19)+x+21=3.故选B.法二:a2+b2+c2﹣ab﹣bc﹣ac,=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac),=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)],=[(a﹣b)2+(a﹣c)2+(b﹣c)2],=×(1+1+4)=3.故选B.点评:本题若直接代入求值会很麻烦,为此应根据式子特点选择合适的方法先进行化简整理,化繁为简,从而达到简化计算的效果,对完全平方公式的灵活运用是解题的关键.24.(2004•临沂)如果x﹣=3,那么x2+=()A.5B.7C.9D.11考点:完全平方公式.分析:根据完全平方公式:(a±b)2=a2±2ab+b2对等式两边平方整理即可求解.解答:解:原式=x2++2﹣2,=(x﹣)2+2,=9+2,=11.故选D.点评:本题主要考查完全平方公式,利用好乘积二倍项不含字母是解题的关键.25.(2003•宁夏)当x=﹣2时,代数式﹣x2+2x﹣1的值等于()A.9B.﹣9 C.1D.﹣1考点:完全平方公式.分析:先把代数式添加带“﹣”的括号,然后根据完全平方公式的逆用整理后代入数据计算即可.解答:解:﹣x2+2x﹣1,=﹣(x2﹣2x+1),=﹣(x﹣1)2,当x=﹣2时,原式=﹣(﹣2﹣1)2=﹣9.故选B.点评:本题考查完全平方公式,先添加带负号的括号是利用公式的关键.26.(2001•重庆)已知,的值为()A.B.C.D.无解考点:完全平方公式;实数的性质.分析:根据绝对值的性质去掉绝对值号,然后利用完全平方公式转化未知的式子变成已知的式子,求解即可.解答:解:(1)当a为负数时,整理得,+a=1,两边都平方得=1,∴=﹣1∴不合题意,应舍去.(2)当a为正数时,则,整理得,﹣a=1,两边都平方得=1,∴(+a)2=+2=5.解得=±.∵a是正数,∴值为.故选B.点评:本题考查了完全平方公式,关键是利用完全平方公式转化未知的式子为已知的式子.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.27.(1999•烟台)已知a+b=3,a3+b3=9,则ab等于()A.1B.2C.3D.4考点:完全平方公式.专题:计算题.分析:根据条件a+b=3,两边平方可求得a2+b2=9﹣2ab,再把条件a3+b3=9展成(a+b)和ab的形式,整体代入即可求得ab的值.解答:解:∵a+b=3,∴(a+b)2=a2+2ab+b2=9,∴a2+b2=9﹣2ab,∵a3+b3=(a+b)(a2﹣ab+b2)=(a+b)[(a+b)2﹣3ab)]=9,∴ab=2.故选B.点评:主要考查了完全公式的应用.要注意完全平方公式:(a±b)2=a2±2ab+b2,对a3+b3的准确分解是解本题的关键.28.(1999•南京)下列计算正确的是()A.(a+b)(a2+ab+b2)=a3+b3B.(a+b)2=a2+b2C.(a﹣b)(a2+2ab+b2)=a3﹣b3D.(a﹣b)2=a2﹣2ab+b2考点:完全平方公式.分析:根据多项式的乘法和完全平方公式,对各选项计算后利用排除法求解.解答:解:A、应为(a+b)(a2﹣ab+b2)=a3+b3,故本选项错误;B、应为(a+b)2=a2+2ab+b2,故本选项错误;C、应为(a﹣b)(a2+ab+b2)=a3﹣b3,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,正确.故选D.点评:本题主要考查完全平方公式和立方和(差)公式,熟记公式是解题的关键.29.(1998•台州)下列运算正确的是()A.B.(a+b)2=a2+b2C.|2﹣π|=π﹣2 D.(a2)3=a5考点:完全平方公式;算术平方根;幂的乘方与积的乘方.分析:是49的算术平方根,结果是7,(a+b)2是完全平方公式,结果应该有三项,绝对值的结果应该是非负数,幂的乘方,底数不变,指数相乘,应该是(a2)3=a6.解答:解:A、根据算术平方根的意义得:=7,故本选项错误;B、根据完全平方公式得:(a+b)2=a2+2ab+b2,故本选项错误;C、绝对值的意义可得,结果正确;D、幂的乘方得:(a2)3=a2×3=a6,故本选项错误.故选C.点评:本题主要考查了算术平方根,完全平方公式,绝对值的性质,幂的乘方的性质,熟练掌握运算性质和公式是解题的关键.30.若M=3x2﹣8xy+9y2﹣4x+6y+13(x,y是实数),则M的值一定是()A.零B.负数C.正数D.整数考点:完全平方公式;非负数的性质:偶次方.分析:本题可将M进行适当变形,将M的表达式转换为几个完全平方式的和,然后根据非负数的性质来得出M 的取值范围.解答:解:M=3x2﹣8xy+9y2﹣4x+6y+13,=(x2﹣4x+4)+(y2+6y+9)+2(x2﹣4xy+4y2),=(x﹣2)2+(y+3)2+2(x﹣2y)2>0.故选C.点评:本题主要考查了非负数的性质,将M的表达式根据完全平方公式的特点进行变形是解答本题的关键.。
最新整理初中数学试题试卷初二数学乘法公式练习题.doc

14.3乘法公式一、两数和乘以它们的差1、填空题⑴(b + a)(b-a) = _______________, (x-2) (x + 2) = _________________;⑵(3a + b) (3a-b) =________________, (2x2-3) (-2x2-3) = ______________________;⑶⑷(x + y) (-x + y) = ______________, (-7m-11n) (11n-7m) = ____________________;⑸;2、计算题(写过程)⑴⑵⑶⑷⑸⑹3、用简便方法计算(写过程)⑴92×88 ⑵⑶⑷4、计算二、两数和乘以它们的差一、选择题⑴下列可以用平方差公式计算的是( )A、(x-y) (x + y)B、(x-y) (y-x)C、(x-y)(-y + x)D、(x-y)(-x + y)⑵下列各式中,运算结果是的是( )A、B、C、D、⑶若,括号内应填代数式( )A、B、C、D、⑷等于( )A、B、C、D、二、计算题⑴x (9x-5)-(3x + 1) (3x-1) ⑵(a + b-c) (a-b + c)⑶⑷(2x-1) (2x + 1)-2(x-2) (x + 2)三、应用题学校警署有一块边长为(2a + b)米的正方形草坪,经统一规划后,南北向要缩短3米,而东西向要加长3米,问改造后的长方形草坪的面积是多少?4、解不等式一、填空题⑴(x + y)2=_________________,(x-y)2=______________________;⑵⑶⑷(3x + ________)2=__________+ 12x + ____________;⑸;⑹(x2-2)2-(x2 + 2)2 = _________________________;二、计算题(写过程)⑴⑵⑶⑷⑸⑹三、用简便方法计算(写过程)⑴982⑵20032 ⑶13.42-2×13.4 + 3.424、已知x + y = a , xy = b ,求(x-y) 2 ,x 2 + y 2,x 2-xy + y 2的值5、已知,求的值一、判断题⑴( )⑵(3a2 + 2b)2 = 9a4 + 4b2( )⑶( )⑷(-a + b) (a-b) = -(a-b) (a-b) = -a 2-2ab + b2( )二、选择题⑴的运算结果是( )A、B、C、D、⑵运算结果为的是( )A、B、C、D、⑶已知是一个完全平方式,则N等于( )A、8B、±8C、±16D、±32⑷如果,那么M等于( )A、2xyB、-2xyC、4xyD、-4xy三、计算题⑴⑵⑶⑷4、已知(a + b) 2 =3,(a-b) 2 =2 ,分别求a 2 + b 2,ab的值。
乘法公式——完全平方公式专题训练试题精选(四)附答案

完全平方公式专题训练试题精选(四)一.选择题(共17小题)1.如果1﹣+=0,那么等于()A.﹣2 B.﹣1 C.1D.22.如果(a﹣x)2=a2+ya+,则x、y的值分别为()A.,﹣或﹣,B.﹣,﹣C.﹣,D.,3.当a(a﹣1)﹣(a2﹣b)=﹣2时,则﹣ab的值为()A.﹣2 B.2C.4D.84.若a﹣=2,则a2+的值为()A.0B.2C.4D.65.如果a﹣b=2,a﹣c=,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A.B.C.D.不能确定6.若m≠n,下列等式中正确的是()①(m﹣n)2=(n﹣m)2;②(m﹣n)2=﹣(n﹣m)3;③(m+n)(m﹣n)=(﹣m﹣n)(﹣m+n);④(﹣m﹣n)2=﹣(m﹣n)2.A.1个B.2个C.3个D.4个7.若x﹣y=2,x2+y2=4,则x1992+y1992的值是()A.4B.19922C.21992D.419928.如果实数a,b,c满足a2+b2+c2=ab+bc+ca,那么()A.a,b,c全相等B.a,b,c不全相等C.a,b,c全不相等D.a,b,c可能相等,也可能不等9.当ab<0时,(a+b)2与(a﹣b)2的大小关系是()A.(a﹣b)2>(a+b)2B.(a﹣b)2=(a+b)2C.(a﹣b)2<(a+b)2D.无法确定10.若x﹣x﹣1=1,则的值是()A.1B.7C.9D.11 11.若a、b、c均为非零有理数,a2+b2+c2=(a+b+c)2,则=()A.8B.27 C.64 D.112.已知x﹣=2,则以下结论中:①;②;③有()个是正确的.A.3B.2C.l D.013.已知ab+5=0,a﹣b=5,则a+b的值是()A.5B.0C.2D.非以上答案14.若x、y、z满足x+y=6且z2=xy﹣9,则z的值是()A.±1 B.0C.1D.﹣115.已知=O,a2+b2+c2=1,则a+b+c的值等于()A.1B.﹣1 C.1或﹣1 D.O16.若,则27=()A.0B.54C.D.17.△ABC的三边为a、b、c,且满足+3.25=2×,则△ABC是()A.直角三角形B.等腰三角形C.等边三角形D.以上答案都不对二.填空题(共13小题)18.(2014•孝感)若a﹣b=1,则代数式a2﹣b2﹣2b的值为_________.19.(2014•徐州一模)已知x﹣=1,则x2+=_________.20.(2011•平谷区二模)已知,那么x2+y2=_________.21.(2010•浦口区二模)若a﹣b=3,ab=1,则a2+b2=_________.22.(2010•晋江市质检)已知0≤x≤1.(1)若x﹣2y=6,则y的最小值是_________;(2)若x2+y2=3,xy=1,则x﹣y=_________.23.(2009•烟台)设a>b>0,a2+b2﹣6ab=0,则的值等于_________.24.(2009•厦门质检)x2+4x+4=(_________)2.25.(2005•宁波)已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于_________.26.(2005•连云港)如果2x﹣4的值为5,那么4x2﹣16x+16的值是_________.27.(2004•天津)已知x2+y2=25,x+y=7,且x>y,则x﹣y的值等于_________.28.(2004•山西)已知x+y=1,则x2+xy+y2=_________.29.(2002•长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_________a3b+_________a2b2+_________ab3+b4.30.(2001•昆明)x2﹣x+_________=(x﹣)2完全平方公式专题训练试题精选(四)参考答案与试题解析一.选择题(共17小题)1.如果1﹣+=0,那么等于()A.﹣2 B.﹣1 C.1D.2考点:完全平方公式.分析:完全平方公式:(a±b)2=a2±2ab+b2,形如a2±2ab+b2的式子要符合完全平方公式的形式a2±2ab+b2=(a±b)2才成立.解答:解:∵1﹣+=(1﹣)2,∴(1﹣)2=0,∴1﹣=0,解得=1.故选C.点评:本题考查了完全平方公式,熟练掌握公式结构是解题的关键.2.如果(a﹣x)2=a2+ya+,则x、y的值分别为()A.,﹣或﹣,B.﹣,﹣C.﹣,D.,考点:完全平方公式.分析:把等号左边的式子展开,等于等号右边的式子,再根据对应项系数相等列式求解.解答:解:∵(a﹣x)2=a2+ax+x2,∴a2﹣ax+x2=a2+ya+,∴x2=,﹣ax=ya,解得x=,y=﹣或x=﹣,y=.故选A.点评:主要考查了完全平方式的运用,要求掌握完全平方公式,根据对应项系数相等列式是求解的关键.3.当a(a﹣1)﹣(a2﹣b)=﹣2时,则﹣ab的值为()A.﹣2 B.2C.4D.8考点:完全平方公式;单项式乘多项式.分析:先把条件化简得到a﹣b的值,再把代数式通分后利用完全平方式整理,然后整体代入计算.解答:解:a(a﹣1)﹣(a2﹣b)=﹣2,去括号并整理,得a﹣b=2,﹣ab==,∴﹣ab==2.故选B.点评:本题考查了完全平方公式,通分后构成完全平方公式是解本题的关键,整体代入思想的利用也比较关键.4.若a﹣=2,则a2+的值为()A.0B.2C.4D.6考点:完全平方公式.分析:完全平方公式:(a±b)2=a2±2ab+b2.把a﹣=2两边平方可得到a2﹣2a•+()2=4,展开即可求得所求的代数式的值.解答:解:∵a﹣=2,∴(a﹣)2=22,∴a2﹣2a•+()2=4,∴a2﹣2+=4,∴a2+=6.故选D.点评:主要考查完全平方式,乘积二倍项不含字母是解本题的关键.5.如果a﹣b=2,a﹣c=,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A.B.C.D.不能确定考点:完全平方公式.专题:计算题.分析:把多项式扩大二倍,根据完全平方公式写成三个完全平方式,然后根据a﹣b=2,a﹣c=,求出b﹣c,代入求解即可.解答:解:a2+b2+c2﹣ab﹣ac﹣bc,=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc),=[(a2+b2﹣2ab)+(a2+c2﹣2ac)+(b2+c2﹣2bc)],=[(a﹣b)2+(a﹣c)2+(b﹣c)2],∵a﹣b=2,a﹣c=,∴b﹣c=﹣,∴原式=(4++)=.故选A.点评:本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,解题关键是对原多项式扩大二倍凑成完全平方式.6.若m≠n,下列等式中正确的是()①(m﹣n)2=(n﹣m)2;②(m﹣n)2=﹣(n﹣m)3;③(m+n)(m﹣n)=(﹣m﹣n)(﹣m+n);④(﹣m﹣n)2=﹣(m﹣n)2.A.1个B.2个C.3个D.4个考点:完全平方公式.分析:根据偶次幂的性质和完全平方公式,对各选项分析判断后利用排除法求解.解答:解:①(m﹣n)2=(n﹣m)2左右相等所以成立;②(m﹣n)2=﹣(n﹣m)3等号左右两边不相等,所以不成立;③(m+n)(m﹣n)=(﹣m﹣n)(﹣m+n)右边提出负号后可看出左右相等,所以成立;④(﹣m﹣n)2=﹣(m﹣n)2左右两边不相等,所以不成立.所以①③两个成立.故选B.点评:本题考查了完全平方公式,要求掌握完全平方公式,并熟悉其特点.易错点是符号的变化规律,以及偶次幂和奇次幂的性质.7.若x﹣y=2,x2+y2=4,则x1992+y1992的值是()A.4B.19922C.21992D.41992考点:完全平方公式.专题:计算题.分析:由题意x﹣y=2,x2+y2=4,可以分别解出x,y,然后将其代入x1992+y1992进行求解.解答:解:由x﹣y=2①平方得x2﹣2xy+y2=4②又已知x2+y2=4③③﹣②得2xy=0⇒xy=0∴x,y中至少有一个为0,但x2+y2=4.因此,x,y中只能有一个为0,另一个为2或﹣2.无论哪种情况,都有x1992+y1992=01992+(±2)1992=21992,故选C.点评:此题考查完全平方式的性质及其应用,解题的关键是利用x2+y2=(x﹣y)2+2xy进行求解,是一道好题.8.如果实数a,b,c满足a2+b2+c2=ab+bc+ca,那么()A.a,b,c全相等B.a,b,c不全相等C.a,b,c全不相等D.a,b,c可能相等,也可能不等考点:完全平方公式;非负数的性质:偶次方.分析:由题意实数a,b,c满足a2+b2+c2=ab+bc+ca,把其凑成完全平方式然后求解.解答:解:∵a2+b2+c2=ab+ac+bc,∴2a2+2b2+2c2=2(ab+ac+bc),∴a2+b2﹣2ab+a2+c2﹣2ac+b2+c2﹣2bc=0,∴(a﹣b)2+(a﹣c)2+(b﹣c)2=0,又∵(a﹣b)2≥0,(a﹣c)2≥0,(b﹣c)2≥0,∴a=b且a=c,即a=b=c,故选A.点评:此题主要考查完全平方式的性质,解题的关键是把已知条件凑成完全平方式.9.当ab<0时,(a+b)2与(a﹣b)2的大小关系是()A.(a﹣b)2>(a+b)2B.(a﹣b)2=(a+b)2C.(a﹣b)2<(a+b)2D.无法确定考点:完全平方公式.分析:首先利用完全平方公式分别把(a+b)2与(a﹣b)2展开,然后利用作差法结合ab<0即可判定大小关系.解答:解:(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=4ab,而ab<0,∴(a+b)2﹣(a﹣b)2<0.故选A.点评:此题主要考查了完全平方公式的应用,解题的关键是利用完全平方公式展开括号,然后利用作差法比较大小.10.若x﹣x﹣1=1,则的值是()A.1B.7C.9D.11考点:完全平方公式.专题:计算题.分析:根据完全平方公式,对已知的算式x﹣x﹣1=1的两边完全平方求得x2+=3,然后对所求的代数式利用完全平方公式进行变形,将x2+=3整体代入并求值即可.解答:解:∵x﹣x﹣1=1,∴x﹣=1,∴(x﹣)2=x2﹣2+=1,∴x2+=3;∴=(x2+)2﹣2=32﹣2=7,即=7.故选B.点评:本题主要考查完全平方公式,熟记公式的几个变形公式对解题大有帮助.11.若a、b、c均为非零有理数,a2+b2+c2=(a+b+c)2,则=()A.8B.27 C.64 D.1考点:完全平方公式.分析:由完全平方公式,可得:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,又由a2+b2+c2=(a+b+c)2,即可得到,代入求解即可.解答:解:∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a2+b2+c2=(a+b+c)2,∴ab+ac+bc=0,∴.∴=(﹣1+3)3=8.故选A.点评:此题考查了完全平方公式的应用.题目较简单,解题时要细心.12.已知x﹣=2,则以下结论中:①;②;③有()个是正确的.A.3B.2C.l D.0考点:完全平方公式.分析:将各式分别求解即可求得结果.解答:解:∵x﹣=2,∴①(x﹣)2=x2+﹣1=4,即x2+=5;②x3﹣=(x﹣)(x2++)=2×(5+)=11;③x5+=(x+)[(x﹣)(x3﹣)+1]=23(x+),∵(x+)2=(x﹣)2+2=6,∴x+=±,∴x5+=±23;故有2个正确.故选B.点评:此题考查了完全平方公式与因式分解.注意掌握高次幂的求解方法.13.已知ab+5=0,a﹣b=5,则a+b的值是()A.5B.0C.2D.非以上答案考点:完全平方公式.专题:计算题.分析:首先根据完全平方公式将(a+b)2用(a﹣b)2与ab的代数式表示,然后把a﹣b,ab的值整体代入,即可求得a+b的值.解答:解:∵ab+5=0,∴ab=﹣5,∵a﹣b=5,∴(a+b)2=(a﹣b)2+4ab=(﹣5)2+4×(﹣5)=5,∴a+b=±.故选D.点评:本题考查了完全平方公式,关键是要了解(x﹣y)2与(x+y)2展开式中区别就在于2xy项的符号上,通过加上或者减去4xy可相互变形得到.14.若x、y、z满足x+y=6且z2=xy﹣9,则z的值是()A.±1 B.0C.1D.﹣1考点:完全平方公式;非负数的性质:偶次方.分析:利用完全平方公式,得(x﹣y)2≥0,则xy≤==﹣xy,则xy≤9,从而得到z2=xy﹣9≤0,进而求解.解答:解:∵(x﹣y)2≥0,∴xy≤==﹣xy,即xy≤9,∴z2=xy﹣9≤0,又z2≥0,∴z=0.故选B.点评:此题考查了完全平方公式的运用和平方数的性质,即任何数的平方都是非负数.15.已知=O,a2+b2+c2=1,则a+b+c的值等于()A.1B.﹣1 C.1或﹣1 D.O考点:完全平方公式.专题:计算题.分析:先对已知条件进行通分、计算,然后求出bc+ac+ab=0;再根据a2+b2+c2=1、bc+ac+ab=0两式计算(a+b+c)2的值;最后开平方即可.解答:解:∵==0,∴bc+ac+ab=0,又∵(a+b+c)2,=a2+b2+c2+2(bc+ac+ab),=1+0,=1;∴a+b+c=±1.故选C.点评:本题考查了完全平方公式.解答此题的难点是根据完全平方公式计算(a+b+c)2=a2+b2+c2+2(bc+ac+ab),在计算时,先把(a+b)看成一个整体,然后再展开完全平方式.16.若,则27=()A.0B.54C.D.考点:完全平方公式.专题:计算题.分析:求出开方得:a+=±,①a+=,平方后求出a2+=,代入27(a+)(a2﹣a•+),求出即可;②a+=﹣时,同法可求出求出27a3+.解答:解:开方得:a+=±,①a+=,平方得:a2+2a•+=3,∴a2+=,∴27a3+=27(a+)(a2﹣a•+),=27××(﹣)=54;②a+=﹣时,与①方法类似求出27a3+=﹣54.故选D.点评:本题考查了完全平方公式的应用,关键是求出a2+的值,知a3+b3=(a+b)(a2﹣ab+b2).17.△ABC的三边为a、b、c,且满足+3.25=2×,则△ABC是()A.直角三角形B.等腰三角形C.等边三角形D.以上答案都不对考点:等腰三角形的判定;非负数的性质:偶次方;完全平方公式.专题:计算题.分析:将等式+3.25=2×,化简得4(a﹣c)2+(2b﹣3c)2=0,解得a=c,即可.解答:解:由+3.25=2×,化简得4(a﹣c)2+(2b﹣3c)2=0,由4(a﹣c)2=0和(2b﹣3c)2=0,解得:a=c则△ABC是等腰三角形,故选B.点评:此题主要考查学生对完全平方式和非负数的性质:偶次方的理解和掌握,主要是将已知等式化简成完全平方式,再利用非负数的性质:偶次方,求得a=c,这是此题的关键,也是难点,因此这是一道难题.二.填空题(共13小题)18.(2014•孝感)若a﹣b=1,则代数式a2﹣b2﹣2b的值为1.考点:完全平方公式.专题:计算题.分析:运用平方差公式,化简代入求值,解答:解:因为a﹣b=1,a2﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1,故答案为:1.点评:本题主要考查了平方差公式,关键要注意运用公式来求值.19.(2014•徐州一模)已知x﹣=1,则x2+=3.考点:完全平方公式.分析:首先将x﹣=1的两边分别平方,可得(x﹣)2=1,然后利用完全平方公式展开,变形后即可求得x2+的值.或者首先把x2+凑成完全平方式x2+=(x﹣)2+2,然后将x﹣=1代入,即可求得x2+的值.解答:解:方法一:∵x﹣=1,∴(x﹣)2=1,即x2+﹣2=1,∴x2+=3.方法二:∵x﹣=1,∴x2+=(x﹣)2+2,=12+2,=3.故答案为:3.点评:本题主要考查完全平方公式,利用了(x﹣)2的展开式中乘积项是个常数是解题的关键.20.(2011•平谷区二模)已知,那么x2+y2=6.考点:完全平方公式.专题:整体思想.分析:首先根据完全平方公式将(x+y)2用(x+y)与xy的代数式表示,然后把x+y,xy的值整体代入求值.解答:解:∵x+y=,xy=2,∴(x+y)2=x2+y2+2xy,∴10=x2+y2+4,∴x2+y2=6.故答案是:6.点评:本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.21.(2010•浦口区二模)若a﹣b=3,ab=1,则a2+b2=11.考点:完全平方公式.分析:根据题意,把a﹣b=3两边同时平方可得,a2﹣2ab+b2=9,结合题意,将a2+b2看成整体,求解即可.解答:解:∵a﹣b=3,ab=1,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2ab=9+2=11.故应填:11.点评:本题考查对完全平方公式的变形应用能力.22.(2010•晋江市质检)已知0≤x≤1.(1)若x﹣2y=6,则y的最小值是﹣3;(2)若x2+y2=3,xy=1,则x﹣y=﹣1.考点:解一元一次不等式组;完全平方公式.分析:(1)把x﹣2y=6转化为关于x、y的一次函数,再根据一次函数的性质解答即可.(2)先判断出x、y的关系,再根据完全平方公式求出x﹣y的值,舍去不合题意的即可.解答:解:(1)∵x﹣2y=6,∴y=﹣3,∵>0,∴此函数为增函数,故x=0时,y有最小值,y最小=﹣3.(2)∵0≤x≤1,xy=1,∴x、y互为倒数,∵x2+y2=3,xy=1,∴(x﹣y)2=x2+y2﹣2xy=3﹣2=1,∴x﹣y=±1,∵x、y互为倒数,∴x﹣y=x﹣,∵0≤x≤1,∴≥1,∴x﹣y≤0,∴x﹣y=﹣1.故答案为:﹣1.点评:本题考查了完全平方公式,比较复杂,还利用了一次函数的增减性及完全平方公式、倒数的概念等.23.(2009•烟台)设a>b>0,a2+b2﹣6ab=0,则的值等于﹣.考点:完全平方公式.专题:压轴题.分析:先求出的平方,再利用完全平方公式化简,得()2=2,然后再求平方根.解答:解:由a2+b2﹣6ab=0可得:(b﹣a)2=4ab ①;(a+b)2=8ab ②;②÷①得=2,由a>b>0,可得<0,故=﹣.故答案为:﹣.点评:本题考查完全平方公式的应用.完全平方公式:(a±b)2=a2±2ab+b2.24.(2009•厦门质检)x2+4x+4=(x+2)2.考点:完全平方公式.分析:原式中有三项,符合完全平方公式.解答:解:x2+4x+4=(x+2)2.点评:本题考查完全平方公式的逆运算,需熟练掌握完全平方公式的应用.25.(2005•宁波)已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于﹣.考点:完全平方公式.专题:压轴题.分析:先求出a﹣c的值,再利用完全平方公式求出(a﹣b),(b﹣c),(a﹣c)的平方和,然后代入数据计算即可求解.解答:解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.点评:本题考查了完全平方公式,解题的关键是要由a﹣b=b﹣c=,得到a﹣c=,然后对a﹣b=,b﹣c=,a﹣c=三个式子两边平方后相加,化简求解.26.(2005•连云港)如果2x﹣4的值为5,那么4x2﹣16x+16的值是25.考点:完全平方公式.分析:根据完全平方公式,转化为已知条件平方即可求解.解答:解:∵2x﹣4=5,∴4x2﹣16x+16=(2x﹣4)2=25.点评:本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.27.(2004•天津)已知x2+y2=25,x+y=7,且x>y,则x﹣y的值等于1.考点:完全平方公式.专题:计算题.分析:运用完全平方公式先求出x﹣y的平方,结合已知条件求出2xy的值,从而求出(x﹣y)2的值,最后根据x、y的大小,开平方求解.解答:解:∵x2+y2=25,x+y=7∴(x+y)2=x2+2xy+y2=49,解得2xy=24,∴(x﹣y)2=x2﹣2xy+y2=25﹣24=1,又因为x>y∴x﹣y=.点评:本题主要考查完全平方公式的变形,熟记公式结构是解题的关键,需要注意,因为x>y,所以最后结果只有一个.28.(2004•山西)已知x+y=1,则x2+xy+y2=.考点:完全平方公式.专题:压轴题.分析:先提取公因式后再利用完全平方公式整理即可转化为已知条件的形式,然后平方即可求解.解答:解:∵x+y=1,∴x2+xy+y2,=(x2+2xy+y2),=(x+y)2,=.点评:本题主要考查完全平方公式的运用,熟记公式结构是解题的关键.29.(2002•长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4.考点:完全平方公式.专题:压轴题;规律型.分析:观察本题的规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.30.(2001•昆明)x2﹣x+=(x﹣)2考点:完全平方公式.分析:根据完全平方公式(a+b)2=a2+2ab+b2,把右边展开即可解答.解答:解:∵(x﹣)2=x2﹣x+,∴本题答案为:.点评:本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了完全平方式,熟练掌握公式结构是解题的关键.。
乘法公式——完全平方公式专题训练试题精选(三)附答案

完全平方公式专题训练试题精选(三)一.选择题(共30小题)1.如图,矩形ABCD的周长为18cm,以AB、AD为边向外作正方形ABFE和正方形ADGH,若正方形ABFE和正方形ADGH的面积之和为35cm2,那么矩形ABCD的面积是()(4.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结225.下列计算:①+=;②2a3•3a2=6a6;③(2x+y)(x﹣3y)=2x2﹣5xy﹣3y2;④(x+y)2=x2+y2.其中计算错22228.如果,那么的值是()222211.若a﹣b=2,a﹣c=1,则(2a﹣b﹣c)2+(c﹣a)2的值是()2222±2222C22x++222224.如果ax2+2x+=(2x+)2+m,则a,m的值分别是(),.,42222227.如果,则=()22230.与(﹣)2的结果一样的是().(x+y)2﹣xy +)(x﹣y)2D.(x+y)2﹣xy完全平方公式专题训练试题精选(三)参考答案与试题解析一.选择题(共30小题)1.如图,矩形ABCD的周长为18cm,以AB、AD为边向外作正方形ABFE和正方形ADGH,若正方形ABFE和正方形ADGH的面积之和为35cm2,那么矩形ABCD的面积是()3.下列等式,能够成立的是()(a+b=4.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结225.下列计算:①+=;②2a3•3a2=6a6;③(2x+y)(x﹣3y)=2x2﹣5xy﹣3y2;④(x+y)2=x2+y2.其中计算错因为不是同类二次根式,所以不能合并同类项,故该选项错误;22228.如果,那么的值是()的代数式,然后代入求值.+﹣=22222222222±2222C.22x++2 x++222224.如果ax2+2x+=(2x+)2+m,则a,m的值分别是(),.,4+2x++m ∴2222227.如果,则=())+2+a+a++a+22230.与(﹣)2的结果一样的是().(x+y)2﹣xy +)(x﹣y)2D.(x+y)2﹣xy﹣)=[((xy=(+)(+xy=((((xy=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式提高练习2016年10月6日一.选择题(共10小题)1.(2011•宜宾)下列运算正确的是()A.3a﹣2a=1 B.a2•a3=a6C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+b22.(2010•江门一模)下列多项式中,完全平方式是()A.x2﹣x﹣2 B.x2﹣x+2 C.x2﹣2x﹣1 D.x2﹣2x+13.(2015•甘南州)下列运算中,结果正确的是()A.x3•x3=x6B.3x2+2x2=5x4C.(x2)3=x5D.(x+y)2=x2+y24.(2011•昭通)下列结论正确的是()A.3a+2a=5a2B.C.(a+b)(a﹣b)=a2﹣b2D.x6÷x2=x35.(2012•庆阳)下列二次三项式是完全平方式的是()A.x2﹣8x﹣16 B.x2+8x+16 C.x2﹣4x﹣16 D.x2+4x+166.(2011•连云港)计算(x+2)2的结果为x2+□x+4,则“□”中的数为()A.﹣2 B.2 C.﹣4 D.47.(2010春•广东校级月考)请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+ab+b28.(2007•益阳)已知4x2+4mx+36是完全平方式,则m的值为()A.2 B.±2 C.﹣6 D.±69.(2015•赤峰模拟)已知a+b=4,a﹣b=3,则a2﹣b2=()A.4 B.3 C.12 D.110.(2014•思明区校级模拟)如图所示,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分的面积),验证了一个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2二.填空题(共15小题)11.(2013春•江阴市校级月考)若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22﹣12,16=52﹣32).已知按从小到大顺序构成如下列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2013个“智慧数”是______.12.(2013•广东模拟)如图两幅图中,阴影部分的面积相等,则该图可验证的一个初中数学公式为______.13.若m2﹣5m+1=0,则=______.14.(2011•乐山)若m为正实数,且m﹣=3,则m2﹣=______.15.(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为______.16.(2010•江津区校级模拟)已知a﹣b=1,a2+b2=25,则a+b的值为______.17.(2007•天津)已知x+y=7且xy=12,则当x<y时,的值等于______.18.(2006•威海)将多项式x2+4加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式:______,______,______.19.(2002•长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+______a3b+______a2b2+______ab3+b4.20.(2002•泉州)如图,由一个边长为a的小正方形与两个长、宽分别为a、b的小矩形拼接成矩形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式:__________________._______________ _________________21.(2015•铜仁市)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=______.22.(2015•雅安)若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为______.23.(2005•宁波)已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于______.24.(2007•宿迁)已知:(a﹣b)2=4,ab=,则(a+b)2=______.25.(2005•烟台)已知2n+2﹣n=k(n为正整数),则4n+4﹣n=______.(用含k的代数式表示)三.解答题(共7小题)26.简算:20112﹣2010×2012 27.计算:(1)(a+2b﹣3)(a﹣2b+3);(2)5x2(x+1)(x﹣1)28.已知实数a、b满足ab=1,a+b=3.29.已知x+y=3,xy=﹣10,求:(1)求代数式a2+b2的值;(1)x2+y2﹣xy;(2)求a4﹣b4的值.(2)|x﹣y|30.(2006•浙江)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?31.(2009•佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.32.图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图2中阴影部分的面积:方法1:______;方法2:______;(2)根据(1)的结果,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是______;(3)根据(2)题中的等量关系,解决如下问题:a+b=,a﹣b=,求ab的值.乘法公式提高练习2016年10月6日参考答案与试题解析一.选择题(共10小题)1.(2011•宜宾)下列运算正确的是()A.3a﹣2a=1 B.a2•a3=a6C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+b2【分析】利用合并同类项的法则,同底数幂的乘法以及完全平方公式的知识求解即可求得答案.【解答】解:A、3a﹣2a=a,故本选项错误;B、a2•a3=a5,故本选项错误;C、(a﹣b)2=a2﹣2ab+b2,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.【点评】此题考查了完全平方公式与合并同类项的法则,同底数幂的乘法等知识.题目比较简单,解题需细心.2.(2010•江门一模)下列多项式中,完全平方式是()A.x2﹣x﹣2 B.x2﹣x+2 C.x2﹣2x﹣1 D.x2﹣2x+1【分析】根据完全平方公式的形式:两数的平方和,再加上或减去它们积的2倍.即可求得答案.【解答】解:∵x2﹣2x+1=x2﹣2×x×1+12=(x﹣1)2.故选:D.【点评】本题是完全平方公式.注意两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.3.(2015•甘南州)下列运算中,结果正确的是()A.x3•x3=x6B.3x2+2x2=5x4C.(x2)3=x5D.(x+y)2=x2+y2【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.【解答】解:A、x3•x3=x6,本选项正确;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选A【点评】此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.4.(2011•昭通)下列结论正确的是()A.3a+2a=5a2B.C.(a+b)(a﹣b)=a2﹣b2D.x6÷x2=x3【分析】(1)根据合并同类项的定义,解答即可;(2)根据算术平方根的定义解答;(3)根据平方差公式,解答出即可;(4)根据同底数幂的除法,解答出即可.【解答】解:A、因为3a+2a=5a,故本项错误;B、因为,故本项错误;C、根据平方差公式的定义,两个数的和与这两个数的差相乘,等于这两个数的平方差;故本项正确;D、因为x6÷x2=x4,故本项错误.故选C.【点评】本题考查了平方差公式、算术平方根的定义、同底数幂相除等知识,考查了学生对基础知识的掌握程度和应用能力.5.(2012•庆阳)下列二次三项式是完全平方式的是()A.x2﹣8x﹣16 B.x2+8x+16 C.x2﹣4x﹣16 D.x2+4x+16【分析】根据完全平方公式:(a±b)2=a2±2ab+b2,对各选项分析判断后利用排除法求解.【解答】解:A、应为x2﹣8x+16,故A错误;B、x2+8x+16,正确;C、应为x2﹣4x+4,故C错误;D、应为x2+4x+4,故D错误.故选B.【点评】本题主要考查完全平方公式的结构特点,需要熟练掌握并灵活运用.6.(2011•连云港)计算(x+2)2的结果为x2+□x+4,则“□”中的数为()A.﹣2 B.2 C.﹣4 D.4【分析】由(x+2)2=x2+4x+4与计算(x+2)2的结果为x2+□x+4,根据多项式相等的知识,即可求得答案.【解答】解:∵(x+2)2=x2+4x+4,∴“□”中的数为4.故选D.【点评】此题考查了完全平方公式的应用.解题的关键是熟记公式,注意解题要细心.7.(2010春•广东校级月考)请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+ab+b2【分析】此题观察一个正方形被分为四部分,把这四部分的面积相加就是边长为a+b的正方形的面积,从而得到一个公式.【解答】解:由图知,大正方形的边长为a+b,∴大正方形的面积为,(a+b)2,根据图知,大正方形分为:一个边长为a的小正方形,一个边长为b的小正方形,两个长为b,宽为a的长方形,∵大正方形的面积等于这四部分面积的和,∴(a+b)2=a2+2ab+b2,故选B.【点评】此题比较新颖,用面积分割法来证明完全平方式,主要考查完全平方式的展开式.8.(2007•益阳)已知4x2+4mx+36是完全平方式,则m的值为()A.2 B.±2 C.﹣6 D.±6【分析】这里首末两项是2x和6这两个数的平方,那么中间一项为加上或减去2x和6积的2倍.【解答】解:∵(2x±6)2=4x2±24x+36,∴4mx=±24x,即4m=±24,∴m=±6.故选D.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9.(2015•赤峰模拟)已知a+b=4,a﹣b=3,则a2﹣b2=()A.4 B.3 C.12 D.1【分析】原式利用平方差公式变形,把已知等式代入计算即可求出值.【解答】解:∵a+b=4,a﹣b=3,∴原式=(a+b)(a﹣b)=12,故选C【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.10.(2014•思明区校级模拟)如图所示,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分的面积),验证了一个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2【分析】利用正方形的面积公式可知剩下的面积=a2﹣b2,而新形成的矩形面积为(a+b)(a﹣b),根据两者相等,即可验证平方差公式.【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选A.【点评】本题主要考查平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.二.填空题(共15小题)11.(2013春•江阴市校级月考)若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22﹣12,16=52﹣32).已知按从小到大顺序构成如下列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2013个“智慧数”是2686.【分析】根据规律可知,全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得第n组的第一个数为4n(n≥2),据此判断即可.【解答】解:观察数字变化规律,可知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得,第n组的第一个数为4n(n≥2).因为2013÷3=671,所以第2013个智慧数是第671组中的第3个数,即为4×671+2=2686.故答案为:2686【点评】本题主要考查了整数问题的综合运用,解题的关键是根据题意找出规律,从而得出答案,此题难度较大.12.(2013•广东模拟)如图两幅图中,阴影部分的面积相等,则该图可验证的一个初中数学公式为a2﹣b2=(a+b)(a﹣b).【分析】利用正方形的面积公式以及矩形的面积公式即可表示出两个图形中阴影部分的面积,两个式子相等,即可得到公式.【解答】解:第一个图的阴影部分的面积是:a2﹣b2,第二个图形阴影部分的面积是:(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是:a2﹣b2=(a+b)(a﹣b).【点评】本题考查了平方差公式,理解题意是关键.13.(2012•孝感模拟)若m2﹣5m+1=0,则=23.【分析】由于m≠0,把m2﹣5m+1=0两边除以m可得到m+=5,再把m+=5两边平方得到m2+2+=25,变形即可得到m2+的值.【解答】解:∵m2﹣5m+1=0,∴m﹣5+=0,即m+=5,∴(m+)2=25,∴m2+2+=25,∴m2+=23.故答案为23.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.14.(2011•乐山)若m为正实数,且m﹣=3,则m2﹣=3.【分析】由,得m2﹣3m﹣1=0,即=,因为m为正实数,可得出m的值,代入,解答出即可;【解答】解:法一:由得,得m2﹣3m﹣1=0,即=,∴m1=,m2=,因为m为正实数,∴m=,∴=()()=3×(),=3×,=;法二:由平方得:m2+﹣2=9,m2++2=13,即(m+)2=13,又m为正实数,∴m+=,则=(m+)(m﹣)=3.故答案为:.【点评】本题考查了完全平方公式、平方差公式,求出m的值代入前,一定要把代数式分解完全,可简化计算步骤.15.(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为2m+4.【分析】根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.16.(2010•江津区校级模拟)已知a﹣b=1,a2+b2=25,则a+b的值为±7.【分析】先把已知条件a﹣b=1两边平方,与另一条件结合求出2ab的值,再根据完全平方公式整理并求出(a+b)2的值,开平方即可求解.【解答】解:∵a﹣b=1,∴(a﹣b)2=1,即a2﹣2ab+b2=1,∴2ab=25﹣1=24,∴(a+b)2=a2+2ab+b2=25+24=49,∴a+b=±7.【点评】本题主要考查我们的公式变形能力,根据完全平方公式的结构整理出已知条件的形式是解题的关键.17.(2007•天津)已知x+y=7且xy=12,则当x<y时,的值等于.【分析】先运用完全平方公式的变形求出y﹣x的值,然后代入通分后的所求式子中,计算即可.【解答】解:∵x+y=7且xy=12,∴(x﹣y)2=(x+y)2﹣4xy=72﹣4×12=49﹣48=1,∵x<y,∴y﹣x=1,∴==.【点评】本题考查了完全平方公式,关键是利用(x﹣y)2=(x+y)2﹣4xy的关系进行计算.18.(2006•威海)将多项式x2+4加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式:4x,﹣4x,.【分析】根据完全平方公式:(a±b)2=a2±2ab+b2进行配方,此题为开放性题目,答案不唯一.【解答】解:设这个整式为Q,如果这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故Q=±4x;如果如果这里首末两项是Q和4,则乘积项是x2=2×2×x2,所以Q=x4;故本题答案为:±4x;x4.【点评】本题考查了完全平方式,为开放性题目,只要符合完全平方式即可,要求非常熟悉公式特点.19.(2002•长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+ 4a3b+ 6a2b2+ 4ab3+b4.【分析】观察本题的规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.【解答】解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.【点评】在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.20.(2002•泉州)如图,由一个边长为a的小正方形与两个长、宽分别为a、b的小矩形拼接成矩形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式:a2+2ab=a(a+2b);a(a+b)+ab=a(a+2b);a(a+2b)﹣a(a+b)=ab.【分析】根据计算面积的方法多种多样,因此可以用不同的方式表达求解.【解答】解:把图形分割成一个正方形,两个长方形计算面积,则有:a2+2ab=a(a+2b);把图形分割成两个长方形,一边长分别是a+b,b,宽都是a,则有:a(a+b)+ab=a(a+2b);用整个图形的面积减去一个边长为a,a+b的长方形,得到另外一个长方形,边长是a,b,即:a(a+2b)﹣a(a+b)=ab.故本题答案为:a2+2ab=a(a+2b);a(a+b)+ab=a(a+2b);a(a+2b)﹣a(a+b)=ab.【点评】本题考查了用面积分割法检验乘法算式,是学习乘法运算最常见的形式,这种方法形象直观,容易理解.21.(2015•铜仁市)请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.【分析】通过观察可以看出(a+b)6的展开式为6次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为1、6、15、20、15、6、1.【解答】解:(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6故本题答案为:a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6【点评】此题考查数字的规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.22.(2015•雅安)若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为510.【分析】通过m1,m2,…m2015是从0,1,2这三个数中取值的一列数,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510从而得到1的个数,由m1+m2+…+m2015=1525得到2的个数.【解答】解:∵(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,∵m1,m2,…,m2015是从0,1,2这三个数中取值的一列数,∴m1,m2,…,m2015中为1的个数是2015﹣1510=505,∵m1+m2+…+m2015=1525,∴2的个数为(1525﹣505)÷2=510个.故答案为:510.【点评】此题考查完全平方的性质,找出运算的规律.利用规律解决问题.23.(2005•宁波)已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于﹣.【分析】先求出a﹣c的值,再利用完全平方公式求出(a﹣b),(b﹣c),(a﹣c)的平方和,然后代入数据计算即可求解.【解答】解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.【点评】本题考查了完全平方公式,解题的关键是要由a﹣b=b﹣c=,得到a﹣c=,然后对a﹣b=,b ﹣c=,a﹣c=三个式子两边平方后相加,化简求解.24.(2007•宿迁)已知:(a﹣b)2=4,ab=,则(a+b)2=6.【分析】先用完全平方公式把(a﹣b)2展开,求得a2+b2的值,再展开(a+b)2代入数据计算即可求出结果.【解答】解:∵(a﹣b)2=4,ab=,∴(a﹣b)2=a2+b2﹣2ab,=a2+b2﹣1=4,∴a2+b2=5,∴(a+b)2=a2+b2+2ab=5+1=6.【点评】本题主要考查完全平方公式:(a±b)2=a2±2ab+b2熟记公式是解题的关键.25.(2005•烟台)已知2n+2﹣n=k(n为正整数),则4n+4﹣n=k2﹣2.(用含k的代数式表示)【分析】首先要注意看出2n×2﹣n=1,即:2n和2﹣n互为倒数,同时要注意底数2与4之间的关系即:4=22.然后把所求的式子整理为和所给等式相关的式子.【解答】解:∵2n+2﹣n=k,∴4n+4﹣n=(2n)2+(2﹣n)2,=(2n+2﹣n)2﹣2,=k2﹣2.【点评】本题考查了完全平方公式,要对公式能够灵活变形,能够进行公式间的相互转化,尤其是要注意:①2n和2﹣n互为倒数②(2n)2+(2﹣n)2=(2n+2﹣n)2﹣2的分析,这是此题的关键所在.三.解答题(共7小题)26.(2011春•夷陵区校级期中)20112﹣2010×2012(用简便方法计算)【分析】先考虑对2010×2012使用平方差公式,再进行变形,最后去括号即可.【解答】解:原式=20112﹣(2011﹣1)(2011+1)=20112﹣(20112﹣1)=20112﹣20112+1=1.【点评】本题考查了平方差公式.解题的关键是能把2010变成2011﹣1,2012变成2011+1的形式.27.(2008秋•兴化市校级期末)计算:(1)(a+2b﹣3)(a﹣2b+3);(2)5x2(x+1)(x﹣1)【分析】(1)把(2b﹣3)看作一个整体,利用平方差公式计算,然后再利用完全平方公式展开即可;(2)直接用平方差公式计算,再利用单项式乘多项式的运算法则计算解答.【解答】解:(1)(a+2b﹣3)(a﹣2b+3);=[a+(2b﹣3)][a﹣(2b﹣3)],=a2﹣(2b﹣3)2,=a2﹣(4b2﹣12b+9),=a2﹣4b2+12b﹣9;(2)5x2(x+1)(x﹣1),=5x2(x2﹣1),=5x4﹣5x2.【点评】本题考查了平方差公式,完全平方公式,熟练掌握公式并灵活运用是解题的关键,要注意整体思想的利用和运算符号的处理.28.已知实数a、b满足ab=1,a+b=3.(1)求代数式a2+b2的值;(2)求a4﹣b4的值.【分析】(1)根据完全平分公式可得:a2+b2=(a+b)2﹣2ab,即可解答.(2)利用完全平方公式及平方差公式,即可解答.【解答】解:(1)a2+b2=(a+b)2﹣2ab=32﹣2×1=9﹣2=7;(2)∵(a﹣b)2=(a+b)2﹣4ab=32﹣4×1=5,即a﹣b=,或a﹣b=﹣,则a2﹣b2=(a﹣b)(a+b)=±3,a4﹣b4=(a2+b2)(a2﹣b2)=7×.【点评】本题考查完全平分公式和平方差公式,解决本题的关键是熟记完全平分公式和平方差公式.29.已知x+y=3,xy=﹣10,求:(1)x2+y2﹣xy;(2)|x﹣y|【分析】(1)把代数式进行变形,利用完全平分公式即可解答;(2)先求出(x﹣y)2,即可求出|x﹣y|的值.【解答】解:(1)x2+y2﹣xy=(x+y)2﹣2xy﹣xy=32﹣2×(﹣10)﹣(﹣10)=39.(2)(x﹣y)2=(x+y)2﹣4xy=32﹣4×(﹣10)=49,x﹣y=±7,∴|x﹣y|=7.【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式.30.(2006•浙江)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?【分析】(1)试着把28、2012写成平方差的形式,解方程即可判断是否是神秘数;(2)化简两个连续偶数为2k+2和2k的差,再判断;(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.【解答】解:(1)设28和2012都是“神秘数”,设28是x和x﹣2两数的平方差得到,则x2﹣(x﹣2)2=28,解得:x=8,∴x﹣2=6,即28=82﹣62,设2012是y和y﹣2两数的平方差得到,则y2﹣(y﹣2)2=2012,解得:y=504,y﹣2=502,即2012=5042﹣5022,所以28,2012都是神秘数.(2)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的神秘数是4的倍数,且是奇数倍.(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.∴两个连续奇数的平方差不是神秘数.【点评】此题首先考查了阅读能力、探究推理能力.对知识点的考查,主要是平方差公式的灵活应用.31.(2009•佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.【分析】(1)(2)本题考查对完全平方公式的灵活应用能力,由题中所给的已知材料可得x2﹣4x+2和a2+ab+b2的配方也可分别常数项、一次项、二次项三种不同形式;(3)通过配方后,求得a,b,c的值,再代入代数式求值.【解答】解:(1)x2﹣4x+2的三种配方分别为:x2﹣4x+2=(x﹣2)2﹣2,x2﹣4x+2=(x+)2﹣(2+4)x,x2﹣4x+2=(x﹣)2﹣x2;(2)a2+ab+b2=(a+b)2﹣ab,a2+ab+b2=(a+b)2+b2;(3)a2+b2+c2﹣ab﹣3b﹣2c+4,=(a2﹣ab+b2)+(b2﹣3b+3)+(c2﹣2c+1),=(a2﹣ab+b2)+(b2﹣4b+4)+(c2﹣2c+1),=(a﹣b)2+(b﹣2)2+(c﹣1)2=0,从而有a﹣b=0,b﹣2=0,c﹣1=0,即a=1,b=2,c=1,∴a+b+c=4.【点评】本题考查了根据完全平方公式:a2±2ab+b2=(a±b)2进行配方的能力.32.图①是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图2中阴影部分的面积:方法1:(a+b)2﹣4ab;方法2:(a﹣b)2;(2)根据(1)的结果,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是(a+b)2﹣4ab=(a﹣b)2;(3)根据(2)题中的等量关系,解决如下问题:a+b=,a﹣b=,求ab的值.【分析】(1)①从整体考虑,用大正方形的面积减去四个小矩形的面积就是阴影部分的面积;②从局部考虑,根据正方形的面积公式,小正方形的边长的平方就是阴影部分的面积;(2)根据所拼图形的面积相等,即可解答.(3)把已知条件代入进行计算即可求解.【解答】解:(1)方法1:大正方形的面积减去四个小矩形的面积:(a+b)2﹣4ab,方法2:阴影小正方形的面积:(a﹣b)2;故答案为::(a+b)2﹣4ab,(a﹣b)2;(2)(a+b)2﹣4ab=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2(3)根据(2)的关系式,(a+b)2﹣4ab=(a﹣b)2,∵a+b=,a﹣b=,∴4ab=(a+b)2﹣=5,∴ab=.【点评】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.。