乘法公式培优训练

合集下载

(完整版)整式的乘法与因式分解培优

(完整版)整式的乘法与因式分解培优

第二章 整式的乘法【知识点归纳】1.同底数幂相乘, 不变, 相加。

a n.a m = (m,n 是正整数)2.幂的乘方, 不变, 相乘。

(a n )m = (m,n 是正整数)3.积的乘方,等于把 ,再把所得的幂 。

(ab)n = (n 是正整数)4.单项式与单项式相乘,把它们的 、 分别相乘。

5.单项式与多项式相乘,先用单项式 ,再把所得的积 ,a (m+n )=6.多项式与多项式相乘,先用一个多项式的每一项分别乘 ,再把所得的积 ,(a+b )(m+n )= 。

7.平方差公式,即两个数的 与这两个数的 的积等于这两个数的平方差(a+b )(a-b )=8.完全平方公式,即两数和(或差)的平方,等于它们的 ,加(或减)它们的积的 。

(a+b )2= ,(a-b )2= 。

9.公式的灵活变形:(a+b )2+(a-b )2= ,(a+b )2-(a-b )2= , a 2+b 2=(a+b )2- ,a 2+b 2=(a-b )2+ ,(a+b )2=(a-b )2+ , (a-b )2=(a+b )2- 。

【例1】若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数式234a -+22212(3)4b a b --的值【例2】已知两个多项式A 和B ,43344323,321,n n n A nx x x x B x x x nx x +-+=+-+-=-++--试判断是否存在整数n ,使A B -是五次六项式?【例3】已知,,x y z 为自然数,且x y <,当1999,2000x y z x +=-=时,求x y z ++的所有值中最大的一个是多少?【例4】如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是 .【例5】已知a 为实数,且使323320a a a +++=,求199619971998(1)(1)(1)a a a +++++的值.【例6】(1)已知2x+2=a ,用含a 的代数式表示2x ;(2)已知x=3m +2,y=9m +3m ,试用含x 的代数式表示y .【例7】我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: . (2)试画出一个图形,使它的面积能表示:(a+b )(a+3b )=a 2+4ab+3b 2.【例8】归纳与猜想:(1)计算:①(x﹣1)(x+1)= ;②(x﹣1)(x2+x+1)= ;③(x﹣1)(x3+x2+x+1)= ;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)= ;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)= ;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)= (n为整数);(4)若(x﹣1)•m=x15﹣1,则m= ;(5)根据猜想的规律,计算:226+225+…+2+1.【例9】认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…下面我们依次对(a+b)n展开式的各项系数进一步研究发现,n取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;(2)推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).课后作业:1、若0352=-+y x ,求y x 324⋅的值。

初一数学培优:乘法公式的正应用与逆应用

初一数学培优:乘法公式的正应用与逆应用

数学思想方法是在数学知识的学习过程中,形成具有独特的解决问题的策略和方法.数学知识的学习是数学思想方法形成的基础,而数学思想对数学知识的学习、理解以及解决问题具有指导意义.本讲主要学习几个重要的数学思想:“正”、“逆”互化、归纳类比、整体代入、分类讨论、配方构造、待定系数的数学思想方法.【点拨】正向应用多项式乘法公式,观察每个乘积的结果,得出规律【解答】【反思与小结】对于结论探究问题,一般利用“特殊——一般——特殊”的规律,观察最初的结论,从而找到规律,再进行证明。

本例观察最初的两个等式或三个等式,猜想规律,再进行证明。

【点拨】对于(1)能否利用例1的结论进行计算与化简?对于(2)、(3)如何将其转化成例1的形式从而应用例1的公式进行解答.【解答】【点拨】“分析法”要求的式子值,要对所求的式子进行通分变形,也要对已知的式子进行变形,变形成次数相同的式子,带入解决。

【解答】【反思与小结】分析法主要是从结论出发,逆向推理,通过分析要得到结论,需要怎样的条件,从而逐步接近已知条件的分析过程。

本例要得到,就要得到,观察已知条件,怎样得到?需要将与的两边分别次方和次方,从而得出解答。

【点拨】思考一:能否从一个因数开始逐步应用“不完全归纳”进行解答?思考二:观察每个因式的特点,能否“正”或“逆”用平方差公式?应用公式后根据每个因数的特点进行解答?【解答】【反思与小结】应用不完全归纳法需要大胆猜想,小心验证与证明。

本例既可以根据各因数的特点利用乘法交换律和结合律进行组合解决,又可以利用不完全归纳法进行归纳探究。

【点拨】能否通过“正”或“逆”用公式化简所求的代数式,然后再证明呢?这也是求代数式的值的常用办法。

【证明】【证明】【点拨】“分析法”思考一:要求代数式的值,观察已知条件,能否用含x的一次代数式分别表示出所求式子中的每一项,再进行化简求解呢?这种“各个击破”的方法是解决此问题的关键。

思考二:要求代数式的值,能否将已知的条件作为一个整体代入求解?这种整体代入的方法也是一种常用方法。

新人教版八年级乘法公式培优训练题及标准答案

新人教版八年级乘法公式培优训练题及标准答案

新人教版八年级乘法公式培优训练题及答案一、平方差公式:(a+b)(a-b)=a2-b2要注意等式的特点:(1)等式的左边是两个二项式的乘积,且这两个二项式中,有一项相同,另一项互为相反数;(2)等式的右边是一个二项式,且为两个因式中相同项的平方减去互为相反数的项的平方.值得注意的是,这个公式中的字母a,b可以表示数,也可以是单项式或多项式.平方差公式可以作为多项式乘以多项式的简便公式,也可以逆用做为快速计算的工具.例1下列各式中不能用平方差公式计算的是().A.(a-b)(-a-b) B.(a2-b2)(a2+b2)C.(a+b)(-a-b) D.(b2-a2)(-a2-b2)解:C.根据上面平方差公式的结构特点,A中,-b是相同的项,a与-a 是性质符号相反的项,故可使用;B中a2是相同项,-b2与b2是互为相反数符合公式特点;同样D也符合.而C中的两个二项式互为相反数,不符合上述的等式的特征,因此不可使用平方差公式计算.例2运用平方差公式计算:(1)(x2-y)(-y-x2);(2)(a-3)(a2+9)(a+3).解:(1)(x2-y)(-y-x2)=(-y +x2)(-y-x2)=(-y)2-(x2)2=y2-x4;(2)(a-3)(a2+9)(a+3)=(a-3)(a+3)(a2+9)=(a2-32)(a 2+9)=(a2-9)(a2+9)=a4-81 .例3计算:(1)54.52-45.52;(2)(2x2+3x+1)(2x2-3x+1).分析:(1)中的式子具有平方差公式的右边的形式,可以逆用平方差公式;(2)虽然没有明显的符合平方差公式的特点,值得注意的是,平方差公式中的字母a,b可以表示数,也可以是单项式或多项式,我们可以把2x2+1看作公式中字母a,以便能够利用公式.正如前文所述,利用平方差可以简化整式的计算.解:(1)54.52-45.52=(54.5+45.5)(54.5-45.5)=100×9=900 ;(2)(2x2+3x+1)(2x2-3x+1)=(2x2+1)2-(3x)2=4x4+4x2+1-9x2 =4x4-5x2+1二、完全平方公式: (a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2.二项式的平方,等于其中每一项(连同它们前面的符号)的平方,加上这两项积的两倍.完全平方公式是计算两数和或差的平方的简算公式,在有关代数式的变形和求值中应用广泛.正确运用完全平方公式就要抓住公式的结构特点,通过与平方差公式的类比加深理解和记忆.运用中要防止出现(a±b)2=a2±b2,或(a-b)2=a2-2ab-b2等错误.需要指出的是,如同前面的平方差公式一样,这里的字母a,b可以表示数,也可以是单项式或多项式.例1利用完全平方公式计算:(1)(-3a-5)2;(2)(a-b+c)2.分析:有关三项式的平方可以看作是二项式的平方,如(a-b+c)2=[(a -b)+c]2或[a-(b-c)]2,通过两次应用完全平方公式来计算.解:(1)(-3a-5)2=(-3a)2-2×(-3a)×5 + 5 2=9a2+ 30a + 25(2)(a-b+c)2=[(a-b)+c]2=(a-b)2+ 2(a-b)c + c2=a 2-2ab+b 2+2ac-2bc + c2=a 2+b 2+ c2+2ac-2ab-2bc .例2利用完全平方公式进行速算.(1)1012 (2)992解:(1)1012 分析:将1012变形为(100+1)2原式可=(100+1)2利用完全平方公式来速算.=1002+2×100×1+12=10201解: (2)992 分析:将992变形为(100-1)2原式可=(100-1)2利用完全平方公式来速算.=1002-2×100×1+12=9801例3计算:(1)992-98×100;(2)49×51-2 499 .解:(1)992-98×100=(100-1)2-98×100=1002-2×100+1-9800=10000 -200-9800+1=1;(2)49×51-2499=(50-1)(50+1)-2499=2500-1-2499=0.例4已知a+b=8,ab=10,求a2+b2,(a-b)2的值.分析:由前面的公式变形可以知道:a 2+ b 2=(a+b)2-2ab,(a-b)2=(a +b)2-4ab.解:由于a 2+ b 2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.而a+b=8,ab=10所以a 2+b 2=(a+b)2-2ab= 82-2× 10= 44(a-b)2=(a+b)2-4ab=82-4× 10= 24 .三:练习1.利用乘法公式进行计算:(1) (x-1)(x+1)(x2+1)(x4+1)(2) (3x+2)2-(3x-5)2(3) (x-2y+1)(x+2y-1)(4) (2x+3y)2(2x-3y)2 (5) (2x+3)2-2(2x+3)(3x-2)+(3x-2)2(6) (x2+x+1)(x2-x+1)解:(1) 原式=(x2-1)(x2+1)(x4+1)=(x4-1)(x4+1)=x8-1.(2)解法1:原式=(9x2+12x+4) -(9x2-30x+25)=9x2+12x+4-9x2+30x-25=42x-21解法2:原式=[(3x+2)+(3x-5)][(3x+2) -(3x-5)]=(6x-3)×7=42x-21.(3)原式=[x-(2y-1)][x+(2y-1)]=x2-(2y-1)2=x2-(4y2-4y+1)=x2-4y2+4y-1(4)原式=[(2x+3y)(2x-3y)]2=(4x2-9y2)2=16x4-72x2y2+81y4(5) 原式=[(2x+3) -(3x-2)]2=(-x+5)2=x2-10x+25(6) 原式=[(x2+1)+x][(x2+1) -x]=(x2+1)2-x2=(x4+2x2+1) -x2=x4+x2+12.已知:a+b=5, ab=3,求:(1) (a-b)2;(2) a2+b2;解:(1) (a-b)2=(a+b)2-4ab=52-4×3=13(2) a2+b2=(a+b)2-2ab=52-2×3=19.乘法公式平方差公式考点扫描:熟练掌握平方差公式,灵活运用平方差公式进行计算.名师精讲:1.平方差公式:(a+b)(a–b)=a2–b2.即两个数的和与这两个数的差的积等于这两个数的平方差.平方差公式的左边是两个数的和与这两个数的差相乘,而右边正好是这两个数的平方差.2.平方差公式中的字母a、b可以是具体的数,也可以是单项式或多项式.中考典例:1.(湖北武汉)观察下列各式(x–1)(x+1)=x2–1,(x–1)(x2+x+1)=x3–1,(x–1)(x3+x2+x+1)=x4–1,根据前面各式的规律可得(x–1)(x n+x n–1+…+x+1)=___________.考点:平方差公式的延伸评析:该题是一个探索规律性的试卷,要通过观察把握住给出的等式中的不变量和变量与变量间的变化规律.不难发现其结果为x n+1–1.真题专练:1.(广东省)化简:(x+y)(x–y)–x2=.2.(德阳市)化简:x2–(x+y)(x–y)答案:1、原式=x2–y2–x2=–y2 2、原式=x2–(x2–y2)=x2–x2+y2=y2完全平方公式考点扫描:熟练掌握完全平方公式,灵活运用完全平方公式进行计算名师精讲:1.完全平方公式:(a±b)2=a2±2ab+b2,即:两数和(或差)的平方,等于它们的平方和,加上(或者减去)它们的积的2倍.2.公式中的字母a、b,可以是具体的数,也可以是单项式或多项式.公式可推广:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.即三个数的和的平方,等于各个数的平方和加上每两个数的积的2倍.3.如果一个多项式能化成另一个多项式的平方,就把这个多项式叫做完全平方式.如,a2±2ab+b2=(a±b)2;a2+b2+c2+2ab+2ac+2bc=(a+b+c)2,则a2±2ab+b2和a2+b2+c2+2ab+2ac+2bc就叫做完全平方式.中考典例:1.(北京西城区)下列各式计算正确的是()A、(x–1)2=x2–2x+1B、(x–1)2=x2–1C、x3+x3=x6D、x6÷x3=x2考点:完全平方公式及幂的运算性质评析:该题是考查学生对公式及幂的运算法则掌握的情况,所以解决此题就要对公式特别是完全平方公式及幂的运算法则掌握熟练,由完全平方公式(a±b)2=a2±2ab+b2可以判定A对,B不对,由整式的加减可判定C不对,再根据同底数幂除法的法则确定D也不对,因此只有选A.说明:当该题确定A选项后,其他选项也可以不考虑,因为数学试卷中一般不会出现多选题.真题专练:1.(上海市)下列计算中,正确的是()A、a3·a2=a6B、(a+b)(a–b)=a2–b2C、(a+b)2=a2+b2D、(a+b)(a–2b)=a2–ab–4b22.(湖南长沙)下列关系式中,正确的是()A、(a–b)2=a2–b2B、(a+b)(a–b)=a2–b2.C、(a+b)2=a2+b2D、(a+b)2=a2–2ab+b2.3.(德阳市)已知x(x–1)–(x2–y)=–3求:的值.答案:1、B2、B3、由x(x–1)–(x2–y)=–3得x–y=3,==.当x–y=3时,原式=.在线测试选择题1.在下列多项式的乘法中,可以用平方差公式计算的是()A、(x+1)(1+x)B、(a+b)(b-a)C、(-a+b)(a-b)D、(x2-y)(x+y2)2.下列各式计算正确的是()A、(a+4)(a-4)=a2-4 B、(2a+3)(2a-3)=2a2-9 C、(5ab+1)(5ab-1)=25a2b2-1 D、(a+2)(a-4)=a2-83.(-x+2y)(-x-2y)的计算结果是()A、x2-4y2B、4y2-x2C、x2+4y2D、-x2-4y24.(abc+1)(-abc+1)(a2b2c2+1)的结果是()。

湘教七下第二章整式的乘法培优专题练习

湘教七下第二章整式的乘法培优专题练习

2019初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.整式x 2+kx+25为某完全平方式展开后的结果,则k 的值为( )A .5B .±5C .10D .±10 2.如图,从边长为 的正方形纸片中剪去一个边长为 的正方形 ,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .B .C .D . 3.若x 2+2(m ﹣3)x+1是完全平方式,x+n 与x+2的乘积中不含x 的一次项,则n m 的值为( )A .﹣4B .16C .4或16D .﹣4或﹣16 4.计算(﹣2a 2)3的结果为( )A .﹣2a 5B .﹣8a 6C .﹣8a 5D .﹣6a 6 5.已知a -b =3,ab =2,则a 2+b 2的值是( )A .4B .9C .13D .15 6.已知n 是大于1的自然数,则(﹣c )n ﹣1•(﹣c )n+1等于( )A .B .﹣2ncC .﹣c 2nD .c 2n7.若对于一切有理数x ,等式x 2(ax 2+2x +4)=-3x 4+2x 3+4x 2恒成立,则a 的值是( )A .-3B .C .-6D .- 8.如果多项式 ,则p 的最小值是A .1005B .1006C .1007D .10089.若 的计算结果中不含x 的一次项,则a 的值是A .B .C .2D .二、填空题10.若x ﹣ =﹣2,则x 2+ =_____.含有a和b的正确的等式_____.12.若是一个完全平方式,则的值为______.13.已知单项式3x2y3与﹣5x2y2的积为mx4y n,那么m﹣n=_____.14.若x+y=3,则2x•2y的值为_____.15.若(x﹣4)(x+7)=x2+mx+n,则m+n=_____.16.若3x=24,3y=6,则3x﹣y的值为_____.17.若(a-2b)2=8,2ab=2,则a2+4b2的值为___.18.如果32×27=3n,则n=___.19.若代数式x2+ax+16是一个完全平方式,则a=_____.20.若(x3+ax2-x2)·(-8x4)的运算结果中不含x的六次项,则a的值为___.三、解答题21.计算:.(2)7x4•x5•(﹣x)7+5(x4)4﹣(﹣5x8)2(3)(a+2b-c)(a-2b+c)(4)已知2x=3,2y=5,求2x+y的值23.计算:(1)(﹣x2)3﹣x•x5+(2x3)2;(2)5002﹣499×501;(3)(x﹣1)(x2﹣1)(x+1).24.已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).25.公式的探究与应用:(1)如图①所示,可以求出阴影部分的面积是(写成两数平方差的形式).(2)若将图①中的阴影部分裁剪下来,重新拼成一个如图②所示的长方形,则此长方形的面积是(写成多项式乘法的形式).(3)比较两图阴影部分的面积,可以得到一个公式:.(4)运用公式计算:(1-)(1-)(1-)…(1-)(1-).26.一个正方形的边长增加了2 cm,面积相应增加了32 cm2,求这个正方形原来的边长.27.先化简,再求值:(a+b)(a-b)-(a-2b)2,其中a=2,b=-1.28.计算下列各题.(1)若a+b=5,a2-b2=5,求a与b的值.(2)已知x-y=2,y-z=2,x+z=14,求x2-z2的值.(3)已知(a+2016)(a+2018)=2017,求(a+2017)2的值.(4)若(2a+2b-1)(2a+2b+1)=63,求a+b的值.29.计算:(1)(3x+1)2(3x-1)2. (2)(2x-y-3)(2x-y+3).30.运用完全平方公式计算:(1)2022. (2)79.82. (3)97×103-992.31.若x ,y 满足x 2+y 2= ,xy =﹣ ,求下列各式的值.(1)(x+y )2 (2)x 4+y 4 (3)x 3+y 332.已知x ,y 满足|x -2|+(y +1)2=0,求-2xy·5xy 2+221(3)2x y x ·2y +6xy 的值.33.已知: ,(1)求 的值;(2)若 > ,求 的值;(3)若 > ,分别求出 和 的值.参考答案1.D2.A3.C4.B5.C6.D7.A8.A9.C10.611.(a+b)2=a2+2ab+b2.12.913.﹣20.14.8.15.﹣25.16.417.1218.5.19.±820.121.22.(1)-7x16(2)-2(3)(4)a2+c2+2ac-4b2(5)15 23.(1)3;(2)2x6;(3)1;(4)x4﹣1.24.(1)4;(2)﹣12.25.(1)a²-b²;(2)(a+b)(a-b);(3)a²-b²=(a+b)(a-b);(4) . 26.7cm27.4ab-5b2;-13.28.(1)a=3,b=2;(2) 56;(3) 2018;(4) ±4.29.(1)81x4-18x2+1;(2)4x2-4xy+y2-9. 30.(1)40804;(2)6368.04;(3)190. 31.(1)(2)(3)±32.36.33.(1)17;(2)3;(3).。

苏科版七年级数学下册《乘法公式》综合培优测试卷【含答案】

苏科版七年级数学下册《乘法公式》综合培优测试卷【含答案】

苏科版七年级数学下册《乘法公式》综合培优测试卷一.选择题1.下列不能用平方差公式直接计算的是( )A.(﹣m+n)(m﹣n)B.(﹣m﹣n)(﹣m+n)C.(x+2)(x﹣2)D.(﹣2x+y)(2x+y)2.已知a2﹣b2=8,b﹣a=2,则a+b等于( )A.﹣8B.8C.﹣4D.43.若x2+(k﹣1)x+4是一个完全平方式,则常数k的值为( )A.5B.5或3C.﹣3D.5或﹣34.已知x﹣y=3,xy=2,则(x+y)2的值等于( )A.12B.13C.14D.175.一个正方形的边长为a,若边长增加3,则其面积增加了( )A.9B.(a+3)2C.6a+9D.a2+326.从前,一位农场主把一块边长为a米(a>4)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加4米,相邻的另一边减少4米,变成长方形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( )A.没有变化B.变大了C.变小了D.无法确定7.若,则下列a,b,c的大小关系正确的是( )A.b<a<c B.a<b<c C.a<c<b D.c<b<a8.现有甲、乙、丙三种不同的长方形纸片若干张(边长如图).小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,他选取甲纸片1张,再取乙纸片4张,还需要取丙纸片的张数为( )A.1B.2C.3D.4二.填空题9.= .10.如图,正方形ABCD与正方形CEFG的面积之差是6,那么S阴= .11.当m﹣n=﹣5,mn=2时,则代数式(m﹣n)2﹣4mn= .12.已知a=﹣2+3b,则代数式a2﹣6ab+9b2的值为 .13.一个正方形的边长增加3cm,它的面积就增加99cm2,这个正方形的边长为 .14.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的周长和为 cm.15.已知m+n=3,m﹣n=2,则m2﹣n2= .三.解答题16.计算:.17.已知ab=3,a﹣b=4,求2a2+7ab+2b2的值.18.计算(2m﹣n)2﹣(m+2n)(m﹣2n).19.计算:(2x﹣3y+z)(2x+3y﹣z).20.阅读材料:若满足(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设8﹣x=a,x﹣6=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2.所以(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.请仿照上例解决下面的问题:(1)问题发现:若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值;(2)类比探究:若x满足(2022﹣x)2+(2021﹣x)2=2020.求(2022﹣x)(2021﹣x)的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ 都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).21.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,然后将剩余部分拼成图2所示长方形.(1)上述操作能验证的等式是 .A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2﹣ab=a(a﹣b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2﹣4y2=18,x﹣2y=,求x+2y.②计算:(1﹣)×(1﹣)×(1﹣)×……×(1﹣)×(1﹣).22.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形(1)请你分别表示出这两个图形中阴影部分的面积 (2)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示)【应用】请应用这个公式完成下列各题①已知4m2﹣n2=12,2m+n=4,则2m﹣n的值为 ②计算:(2a+b﹣c)(2a﹣b+c)【拓展】①(2+1)(22+1)(24+1)(28+1)…(232+1)+1结果的个位数字为 ②计算:1002﹣992+982﹣972+…+42﹣32+22﹣12参考答案一.选择题1.解:A、(﹣m+n)(m﹣n)不能用平方差公式计算,故选项符合题意;B、(﹣m﹣n)(﹣m+n)能用平方差公式计算,故选项不符合题意;C、(x+2)(x﹣2)能用平方差公式计算,故选项不符合题意;D、(﹣2x+y)(2x+y)能用平方差公式计算,故选项不符合题意.故选:A.2.解:∵a2﹣b2=(a+b)(a﹣b)=8,b﹣a=2,∴a+b=﹣4,故选:C.3.解:∵x2+(k﹣1)x+4是一个完全平方式,∴k﹣1=±4,解得:k=5或﹣3,故选:D.4.解:∵x﹣y=3,xy=2,∴(x+y)2=(x﹣y)2+4xy=9+8=17,故选:D.5.解:根据题意可得,(a+3)2﹣a2=a2+6a+9﹣a2=6a+9.故选:C.6.解:原来租的土地面积:a2(平方米).现在租的土地面积:(a+4)(a﹣4)=a2﹣16(平方米).∵a2>a2﹣16.∴张老汉的租地面积会减少.故选:C.7.解:∵a=20220=1,b=(2022+1)×(2022﹣1)﹣20222=20222﹣1﹣20222=﹣1,c=(﹣×)2022×=(﹣1)2022×=,∴b<a<c,故选:A.8.解:∵取甲纸片1张,取乙纸片4张,∴面积为a2+4b2,∵小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,丙纸片的面积为ab,∴还需4张丙纸片,即a2+4b2+4ab=(a+2b)2,故选:D.二.填空题9.解:==﹣,故答案为:﹣.10.解:设正方形ABCD的边长分别为a和b,由题意得:b2﹣a2=6.由图形可得:S阴=a(b﹣a)+(b2﹣ab)=ab﹣a2+b2﹣ab=(b2﹣a2)=×6=3.故答案为:311.解:原式=(﹣5)2﹣4×2=25﹣8=17,故答案为:17.12.解:∵a=﹣2+3b,∴a﹣3b=﹣2,∴a2﹣6ab+9b2=(a﹣3b)2=(﹣2)2=4,故答案为:4.13.解:设这个正方形的边长为xcm,根据题意得:(x+3)2=x2+99,∴x2+6x+9=x2+99,∴6x=90∴x=15.故答案为:15cm.14.解:根据题意可得,面积分别是6cm2和2cm2的小正方形边长为cm和cm,则两个长方形的周长为(4+4)cm.故答案为:4+4.15.解:m2﹣n2=(m+n)(m﹣n)=3×2=6.故答案为:6.三.解答题16.解:原式===.17.解:a2+b2=(a﹣b)2+2ab=42+2×3=22,2a2+7ab+2b2=2(a2+b2)+7ab=2×22+7×3=44+21=65.18.解:原式=4m2﹣4mn+n2﹣(m2﹣4n2)=4m2﹣4mn+n2﹣m2+4n2=3m2﹣4mn+5n2.19.解:(2x﹣3y+z)(2x+3y﹣z)=[2x﹣(3y﹣z)][2x+(3y﹣z)]=(2x)2﹣(3y﹣z)2=4x2﹣9y2+6yz﹣z2.20.解:(1)设3﹣x=a,x﹣2=b,则a+b=(3﹣x)+(x﹣2)=1,由完全平方公式可得a2+b2=(a+b)2﹣2ab=12﹣2×(﹣10)=21,即:(3﹣x)2+(x﹣2)2的值为21;(2)设2022﹣x=a,2021﹣x=b,则a﹣b=1,a2+b2=2020,由完全平方公式可得ab==,即:(2022﹣x)(2021﹣x)的值为;(3)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.21.解:(1)根据阴影部分的面积相等得出:a2﹣b2=(a+b)(a﹣b).故选:B.(2)①∵x2﹣4y2=18,x﹣2y=3,∴x+2y=(x2﹣4y2)÷(x﹣2y)=18÷3=6;②原式=(1﹣)×(1+)×(1﹣)×(1+)×……×(1﹣)×(1+)=××××……××=×=.22.解:(1)图①按照正方形面积公式可得:a2﹣b2;图②按照长方形面积公式可得:(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b).(2)令(1)中两式相等可得:(a+b)(a﹣b)=a2﹣b2故答案为:(a+b)(a﹣b)=a2﹣b2.【应用】①∵4m2﹣n2=12,2m+n=4,4m2﹣n2=(2m+n)(2m﹣n)∴(2m﹣n)=12÷4=3故答案为:3.②(2a+b﹣c)(2a﹣b+c)=[2a+(b﹣c)][2a﹣(b﹣c)]=4a2﹣(b﹣c)2=4a2﹣b2+2bc﹣c2【拓展】①原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=(216﹣1)…(232+1)+1=264﹣1+1=264∵2的正整数次方的尾数为2,4,8,6循环,64÷4=16故答案为:6.②原式=(100+99)(100﹣99)+(98+97)(98﹣97)+…+(4+3)(4﹣3)+(2+1)(2﹣1)=100+99+98+97+…+4+3+2+1=5050。

初二数学知识点专题讲解与练习2---乘法公式(培优版)

初二数学知识点专题讲解与练习2---乘法公式(培优版)

A.正数
B.负数
C.非负数
D.可正可负
.若 则 的值是( ) 9 x − y = 2, x2 + y2 = 4, x1992 + y1992
.A 4
.B 19922
.C 21992
.D 41992
3/9
(“希望杯”邀请赛试题)
10.某校举行春季运动会时,由若干名同学组成一个 8 列的长方形队列.如果原队列中增加 120 人,就能
例 4 71 提示:由 a+b=1, a2 + b2 =2 得 ab=- 1 ,利用 an+1 + bn+1 =( an + bn )(a+
8
2
b)-ab( an−1 + bn−1 )可分别求得 a3 + b3 = 5 ,a4 + b4 = 7 ,a5 + b5 = 19 ,a6 + b6 = 26 ,a7 +
对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.
1/9
【例 3】计算下列各题: ( ) ; 1 6(7 +1)(72 +1)(74 +1)(78 +1) +1
(天津市竞赛试题)
( ) ; 2 1.234 52 + 0.765 52 + 2.469× 0.765 5
(“希望杯”邀请赛试题)
3.13 4.156 5.D
6.C 提示:(x+y)(x-y)=2009=7×7×41 有 6 个正因数,分别是 1,7,41,49,287 和 2009,因此对应的方程组为: x + y = −1,−7,−41,−49,−287,−2009,1,7,41,49,287,2009; x − y = −2009,−287,−49,−41,−7,−1,2009,287,49,41,7,1. 故(x,y)共有 12 组不同的表示. 7.B 8.C 9.提示:不存在符合条件的整数对(m,n),因为 1954 不能被 4 整除.

浙教版七年级数学下册第三单元《整式的乘除》培优题

浙教版七年级数学下册第三单元《整式的乘除》培优题一.选择题(共7小题)1.=()A.1 B.C.2D.2.已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.3.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b24.使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=15.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.06.设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.27.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.8.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是.9.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片张,3号卡片张.10.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=.11.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.12.若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为.13.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=;②(x﹣1)(x2+x+1)=;③(x﹣1)(x3+x2+x+1)=;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=;(5)根据猜想的规律,计算:226+225+…+2+1.15.杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是;(2)利用上述规律直接写出27=;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与的积.(4)由此你可以写出115=.(5)由第行可写出118=.浙教版七年级数学下册第三单元《整式乘除》参考答案与试题解析一.选择题(共7小题)1.(2012秋•南陵县期末)=()A.1 B.C.2D.【分析】根据x a•y a=(xy)a,进行运算即可.【解答】解:原式=(×)2004×=.故选B.【点评】此题考查了同底数幂的乘法运算,属于基础题,注意式子:x a•y a=(xy)a的运用.2.(2001•乌鲁木齐)已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.【分析】利用同底数幂的除法和幂的乘方的性质的逆运算计算即可.【解答】解:∵x m=a,x n=b(x≠0),∴x3m﹣2n=x3m÷x2n=.故选D.【点评】本题考查了同底数幂的除法,幂的乘方的性质,逆用性质是解题的关键.3.(2016春•苏州期中)根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b2【分析】大长方形的长为3a+2b,宽为a+b,表示出面积;也可以由三个边长为a的正方形,2个边长为b的正方形,以及5个长为b,宽为a的长方形面积之和表示,即可得到正确的选项.【解答】解:根据图形得:(3a+2b)(a+b)=3a2+5ab+2b2.故选:D.【点评】此题考查了多项式乘多项式,弄清题意是解本题的关键.4.(2016秋•简阳市期中)使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=1【分析】根据多项式乘多项式的法则计算,然后根据不含x2项和x3项就是这两项的系数等于0列式,求出p和q的值,从而得出.【解答】解:(x2+px+8)(x2﹣3x+q),=x4+(p﹣3)x3+(8﹣3p+q)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,∴解得:.故选:C.【点评】本题考查了多项式乘多项式的运算法则,根据不含哪一项就是让这一项的系数等于0列式是解题的关键.5.(2015春•房山区期末)已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.0【分析】根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:4a2﹣b2﹣4b=4a2﹣(b2+4b+4)+4=(2a)2﹣(b+2)2+4=[2a+(b+2)][2a﹣(b+2)]+4=(2a+b+2)(2a﹣b﹣2)+4当2a﹣b=2时,原式=0+4=4,故选:B.【点评】本题考查了完全平方公式,利用完全平方公式得出平方差公式是解题关键.6.(2012•宁波模拟)设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.2【分析】已知等式变形后利用完全平方公式化简得到关系式,代入所求式子计算即可得到结果.【解答】解:m2+n2=4mn变形得:(m﹣n)2=2mn,(m+n)2=6mn,∵0<n<m,∴m﹣n>0,m+n>0,∴m﹣n=,m+n=,∴原式===2.故选D.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.7.(2014•金水区校级模拟)为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.【分析】根据题目所给计算方法,令S=1+5+52+53+…+52012,再两边同时乘以5,求出5S,用5S﹣S,求出4S的值,进而求出S的值.【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选D.【点评】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.二.填空题(共5小题)8.(2012•泰州)若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是11.【分析】利用x2+3x+2=(x﹣1)2+a(x﹣1)+b,将原式进行化简,得出a,b的值,进而得出答案.【解答】解:∵x2+3x+2=(x﹣1)2+a(x﹣1)+b=x2+(a﹣2)x+(b﹣a+1),∴a﹣2=3,∴a=5,∵b﹣a+1=2,∴b﹣5+1=2,∴b=6,∴a+b=5+6=11,故答案为:11.【点评】此题主要考查了整式的混合运算与化简,根据已知得出x2+3x+2=x2+(a ﹣2)x+(b﹣a+1)是解题关键.9.(2012•杭州模拟)有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是a2+3ab+2b2=(a+b)(a+2b).(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片3张,3号卡片7张.【分析】(1)画出相关草图,表示出拼合前后的面积即可;(2)得到所给矩形的面积,看有几个b2,几个ab即可.【解答】解:(1)如图所示:故答案为:a2+3ab+2b2=(a+b)(a+2b);(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片3张,3号卡片7张.故答案为:a2+3ab+2b2=(a+b)(a+2b);3;7.【点评】考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.10.(2015•崇左)4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=1.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,整理得:12x=12,解得:x=1.故答案为:1.【点评】此题考查了整式的混合运算,弄清题中的新定义是解本题的关键.11.(2014春•苏州期末)若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为y=4(x+1)2+1.【分析】将4m变形,转化为关于2m的形式,然后再代入整理即可【解答】解:∵4m+1=22m×4=(2m)2×4,x=2m﹣1,∴2m=x+1,∵y=1+4m+1,∴y=4(x+1)2+1,故答案为:y=4(x+1)2+1.【点评】本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.12.(2015•雅安)若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为510.【分析】通过m1,m2,…m2015是从0,1,2这三个数中取值的一列数,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510从而得到1的个数,由m1+m2+…+m2015=1525得到2的个数.【解答】解:∵(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,∵m1,m2,…,m2015是从0,1,2这三个数中取值的一列数,∴m1,m2,…,m2015中为1的个数是2015﹣1510=505,∵m1+m2+…+m2015=1525,∴2的个数为(1525﹣505)÷2=510个.故答案为:510.【点评】此题考查完全平方的性质,找出运算的规律.利用规律解决问题.三.解答题(共3小题)13.(2015秋•厦门期末)已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.【分析】(1)根据已知条件可得a3=2,代入可求p﹣q的值;(2)根据作差法得到p﹣(a3+)=2﹣n﹣,分三种情况:当n=1时;当n=2时;当n≥3时进行讨论即可求解.【解答】解:(1)∵a3+a﹣3=p①,a3﹣a﹣3=q②,∴①+②得,2a3=p+q=4,∴a3=2;①﹣②得,p﹣q=2a﹣3==1.(2)∵q2=22n+﹣2(n≥1,且n是整数),∴q2=(2n﹣2﹣n)2,∴q2=22n+2﹣2n,又由(1)中①+②得2a3=p+q,a3=(p+q),①﹣②得2a﹣3=p﹣q,a﹣3=(p﹣q),∴p2﹣q2=4,p2=q2+4=(2n+2﹣n)2,∴p=2n+2﹣n,∴a3+a﹣3=2n+2﹣n③,a3﹣a﹣3=2n﹣2﹣n④,∴③+④得2a3=2×2n,∴a3=2n,∴p﹣(a3+)=2n+2﹣n﹣2n﹣=2﹣n﹣,当n=1时,p>a3+;当n=2时,p=a3+;当n≥3时,p<a3+.【点评】考查了负整数指数幂:a﹣p=(a≠0,p为正整数),关键是加减消元法和作差法的熟练掌握.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=x14+x13+x12+…+x2+x+1;(5)根据猜想的规律,计算:226+225+…+2+1.【分析】(1)运用乘法公式以及多项式乘多项式的法进行计算即可;(2)根据(1)中的计算结果的变换规律进行判断即可;(3)根据(1)(2)中的计算结果总结变换规律即可;(4)根据(3)中的规律,直接求得m的表达式即可;(5)根据(3)中的规律列出等式进行变形,求得226+225+…+2+1的值.【解答】解:(1)①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4+x3+x2+x﹣x3﹣x2﹣1=x4﹣1;(2)①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)∵(x﹣1)•m=x15﹣1,∴m=x14+x13+x12+…+x2+x+1;(5)∵(2﹣1)(226+225+224+…+22+2+1)=227﹣1,∴226+225+…+2+1=227﹣1.【点评】本题主要考查了多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.计算时按一定的顺序进行,必须做到不重不漏.15.(2014春•泰兴市校级期末)杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.【分析】观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.【解答】解:(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.故答案为:15,128,11,161051,9,214358881.【点评】考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.。

完整版)乘法公式专项练习题

完整版)乘法公式专项练习题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()。

答案:D。

以上都可以。

2.下列多项式的乘法中,可以用平方差公式计算的是()。

答案:B。

(-a+b)(a-b)3.若x2-x-m=(x-m)(x+1)且x≠0,则m等于()。

答案:C。

14.计算[(a-b)(a+b)]等于()。

答案:A。

a2-b25.已知(a+b)2=11,ab=2,则(a-b)2的值是()。

答案:B。

36.若x2-7xy+M是一个完全平方式,那么M是()。

答案:D。

49y27.若x,y互为不等于的相反数,n为正整数,你认为正确的是()。

答案:B。

xn、XXX一定是互为相反数。

8.下列计算中,错误的有()。

答案:D。

4个。

①(3a+4)(3a-4)=9a2-16;②(2a2-b)(2a2+b)=4a4-b2;③(3-x)(x+3)=-x2+9;④(-x+y)·(x+y)=-x2+y2.9.若x2-y2=30,且x-y=-5,则x+y的值是()。

答案:A。

5.10.已知a1996x1995,b1996x1996,c1996x1997,那么a2b2c2ab bc ca的值为()。

答案:C。

3.11.已知x0,且M(x22x1)(x22x1),N(x2x1)(x2x1),则M与N的大小关系为()。

答案:A。

XXX。

12.设a、b、c是不全相等的任意有理数。

若x a2bc,y b2ca,z c2ab,则x、y、z()。

答案:D。

至少有一个大于0,至少有一个小于0.1.$(-2x+y)(-2x-y)=4x^2-y^2$,$(-3x^2+2y^2)(3x^2+2y^2)=9x^4-4y^4$。

2.$(a+b-1)(a-b+1)=a^2+b^2-2b$,$(a+b-1)^2-(a-b+1)^2=4ab-2a$。

3.差为$(5-2)^2-(5-4)^2=9$。

4.$a^2+b^2-2a+2b+2=0$,$a^{2004}+b^{2005}=a^2+b^2-ab(a-b)^2=(a-b)^2$。

2023年初中数学培优竞赛讲座第讲乘法公式

第十八讲 乘法公式乘法公式是在多项式乘法的基础上,将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应当做到以下几点:1.熟悉每个公式的结构特性,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题【例1】 (1)已知两个连续奇数的平方差为2023,则这两个连续奇数可以是 .(江苏省竞赛题)(2)已知(2023一a)(1998一a)=1999,那么(2023一a)2+(1998一a)2= . (重庆市竞赛题) 思绪点拨 (1)建立两个连续奇数的方程组;(2)视(2023一a)·(1998一a)为整体,由平方和想到完全平方公式及其变形.注:公式是如何得出来的?一种是由已知的公式,通过推导,得到一些新的公式;另一种是从大量的特殊的数量关系入手,并用字母表达数来揭示一类数量关系的一般规律—一公式.从特殊到一般的过程是人类结识事物的一般规律,而观测、发现、归纳是发现数学规律最常用的方法. 乘法公式常用的变形有:(1)ab b a b a 2)(222 ±=+,2)()(2)()(222222b a b a b a b a ab --+=+-+=. (2)222222)()(b a b a b a +=-++;(3) ab b a b a 4)()(22=--+; (4)4)()(22b a b a ab --+=,)(2)(2222ac bc ab c b a c b a ++-++=++ 【例2】 若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小是( ) A .M>N B . M<N C . M=N D .无法拟定 思绪点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.【例3】 计算:(1)6(7十1)(72十1)(74十1)(78十1)+1; (天津市竞赛题)(2)1.345×0.345×2.69—1.3452一1.345×0.3452. (江苏省竞赛题)思绪点拨 若按部就班计算,显然较繁.能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特性,对于(2),由于数字之间有联系,可用字母表达数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特性.【例4】 (1)已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +的值. (“希望杯”邀请赛试题) (2)整数x ,y 满足不等式y x y x 22122+≤++,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a ,第二次提价的百分率为b ,乙商场:两次提价的百分率都是2b a +(a>0,b>o),丙商场:第一次提价的百分率为b ,第二次提价的百分率为a ,则哪个商场提价最多?说明理由. (河北省竞赛题)思绪点拔 对于(1),(2)两个未知数一个等式或不等式,须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表达,作差比较它们的大小.注: 有些问题经常不能直接使用公式,而需要发明条件,使之符合乘法公式的特点,才干使用公式.常见的方法是:分组、结合,拆添项、字母化等.完全平方公式逆用可得到两个应用广泛的结论: (1)0)(2222≥±=+±b a b ab a ;揭示式子的非负性,运用非负数及其性质解题. (2)ab b a 222≥+应用于代数式的最值问题.代数等式的证明有以下两种基本方法:(1) 由繁到简,从一边推向另一边; (2)相向而行,寻找代换的等量.【例5】 已知a 、b 、c 均为正整数,且满足222c b a =+,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数.思绪点拨 从222c b a =+的变形入手;222b c a -=,运用质数、奇偶数性质证明.学力训练1.观测下列各式:(x 一1)(x+1)=x 2一l ;(x 一1)(x 2+x+1)=x 3一1;(x 一1)(x 3十x 2+x+1)=x 4一1.根据前面的规律可得(x 一1)(x n +x n-1+…+x+1)= . (武汉市中考题) 2.已知052422=+-++b a b a ,则ba b a -+= . (杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655: ;(2)19492一19502+19512一19522+…+19972一19982+19992 = ; (3)2199919991999199719991998222-+ .4.如图是用四张全等的矩形纸片拼成的图形,请运用图中空白部分的面积的不同表达方法写出一个关于a 、b 的恒等式 . (大原市中考题)5.已知51=+a a ,则2241aa a ++= . (菏泽市中考题) 6.已知5,3-=+=-cb b a ,则代数式ab a bc ac -+-2的值为( ).A .一15B .一2C .一6D .6 (扬州市中考题) 7.乘积)200011)(199911()311)(211(2222----等于( ). A .20001999 B .20002001 C .40001999 D .40002001 (重庆市竞赛题) 8.若4,222=+=-y x y x ,则20022002y x +的值是( ).A .4B .20232C . 22023D .420239.若01132=+-x x ,则441xx +的个位数字是( ). A .1 B .3 C . 5 D .710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .222))(2(b ab a b a b a -+=-+ (陕西省中考题)11.(1)设x+2z =3z ,判断x 2一9y 2+4z 2+4xz 的值是不是定值?假如是定值,求出它的值;否则请说明理由.(2)已知x 2一2x=2,将下式先化简,再求值:(x —1)2+(x+3)(x 一3)+(x 一3)(x 一1). (上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观测:2514321=+⋅⋅⋅21115432=+⋅⋅⋅21916543=+⋅⋅⋅……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2023×2023×2023×2023+1的结果(用一个最简式子表达). (黄冈市竞赛题)14.你能不久算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成l0n+5(n 为自然数),即求(10n+5)2的值,试分析 n=1,n=2,n =3……这些简朴情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100× 3×(3+1)+25;452=2025可写成100×4×(4+1)+25;……752=5625可写成 ;852=7225可写成 .(2)从第(1)题的结果,归纳、猜想得(10n+5)2= .(3)根据上面的归纳猜想,请算出19952= . (福建省三明市中者题)15.已知014642222=+-+-++z y x z y x ,则z y x ++= . (天津市选拔赛试题)16.(1)若x+y =10,x 3+y 3=100,则x 2+y 2= .(2)若a-b=3,则a 3-b 3-9ab = .17.1,2,3,……,98共98个自然数中,可以表达成两整数的平方差的个数是 . (初中数学联赛)18.已知a-b=4,ab+c 2+4=0,则a+b=( ). A .4 B .0 C .2 D .一219.方程x 2-y 2=1991,共有( )组整数解. A .6 B .7 C .8 D .920.已知a 、b 满足等式)2(4,2022a b y b a x -=++=,则x 、y 的大小关系是( ).A .x ≤yB .x ≥yC .x<yD .x>y (大原市竞赛题)21.已知a=1999x+2023,b =1999x+2023,c =1999x+2023,则多项式a 2+b 2+c 2一ab —bc-ac 的值为( ).A .0B .1C .2D .3 (全国初中数学竞赛题)22.设a+b=1,a 2+b 2=2,求a 7+b 7的值. (西安市竞赛题)23.已知a 满足等式a 2-a-1=0,求代数式487-+a a 的值. (河北省竞赛题)24.若b a y x +=+,且2222b a y x +=+,求证:1997199719971997b a y x+=+. (北京市竞赛题)25.有l0位乒乓球选手进行单循环赛(每两人间均赛一场),用xl ,y 1顺次表达第一号选手胜与负的场数;用x 2,y 2顺次表达第二号选手胜与负的场数;……;用x 10、y 10顺次表达十号选手胜与负的场数.求证:21022212102221y y y x x x +++=+++ .26.(1)请观测: 222233*********,335112225,351225,525====写出表达一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选此外两个类似26、53的数,使它们能表达成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?注:有人称这样的数“不变心的数”.数学中有许多美妙的数,通过度析,可发现其中的奥秘.瑞士数学家欧拉曾对26(2)的性质作了更进一步的推广.他指出:可以表达为四个平方数之和的甲、乙两数相乘,其乘积仍然可以表达为四个平方数之和.即(a 2+b 2+c 2十d 2)(e 2+f 2+g 2+h 2)=A 2+B 2+C 2+D 2.这就是著名的欧拉恒等式.第十八讲 乘法公式参考答案。

2022-2023学年初一数学第二学期培优专题训练28 利用乘法公式和因式分解简便计算

专题28 利用乘法公式和因式分解简便计算【例题讲解】用简便方法进行计算.(1)21.4×2.3+2.14×27+214×0.5.(2)22100007525-. (3)(2112-)×2211(1)(1)34-⨯-⨯…×(21110-). (4)1952+195×10+52. 1191010⨯⨯⨯195×5+521.用简便方法计算2008﹣4016×2007+2007的结果是_____.2.利用因式分解计算:22111021198⨯-⨯的结果是______.3.利用因式分解简便运算:2252.847.2-=_____.4.利用因式分解计算2221000252248=-__________. 5.计算:2222020200119=200119--⨯__. 6.利用因式分解计算:3.4614.70.5414.729.4⨯+⨯-=______.7.利用因式分解计算:2022+202×196+982=______.8.利用乘法公式简便计算.(1)4.3212+8.642×0.679+0.6792;(2)2020×2022-20212.9.利用因式分解计算(1)2900894906-⨯(2)2.6815.731.415.7 1.32⨯-+⨯10.利用因式分解计算:(1)21 3.1462 3.1417 3.14⨯+⨯+⨯;(2)22758258-.11.利用因式分解进行简便运算:(1)2920.217220.2120.21⨯+⨯- (2)2210119810199+⨯+12.利用因式分解进行简便计算:(1)3×852﹣3×152;(2)20212﹣4042×2019+20192.13.利用因式分解计算:225652443524⨯-⨯.14.计算:(要求:应用因式分解巧算,写明计算过程)(1)7749.124.12525⨯-⨯; (2)1.1 2.5 2.29 2.50.61 2.5⨯+⨯+⨯; (3)20.9990.9990.001+⨯;(4)已知2004+=a b ,1003=ab ,求22222-+a b a b ab 的值.15.简便计算:(1)227.29 2.71-;(2)2.887.680.48⨯+⨯-⨯;(3)2200820081664-⨯+.16.用简便方法计算:(1)8502﹣1700×848+8482(2)2221111()1()1()232021⎡⎤⎡⎤⎡⎤-⨯-⨯⋯⨯-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦17.简便计算(1)221.2229 1.3334⨯-⨯ (2)2220220219698⨯++18.利用因式分解计算:(1)222222221009998974321-+-+⋯+-+-(2)()()()()2483212451515151++++⋅⋯⋅+(3)()()4222222n n n ++-19.用简便方法计算:(1)22429171-(2)2220220219698⨯++20.利用因式分解计算:22015201520152016+-⨯21.利用因式分解计算:(1)342+34×32+162(2)38.92-2×38.9×48.9+48.9222.计算:①2032﹣203×206+1032②20192﹣2018×2020.23.用简便方法计算.(1)227.29 2.71-(2)44134 23.7 1.35555 -⨯+⨯-⨯24.利用因式分解计算:3232 2018320182015 201820182019-⨯-+-25.利用因式分解简便计算:11 1009922⨯26.利用因式分解计算:(1)9788597879788⨯+⨯+⨯;(2)23.86 3.86 3.85-⨯. 27.利用乘法公式计算:(1)2201920182020-⨯. (2)299.8.专题28 利用乘法公式和因式分解简便计算【例题讲解】用简便方法进行计算.(1)21.4×2.3+2.14×27+214×0.5.(2)22100007525-. (3)(2112-)×2211(1)(1)34-⨯-⨯…×(21110-). 221191010⨯⨯⨯195×5+52,1.用简便方法计算2008【答案】1.【分析】共三项,其中4016是2×2008,用完全平方公式分解因式即可解答.【解答】20082﹣4016×2007+20072,=20082﹣2×2008×2007+20072,=(2008﹣2007)2,=1.【点评】此题考查公式法在有理数计算中的应用,正确分析出所应用的公式是解题的关键. 2.利用因式分解计算:22111021198⨯-⨯的结果是______.【答案】8800【分析】先提出11,再根据平方差公式计算即可.【解答】原式=2211(10298)⨯-=11(10298)(10298)⨯+⨯-=112004⨯⨯=8800.故答案为:8800.【点评】本题主要考查了应用因式分解计算,掌握平方公式是解题的关键.即22()()a b a b a b -=+-.3.利用因式分解简便运算:2252.847.2-=_____.【答案】560【分析】利用平方差法进行因式分解,再进行计算;【解答】原式=()()52.847.252.847.2+⨯-=100 5.6⨯=560.故答案为:560.【点评】本题考查利用公式法因式分解进行简便运算.熟练掌握公式法因式分解是解题的关键.4.利用因式分解计算2221000=__________.5.计算:2020200119=--__.6.利用因式分解计算:______.【答案】29.4【分析】根据提取公因式法,提取公因数14.7,进行简便计算,即可. 【解答】原式=(3.46+0.542)14.7-⨯=214.7⨯=29.4故答案为:29.4.【点评】本题主要考查提取公因式法分解因式,提取公因数14.7,进行简便计算,是解题的关键.7.利用因式分解计算:2022+202×196+982=______.【答案】90000.【分析】将式子改写为完全平方公式的形式进行计算.【解答】原式2220222029898=+⨯⨯+2(20298)=+2300=90000=.故答案为90000.【点评】本题考查利用完全平方公式计算,熟练掌握公式的形式是关键.8.利用乘法公式简便计算.(1)4.3212+8.642×0.679+0.6792;(2)2020×2022-20212.【答案】(1)25(2)-1【分析】(1)根据完全平方公式计算即可;(2)根据平方差公式计算即可【解答】(1)4.3212+8.642×0.679+0.6792224.3212 4.3210.6790.679=+⨯⨯+()24.3210.679=+ 25=25=(2)2020×2022-20212()()220211202112021=-+-222=202112021--1=-【点评】本题考查了利用乘法公式简便计算,掌握乘法公式是解题的关键.9.利用因式分解计算(1)2900894906-⨯ (2)2.6815.731.415.7 1.32⨯-+⨯【答案】(1)36(2)31.4【分析】(1)先将894906⨯变形为()()a b a b +-的形式,再利用平方差公式求解;(2)先提取公因式15.7,再进行计算即可.【解答】(1)解:2900894906-⨯222222290090(9006)(9006)(9006)9609000630--⨯+=--=-+==(2)解:2.6815.731.415.7 1.32⨯-+⨯15.7(2.682 1.32)15.7231.4=⨯-+=⨯= 【点评】本题考查通过因式分解进行简化计算,解题关键是提取公因式或根据数字特点将所求式子进行变形后利用公式求解.10.利用因式分解计算:(1)21 3.1462 3.1417 3.14⨯+⨯+⨯;(2)22758258-.【答案】(1)314;(2)508000【分析】(1)利用提取公因式法计算;(2)应用平方差公式计算.【解答】解:(1)原式 3.14(216217)314=⨯++=;(2)原式(758258)(758258)1016500508000=+-=⨯=.【点评】本题考查因式分解的应用,属于基础题型.11.利用因式分解进行简便运算:(1)2920.217220.2120.21⨯+⨯- (2)2210119810199+⨯+【答案】(1)2021;(2)40000【分析】(1)观察式子,利用提公因式法进行求解;(2)根据式子的特点,利用完全平方公式进行求解.【解答】(1)解:原式()20.2129721=⨯+-20.21100=⨯2021=.(2)解:原式2210129910199=+⨯⨯+()210199=+ 2200=40000=【点评】本题考查因式分解的应用,解题的关键是根据每个式子中的特点选择适当的因式分解的方法(如提公因式法、公式法等),从而简化计算.12.利用因式分解进行简便计算:(1)3×852﹣3×152; (2)20212﹣4042×2019+20192.【答案】(1)21000;(2)4【分析】(1)提取公因式,利用平方差公式进行因式分解计算即可;(2)对原式进行变形,利用完全平方公式直接分解因式计算即可.【解答】解:(1)3×852﹣3×152=3×(852-152)=3×(85+15)×(85-15)=3×100×70=21000;(2)20212﹣4042×2019+20192=20212-2×2021×2019+20192=(2021-2019)2=22=4.【点评】本题考查了因式分解的应用,熟练掌握平方差公式和完全平方公式是解题的关键. 13.利用因式分解计算:225652443524⨯-⨯.【答案】3120000【分析】先提取24,再利用平方差公式即可求解.【解答】225652443524⨯-⨯=()2224565435⨯-=()()24565435565435⨯+⨯-=241000130⨯⨯=3120000.【点评】此题主要考查因式分解的运用,解题的关键是熟知平方差公式的运用.14.计算:(要求:应用因式分解巧算,写明计算过程)(1)7749.124.12525⨯-⨯; (2)1.1 2.5 2.29 2.50.61 2.5⨯+⨯+⨯;(3)20.9990.9990.001+⨯; 2222)a (a -原式()1003200420062006=⨯-=-.【点评】本题考查了因式分解的应用,掌握因式分解的方法是解题的关键.15.简便计算:(1)227.29 2.71-;(2)2.887.680.48⨯+⨯-⨯; (3)2200820081664-⨯+.【答案】(1)45.8;(2)80;(3)4000000【分析】(1)利用平方差公式即可求解;(2)提取8,故可求解;(3)利用完全平方公式即可求解.【解答】(1)227.29 2.71-=()()7.29 2.717.29 2.71+⨯-=10×4.58=45.8;(2)2.887.680.48⨯+⨯-⨯=()8 2.87.60.4⨯+-=8×10=80(3)2200820081664-⨯+=2220082200888-⨯⨯+=()220088-=20002=4000000.【点评】此题主要考查因式分解的应用,解题的关键是熟知提公因式法、公式法分解因式.16.用简便方法计算:(1)8502﹣1700×848+8482(2)2221111()1()1()⎡⎤⎡⎤⎡⎤-⨯-⨯⋯⨯-⎢⎥⎢⎥⎢⎥ 112021⎛⨯⨯+ ⎝20222021⨯⨯⨯20202021⨯⨯⨯【点评】本题考查了因式分解的应用,熟练掌握完全平方公式、平方差公式是解本题的关键.(1)221.2229 1.3334⨯-⨯ (2)2220220219698⨯++【答案】(1)6.332;(2)90000【分析】(1)先利用同底数幂的乘法变形,再利用平方差公式计算;(2)利用完全平方公式变形计算.【解答】解:(1)221.2229 1.3334⨯-⨯=22221.2223 1.3332⨯-⨯=()()221.2223 1.3332⨯-⨯=223.666 2.666-=()()3.666 2.666 3.666 2.666+-=6.332;(2)2220220219698+⨯++=2220222029898+⨯⨯+=()220298+=90000【点评】本题考查了同底数幂的乘法,平方差公式,完全平方公式,计算时注意乘法公式的应用.18.利用因式分解计算:(1)222222221009998974321-+-+⋯+-+-(2)()()()()2483212451515151++++⋅⋯⋅+(3)()()4222222n n n ++-(1)22429171-(2)2220220219698⨯++【答案】(1)154800;(2)90000.【分析】(1)利用平方差公式进行计算即可得到答案;(2)把原式化为:2220222029898+⨯⨯+,再利用完全平方公式进行计算即可得到答案.【解答】解:(1)22429171-()()429171429171=+-600258154800=⨯=(2)2220220219698⨯++2220222029898=+⨯⨯+()220298=+ 230090000.==【点评】本题考查的是利用平方差公式与完全平方公式进行简便计算,掌握两个公式的特点是解题的关键.20.利用因式分解计算:22015201520152016+-⨯【答案】0【分析】先提取公因数2015进行分解,然后再进行计算即可.【解答】22015201520152016+-⨯=()2015120152016⨯+-=20150⨯0=.【点评】本题考查了利用因式分解进行计算,熟练掌握提公因式法是解此题的关键.21.利用因式分解计算:(1)342+34×32+162 (2)38.92-2×38.9×48.9+48.92【答案】(1)2500;(2)100.【分析】(1)转化为完全平方公式形式,计算即可;(2)根据完全平方公式计算即可.【解答】解:(1)342+34×32+162=342+2×34×16+162=(34+16)2=502=2500;(2)38.92-2×38.9×48.9+48.92=(38.9-48.9)2=(-10)2=100.【点评】本题考查了根据完全平方公式因式分解,熟练掌握完全平方式的特点是解题关键.22.计算:①2032﹣203×206+1032 ②20192﹣2018×2020.【答案】①10000;②1.【分析】①根据完全平方公式计算即可;②根据平方差公式计算即可.【解答】解:①原式=2032﹣2×203×103+1032=(203﹣103)2=1002=10000; ②原式=20192﹣(2019﹣1)×(2019+1)=20192﹣(20192﹣1)=20192﹣20192+1=1.【点评】本题主要考查了平方差公式以及完全平方公式,熟记公式是解答本题的关键.平方差公式:()()22a b a b a b +-=-.完全平方公式:()2222a b a ab b ±=±+.23.用简便方法计算.(1)227.29 2.71-(2)4413423.7 1.3-⨯+⨯-⨯24.利用因式分解计算:322018320182015-⨯-25.利用因式分解简便计算:10099⨯(1)9788597879788⨯+⨯+⨯;(2)23.86 3.86 3.85-⨯.【答案】(1)97800;(2)0.0386【分析】(1)提取公因式978后进行计算;(2)提取公因式3.86后进行计算.【解答】(1)原式()9788578=⨯++97800=.(2)原式()3.86 3.86 3.85=⨯-0.0386=.【点评】本题考查利用因式分解对有理数进行简便运算,利用提取公因式因式分解是解答此题的关键.27.利用乘法公式计算:(1)2201920182020-⨯. (2)299.8.【答案】(1)1(2)9960.04【分析】(1)观察算式,把2018和2020分别用2019-1和2019+1表示,利用平方差公式对这一部分进行运算,然后再去括号相加减即可;(2)将99.8表示成100-0.2,然后利用完全平方公式展开运算即可.【解答】(1)原式22019(20191)(20191)=--⨯+()2222019201911=--=(2)原式2(1000.2)=-2210021000.20.2=-⨯⨯+9960.04=【点评】本题考查了乘法公式,熟练掌握平方差公式和完全平方公式并运用是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式培优训练 一、平方差公式
1、计算: (1) (4x-5)(4x+5) (2) (12-+2m)(1
2
--2m)
(3) (3b+a)(a-3b) (4) (3+2a)(-3+2a)
2、(-2x+y )( )=2
2
4x y -. (-32x +22
y )(______)=94
x -44
y .
3、下列多项式的乘法中,可以用平方差公式计算的是( ) A .(a+b )(b+a ) B .(-a+b )(a -b ) C .(13a+b )(b -13
a ) D .(a 2-
b )(b 2
+a ) 4、下列计算中,错误的有( )
①(3a+4)(3a -4)=92a -4;②(22a -b )(22a +b )=42a -2
b ;
③(3-x )(x+3)=2x -9;④(-x+y )·(x+y )=-(x -y )(x+y )=-2x -2
y . A .1个 B .2个 C .3个 D .4个 5、若2x -2
y =30,且x -y=-5,则x+y 的值是___________ 6、计算:(a+2)(a 2
+4)(a 4
+16)(a -2).
7、利用平方差公式计算:
(1)2009×2007-20082. (2)2
2007
200720082006
-⨯.
二、完全平方公式
1、计算(1) 2
)2
1(b a + (2)2
)23(y x -
(3) 2)3
13(c ab +
- (4)2)12(--t
2、利用完全平方公式计算:
(1)1022 (2)1972
3、下列各式中,能够成立的等式是( ).
A .
B .
C .
D .
4、 ( )
A .
B .
C .
D .
5、若 ,则M 为( ). A . B .
C .
D .
6、如果
是一个完全平方公式,那么a 的值是( ).
A .2
B .-2
C .
D .
7、222
()x y x y +=+-__________=2
()x y -+________.
8、(.)0222a a +
=
++
9、已知013642
2
=+-++y x y x ,y x 、都是有理数,求y
x 的值。

10、已知 2
()16,4,a b ab +==求22
a b +与2
()a b -的值。

11、已知()5,3a b ab -==求2
()a b +的值。

12、已知(a +b)2
=60,(a -b)2
=80,求a 2
+b 2
及a b 的值
13、已知16x x
-
=,求221
x x +的值。

三、综合训练
1、计算:(1)22)52
()52(--+x x
(2)2
(x 5)+-(x-2)(x-3)
(3)(2y-1)(42
y +1)(2y+1) (4)(2x +y +1)(2x +y -1)
(5)(a+2b-c )(a-2b-c ) (6) 2()
a b c ++
(7)(x+2y-z )(x-2y+z ) (8) 2)
32(z y x --
2、计算:=++++)12)(12)(12)(12(842___________(结果可用幂的形式表示)
3、若(9+2
x )(x+3)·M=81-4
x ,则M=______.
4、a 2a 42
+要变为一个完全平方式则需加上的常数是________
5、2
2420____(2___)x
x x -+=-
6、如果多项式92
+-mx x 是一个完全平方式,则m 的值是 。

7、解方程:1)1x ()2x )(3x (2-=+--+。

8、已知a+b=3,ab=1,求2
2b ab a +-
9、已知0411082
2
=+-++y x y x ,求xy 的值;
10、已知x +2y =5,求4x 2+16xy +16y 2
的值
11、如果2b a =-,2
1c a =-,求bc ac ab c b a 2
22---++
12、若一个三角形的边长分别为a 、b 、c ,且满足:02222
22=--++bc ab c b a ,判断此三角形的形状,并说明理由
13、0132
=++x x ,求(1)2
2
1x x +
(2)44
1x x +
14、计算:1)17)(17(50488
4
+++⨯⨯
15、722=+b a ,122-=-c b ,1762
-=-a c ,求a+b+c 的值
16、若m 、n 是自然数,且2
222222991n m =++++,求m 和n 的值
17、若a+2b+3c=12,且bc ac ab c b a ++=++2
2
2
,求3
2c b a ++
18、已知:212
2
++=b a x ,a b y 48-=,比较x 和y 的大小。

相关文档
最新文档