解析几何大题答案
高中数学解析几何大题(附有答案及详解)

47. 已知椭圆E :()222210x y a b a b +=>>,其短轴为2.(1)求椭圆E 的方程;(2)设椭圆E 的右焦点为F ,过点()2,0G 作斜率不为0的直线交椭圆E 于M ,N 两点,设直线FM 和FN 的斜率为1k ,2k ,试判断12k k +是否为定值,若是定值,求出该定值;若不是定值,请说明理由.48. 如图,椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭,P 为椭圆上的一动点.(1)求椭圆C 的方程;(2)设圆224:5O x y +=,过点P 作圆O 的两条切线1l ,2l ,两切线的斜率分别为1k ,2k . ①求12k k 的值;①若1l 与椭圆C 交于P ,Q 两点,与圆O 切于点A ,与x 轴正半轴交于点B ,且满足OPA OQB S S =△△,求1l 的方程.49. 已知椭圆E :22221x y a b +=(a >b >0)的左、右焦点分別为12,F F ,离心率为e =左焦点1F 作直线1l 交椭圆E 于A ,B 两点,2ABF 的周长为8. (1)求椭圆E 的方程;(2)若直线2l :y =kx +m (km <0)与圆O :221x y +=相切,且与椭圆E 交于M ,N 两点,22MF NF +是否存在最小值?若存在,求出22MF NF +的最小值和此时直线2l 的方程.50. 已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,动点M 的轨迹为曲线C .(1)求C 的轨迹方程,并说明其形状;(2)过直线3x =上的动点()()3,0P p p ≠分别作C 的两条切线PQ 、PR (Q 、R 为切点),N 为弦QR 的中点,直线l :346x y +=分别与x 轴、y 轴交于点E 、F ,求NEF 的面积S的取值范围.51. 在平面直角坐标系xOy 中,已知直线l :20x y ++=和圆O :221x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.52. 已知以1C 为圆心的圆221:1C x y +=.(1)若圆222:(1)(1)4C x y -+-=与圆1C 交于,M N 两点,求||MN 的值;(2)若直线:l y x m =+和圆1C 交于,P Q 两点,若132PC PQ ⋅=,求m 的值. 53. 已知圆()22:21M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B .(1)当切线P A P 的坐标;(2)若PAM △的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由; (3)求线段AB 长度的最小值.54. 已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当90AOB ∠=︒时,求实数k 的值;(2)若1,k P =是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究:直CD 是否过定点.若存在,请求出定点的坐标;否则,说明理由.55. 在平面直角坐标系xOy中,(A,B ,C 是满足π3ACB ∠=的一个动点. (1)求ABC 垂心H 的轨迹方程;(2)记ABC 垂心H 的轨迹为Γ,若直线l :y kx m =+(0km ≠)与Γ交于D ,E 两点,与椭圆T :2221x y +=交于P ,Q 两点,且||2||DE PQ =,求证:||k > 56. 平面上一动点C的坐标为),sin θθ.(1)求点C 轨迹E 的方程;(2)过点()11,0F -的直线l 与曲线E 相交于不同的两点,M N ,线段MN 的中垂线与直线l 相交于点P ,与直线2x =-相交于点Q .当MN PQ =时,求直线l 的方程.答案及解析47.(1)2212x y +=;(2)是定值,该定值为0.【分析】(1)依题意求得,a b ,进而可得椭圆E 的方程;(2)设直线MN 的方程为()()20y k x k =-≠,与椭圆E 方程联立,利用韦达定理和斜率公式即可求得12k k +的值. 【详解】(1)由题意可知:22b =,1b =,椭圆的离心率c e a ==a =①椭圆E 的标准方程:2212x y +=;(2)设直线MN 的方程为()()20y k x k =-≠.22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得:()2222128820k x k x k +-+-=.设()11,M x y ,()22,N x y , 则2122812k x x k +=+,21228212k x x k -=+,()()()1212121212121212222211111k x k x y y x x k k k x x x x x x x x ⎡⎤--+-+=+=+=-⎢⎥-----++⎢⎥⎣⎦222222228242122208282111212k k k k k k k k k k ⎡⎤-⎢⎥⎛⎫-+=-=-=⎢⎥ ⎪--⎝⎭⎢⎥-+⎢⎥++⎣⎦. ①120k k +=为定值.【点睛】关键点点睛:第(2)问的关键点是:得出()12121212221x x k k k x x x x ⎡⎤+-+=-⎢⎥-++⎢⎥⎣⎦.48.(1)2214x y +=;(2)①14- ;①yy =+【分析】(1)根据已知条件结合222c a b =-列关于,a b 的方程,解方程即可求解;(2)①设()00,P x y ,切线:l 00()y y k x x -=-,利用圆心到切线的距离列方程,整理为关于k 的二次方程,计算两根之积结合点P 在椭圆上即可求12k k ;①由OPA OQB S S =△△可得PA BQ =,可转化为A B P Q x x x x +=+,设1l :y kx m =+,与椭圆联立可得P Q x x +,再求出A x 、B x ,即可求出k 的值,进而可得出m 的值,以及1l 的方程. 【详解】(1)因为22222234c a b e a a -===,所以2a b =,因为点⎛ ⎝⎭在椭圆上,所以221314a b +=即2213144b b +=, 解得:1b =,2a =,所以椭圆方程为:2214x y +=;(2)①设()00,P x y ,切线:l 00()y y k x x -=-即000kx y y kx -+-= 圆心()0,0O到切线的距离d r ==整理可得:2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,所以2020122200441451544455x y k k x x ⎛⎫-- ⎪-⎝⎭===---,①因为OPA OQB S S =△△所以PA BQ =,所以A P Q B x x x x -=-,所以A B P Q x x x x +=+, 设切线为1:l y kx m =+,由2244y kx m x y =+⎧⎨+=⎩可得:()222418440k x kmx m +++-= 所以2841P Q kmx x k -+=+, 令0y =可得B mx k=-,设(),A A A x kx m +, 则1A OA A kx m k x k +==-,所以21A km x k -=+, 所以228411P Q km m kmx x k k k --+==-+++, 整理可得:()()()2222814121k k k k +=++,所以221k =,解得:k =, 因为圆心()0,0O 到1:l y kx m =+距离d ,所以mm =,因为0B mx k=->,所以当k =m =k =时,m =;所以所求1l的方程为y =或y = 【点睛】思路点睛:圆锥曲线中解决定值、定点的方法(1)从特殊入手,求出定值、定点、定线,再证明定值、定点、定线与变量无关; (2)直接计算、推理,并在计算、推理的过程中消去变量是此类问题的特点,设而不求的方法、整体思想和消元思想的运用可以有效的简化运算.49.(1)2214x y +=;(2)最小值为2,0x =或0x +-=.【分析】(1)由椭圆定义结合已知求出a ,半焦距c 即可得解;(2)由直线2l 与圆O 相切得221m k =+,联立直线2l 与椭圆E 的方程消去y ,借助韦达定理表示出22MF NF +,利用函数思想方法即可作答. 【详解】(1)依题意,结合椭圆定义知2ABF 的周长为4a ,则有4a =8,即a =2,又椭圆的离心率为c e a =c =2221b a c =-=, 所以椭圆E 的方程为2214x y +=;(2)因直线2l :y =kx +m (km <0)与圆O :221x y +=1=,即221m k =+,设()()()112212,,,,2,2M x y N x y x x ≤≤,而点M 在椭圆E 上,则221114x y +=,即221114x y =-,又2F ,21|2|MF x =-=12x -,同理222NF x =,于是得)22124MF NF x x +=+, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得:()222148440k x kmx m +++-=,显然Δ0>,则122814km x x k +=-+, 又km <0,且221m k =+,因此得1228||14km x x k +=+令2411t k =+≥,则12x x +=113t =,即t =3时等号成立,于是得22MF NF +存在最小值,且)221242MF NF x x +=+≥,22MF NF +的最小值为2,由2221413m k k ⎧=+⎨+=⎩,且km <0,解得k m ⎧=⎪⎪⎨⎪=⎪⎩或k m ⎧=⎪⎪⎨⎪=⎪⎩. 所以所求直线2l的方程为y x =y x =0x =或0x +=.【点睛】关键点睛:解决直线与椭圆的综合问题时,要注意:(1)观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 50.(1)()2214x y ++=,曲线C 是以1,0为圆心,半径为2的圆;(2)5542⎡⎤⎢⎥⎣⎦,.【分析】(1)设出动点M 坐标,代入距离比关系式,化简方程可得;(2)先求切点弦方程,再根据切点弦过定点及弦中点性质得出N 点轨迹,然后求出动点N 到定直线EF 的距离最值,最后求出面积最值.切点弦方程的求法可用以下两种方法.法一:由两切点即为两圆公共点,利用两圆相交弦方程(两圆方程作差)求出切点弦方程;法二:先分别求过Q 、R 两点的切线方程,再代入点P 坐标,得到Q 、R 两点都适合的同一直线方程,即切点弦方程. 【详解】解:(1)设(),M x y ,由12MO MA =12=. 化简得22230x y x ++-=,即()2214x y ++=. 故曲线C 是以1,0为圆心,半径为2的圆.(2)法一(由两圆相交弦方程求切点弦方程):由题意知,PQ 、PR 与圆相切,Q 、R 为切点,则DQ PQ ⊥,DR PR ⊥,则D 、R 、P 、Q 四点共圆,Q 、R 在以DP 为直径的圆上(如图).设()1,0D -,又()()3,0P p p ≠,则DP 的中点为1,2p ⎛⎫⎪⎝⎭,DP .以线段DP 为直径的圆的方程为()22212p x y ⎛⎫-+-= ⎪⎝⎭⎝⎭, 整理得22230x y x py +---=①(也可用圆的直径式方程()()()()1300x x y y p +-+--=化简得. ) 又Q 、R 在C :22230x y x ++-=①上, 由两圆方程作差即①-①得:40x py +=. 所以,切点弦QR 所在直线的方程为40x py +=. 法二(求Q 、R 均满足的同一直线方程即切点弦方程): 设()1,0D -,()11,Q x y ,()22,R x y .由DQ PQ ⊥,可得Q 处的切线上任一点(,)T x y 满足0QT DQ ⋅=(如图), 即切线PQ 方程为()()()()1111100x x x y y y -++--=.整理得()221111110x x y y x y x ++---=.又22111230x y x ++-=,整理得()111130x x y y x +++-=.同理,可得R 处的切线PR 方程为()222130x x y y x +++-=. 又()3,P p 既在切线PQ 上,又在切线PR 上,所以()()11122231303130x py x x py x ⎧+++-=⎪⎨+++-=⎪⎩,整理得11224040x py x py +=⎧⎨+=⎩. 显然,()11,Q x y ,()22,R x y 的坐标都满足直线40x py +=的方程. 而两点确定一条直线,所以切点弦QR 所在直线的方程为40x py +=. 则QR 恒过坐标原点()0,0O .由()2240,14x py x y +=⎧⎪⎨++=⎪⎩消去x 并整理得()22168480p y py +--=. 设()11,Q x y ,()22,R x y ,则122816py y p +=+.点N 纵坐标1224216N y y py p +==+. 因为0p ≠,显然0N y ≠,所以点N 与点()1,0D -,()0,0O 均不重合.(或者由对称性可知,QR 的中点N 点在x 轴上当且仅当点P 在x 轴上,因为0p ≠,点P 不在x 轴上,则点N 也不在x 轴上,所以点N 与D 、O 均不重合.) 因为N 为弦QR 的中点,且()1,0D -为圆心,由圆的性质,可得DN QR ⊥,即DN ON ⊥(如图).所以点N 在以OD 为直径的圆上,圆心为1,02G ⎛⎫- ⎪⎝⎭,半径12r =.因为直线346x y +=分别与x 轴、y 轴交于点E 、F ,所以()2,0E ,30,2F ⎛⎫⎪⎝⎭,52EF =.又圆心1,02G ⎛⎫- ⎪⎝⎭到直线3460x y +-=的距离32d ==. 设NEF 的边EF 上的高为h ,则点N 到直线346x y +=的距离h 的最小值为31122d r -=-=; 点N 到直线346x y +=的距离h 的最大值为31222d r +=+=(如图).则S 的最小值min 1551224S =⨯⨯=,最大值max 1552222S =⨯⨯=.因此,NEF 的面积S 的取值范围是5542⎡⎤⎢⎥⎣⎦,.【点睛】设00(,)P x y 是圆锥曲线外一点,过点P 作曲线的两条切线,切点为A 、B 两点,则 A 、B 两点所在的直线方程为切点弦方程.常见圆锥曲线的切点弦方程有以下结论: 圆222()()x a y b r -+-=的切点弦方程:200()()()()x a x a y b y b r --+--=, 圆220x y Dx Ey F ++++=的切点弦方程: 0000022x x y yx x y y D E F ++++++= 椭圆22221x y a b+=的切点弦方程:00221x x y y a b +=;双曲线22221x y a b-=的切点弦方程:00221x x y y a b -=;抛物线22y px =的切点弦方程为:00()y y p x x =+.特别地,当00(,)P x y 为圆锥曲线上一点时,可看作两切线重合,两切点A 、B 重合,以上切点弦方程即曲线在P 处的切线方程.51.(1)()1,1P --;(2)1;(3)存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.理由见解析.【分析】(1)依题意可得四边形PAOB 为正方形,设(),2P x x --,利用平面直角坐标系上两点的距离公式得到方程,计算可得;(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小,利用点到线的距离公式求出PO 的最小值,即可得解;(3)设()00,2P x x --,求出以OP 为直径的圆的方程,即可求出公共弦AB 所在直线方程,从而求出动点Q 的轨迹方程,即可得解; 【详解】解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P①P 在直线20x y ++=上,设(),2P x x --,则OP =,解得1x =-,故()1,1P --.(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小. 线段PO 长最小值即点O 到直线l的距离,故min PO ==所以min 1PA =.(3)设()00,2P x x --,则以OP 为直径的圆的方程为()2222000022224x x x x x y +----⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得()220020x x x x y y -+++=,与221x y +=联立,可得AB 所在直线方程为()0021x x x y -+=,联立()002221,1,x x x y x y ⎧-+=⎨+=⎩得()222000002443024x x x x x x x ++----=, ①Q 的坐标为002200002,244244x x x x x x --++++⎛⎫⎪⎝⎭,可得Q 点轨迹为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,圆心11,44⎛⎫-- ⎪⎝⎭,半径R =.其中原点()0,0为极限点(也可以去掉).故存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【点睛】本题考查了直线与圆的位置关系、方程思想、数形结合方法、转化方法,考查运算求解能力和应用意识.52.(1;(2)m = 【分析】(1)由两个圆相交,可将两个圆的方程相减求得直线MN 的方程.利用圆心到直线的距离,结合垂径定理即可求得||MN 的值.(2)设()()1122,,,P x y Q x y ,利用向量的坐标运算表示出1,PC PQ .将直线方程与圆的方程联立,化简后由>0∆求得m 的取值范围,并表示出12x x +,12x x ,进而由直线方程表示出12y y .根据平面向量数量积的坐标运算,代入化简计算即可求得m 的值. 【详解】(1)直线MN 的方程为2222(1)(1)410x y x y -+----+=, 即2 2 10x y ++=;故圆1C 的圆心到2210x y ++=的距离d =故||MN == (2)设()()1122,,,P x y Q x y ,则()()1112121,,,PC x y PQ x x y y =--=--,由22,1,y x m x y =+⎧⎨+=⎩化简可得222210x mx m ++-=, 故()222481840,m m m ∆=--=->解得m < 12x x m +=-,2121,2m x x -=所以()()()212121212y y x m x m x x m x x m =++=+++,又()()2211121211212113,,2PC PQ x y x x y y x x y y x y ⋅=--⋅--=--++=, 又22111x y +=故121212x x y y +=-,故()21212122x x m x x m +++=-, 将12x x m +=-,2121,2m x x -=代入可得222112m m m --+=-,解得m =又因为m <所以2m =± 【点睛】本题考查了圆与圆的位置关系及公共弦长度的求法,直线与圆位置关系的综合应用,由韦达定理求参数的值,平面向量数量积的运算,综合性强,计算量大,属于难题.53.(1)()0,0P 或84,55P ⎛⎫- ⎪⎝⎭;(2)圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭;(3)当25b =时,AB 有最小【分析】(1)设()2,P b b -,由MP b ,得出结果;(2)因为A 、P 、M 三点的圆N 以MP 为直径,所以圆N 的方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭,化简为()()222220x y b x y y -+++-=,由方程恒成立可知2222020x y x y y -+=⎧⎨+-=⎩,即可求得动圆所过的定点; (3)由圆M 和圆N 方程作差可得直线AB 方程,设点()0,2M 到直线AB 的距离d ,则AB =.【详解】(1)由题可知,圆M 的半径1r =,设()2,P b b -, 因为P A 是圆M 的一条切线,所以90MAP ∠=︒,所以2MP ==,解得0b =或45b =, 所以点P 的坐标为()0,0P 或84,55P ⎛⎫- ⎪⎝⎭.(2)设()2,P b b -,因为90MAP ∠=︒, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 其方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()()222220x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩, 解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭.(3)因为圆N 方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()222220x y bx b y b ++-++=①又圆22:430M x y y +-+=①①-①得圆M 方程与圆N 相交弦AB 所在直线方程为 ()22230bx b y b --+-=.点()0,2M 到直线AB的距离d =所以相交弦长AB == 所以当25b =时,AB【点睛】本题考查直线和圆的位置关系,考查定点问题和距离的最值问题,难度较难. 54.(1)k =(2)直线CD 过定点(1,1)- 【分析】(1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得k ; (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,求出两条切线方程,计算出直线CD 的方程,从而得到定点坐标;解法2:由题意可知,O 、P 、C 、D 四点共圆且在以OP为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标. 【详解】(1)2AOB π∠=,∴点O 到l 的距离2d r =,k = (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,则圆在点C 处的切线方程为 1111()()0y y y x x x -+-=,所以221111x x y y x y +=+,即112x x y y +=同理,圆在点D 处的切线方程为222x x y y += 又点00(,)P x y 是两条切线的交点, 10102x x y y ∴+=,20202x x y y +=,所以点()11,C x y ,()22,D x y 的坐标都适合方程002x x y y +=, 上述方程表示一条直线,而过C 、D 两点的直线是唯一的, 所以直线CD 的方程为:002x x y y +=. 设(,2)P t t -,则直线CD 的方程为(2)2tx t y +-=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-.解法2:由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, 设(,2)P t t -,则此圆的方程为:()(2)0x x t y y t -+-+=, 即:22(2)0x tx y t y -+--=, 又C 、D 在圆22:2O x y +=上,两圆方程相减得():220CD l tx t y +--=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-. 【点睛】本题考查了直线与圆的相交问题,由弦长求直线斜率,只需结合弦长公式计算圆心到直线的距离,然后求得结果,在求直线恒过定点坐标时,一定要先表示出直线方程,然后在求解. 55.(1)22(1)4x y ++=(2y ≠-);(2)证明见解析. 【分析】(1)由题可求出顶点C 的轨迹方程,再利用相关点法可求垂心H 的轨迹方程;(2)利用弦长公式可求||DE ,再利用韦达定理法求||PQ ,由||2||DE PQ =得出2221m k ≥+,然后结合判别式大于零即可证. 【详解】设ABC 的外心为1O ,半径为R ,则有22sin ABR ACB==∠,所以1πcos 13OO R ==即1(0,1)O ,设(,)C x y ,()00,H x y ,有1O C R =,即有22(1)4x y +-=(0y ≠), 由CH AB ⊥,则有0x x =,由AH BC ⊥,则有(00(0AH BC x x y y ⋅=+=,所以有(220(3(1)12x x x y y y yy y---=-===-,则有()220014x y ++=(02y ≠-),所以ABC 垂心H 的轨迹方程为22(1)4x y ++=(2y ≠-); (2)记点(0,1)-到直线l 的距离为d ,则有d =所以||DE==,设()11,P x y,()22,Q x y,联立2221y kx mx y=+⎧⎨+=⎩,有()2222210k x kmx m+++-=,所以()224220k m∆=+->,||PQ==由||2||DE PQ=,可得()()()()()2222222222222418141(1)8412222k m k km mk k kk k++++-=-≤-+++++,所以()22222248(1)212m mk kk++≤+++,即有()()()22222224181(1)22k k mmk k+++≤+++,所以()()()22222222418122(1)22k k mm mk k+++--≥-++,即22222222222221(1)101222k k m k mm mk k k k⎛⎫-=-⇒-≥⇒≥+⎪+++⎝⎭又0∆>,可得2212km<+,所以222112kk+<+,解得22k>,故||k>56.(1)2212xy+=;(2)10x y±-=.【分析】(1)利用22sin cos1θθ+=求得点C的轨迹E的方程.(2)设直线l的方程为1x my=-,联立直线l的方程和曲线E的方程,化简写出根与系数关系,求得MN、PQ,由1PQMN=求得m的值,从而求得直线l的方程.【详解】 (1)设(),C x y ,则,sin x y θθ⎧=⎪⎨=⎪⎩,即cos sin yθθ⎧=⎪⎨⎪=⎩, 所以2212x y +=,所以E 的方程为2212x y +=.(2)由题意知,直线l 的斜率不为0,设直线:1l x my =-,()()()1122,,,,,p p M x y N x y P x y .联立2221,1x y x my ⎧+=⎨=-⎩,消去x ,得()22+2210m y my --=,此时()281m ∆=+0>,且12222m y y m +=+,12212y y m =-+又由弦长公式得MN =整理得2212m MN m ++. 又122+=22p y y m y m =+,所以2212p p x my m -=-=+,所以222222p m PQ x m ++=+,所以1PQMN =, 所以21m =,即1m =±.综上,当1m =±,即直线l 的斜率为±1时,MN PQ =, 此时直线l 为10x y ±-=. 【点睛】求解直线和圆锥曲线相交所得弦长,往往采用设而不求,整体代入的方法来求解.。
高中数学解析几何100题经典大题汇编

a-c=
2c 2 ,a
2 =2,
2 ∴a=1,b=c= 2
故 C 的方程为:y2+x2=1 1 2
…………………3 分 …………4 分
(2)当直线斜率不存在时: m = ± 1 2
…………5 分
当直线斜率存在时:设 l 与椭圆 C 交点为 A(x 1,y1),B(x2,y2)
=y kx + m
∴
2x2
(Ⅰ)推导双曲线 C 的离心率 e 与 λ 的关系式; (Ⅱ)当 λ = 1 时, 经过点 (1,0) 且斜率为 − a 的
直线交双曲线于 A, B 两点, 交 y 轴于点 D , 且
y
M
P
DA = ( 3 − 2)DB ,求双曲线的方程. 【答案】22: 解:(Ⅰ)Q MP = OF, ∴OFPM 为平行四边形.
【山东省苍山县 2014 届高三上学期期末检测理】22.(本题满分 14 分)
如图,斜率为 1 的直线 l 过抛物线 Ω : y=2 2 px( p > 0) 的焦点 F,与抛物线交于两点 A,
B。
(1)若|AB|=8,求抛物线 Ω 的方程; (2)设 P 是抛物线 Ω 上异于 A,B 的任意一点,直线 PA,PB 分别交抛物线的准线于 M,
m2 + 2m − 1 − 6m +14 ……10 分 3 3(3k 2 +1)
要使上式与 K 无关,则有 6m +14 = 0, ,解得 m = − 7 ,存在点 M (− 7 ,0) 满足题意。12 分
3
3
【山东省济宁市金乡二中 2014 届高三 11 月月考理】23、(本小题满分12 分)[来源:学科网] 已知曲线 C 上的动点 P 到点 F (2,0) 的距离比它到直线 x = −1的距离大1.
高三数学解析几何试题

高三数学解析几何试题1.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.B.C.D.【答案】D【解析】均为直线,其中平行,可以相交也可以异面,故A不正确;m,n⊥α,则同垂直于一个平面的两条直线平行,选D。
2.已知圆的圆心在直线上,则;圆被直线截得的弦长为____________.【答案】2;8.【解析】标准方程为,可得圆心把圆心坐标代入直线方程中得;即圆心为,圆心到直线的距离,所以弦长等于故答案为2;8.【考点】1.圆的标准方程;2.弦长公式.3.若椭圆:()和椭圆:()的焦点相同且.给出如下四个结论:①圆和椭圆一定没有公共点;②;③;④.其中,所有正确结论的序号是()A.②③④B.①③④C.①②④D.①②③【答案】B【解析】因为椭圆和椭圆的焦点相同且.,所以,,∴①③正确;又,,∴④正确,故选B.【考点】椭圆的简单性质.4.已知双曲线C:,点P与双曲线C的焦点不重合,若点P关于双曲线C的上、下焦,则点的对称点分别为A、B,点Q在双曲线C的上支上,点P关于点Q的对称点P1.【答案】-16【解析】设双曲线的上下焦点分别为F,F',连接QF,QF'.由点P关于双曲线C的上、下焦点的对称点分别为A、B,则F为PA的中点,F'为PB的中点,由点Q在双曲线C的上支上,点P ,关于点Q的对称点P1则Q为PP的中点,由中位线定理可得,,,由双曲线的定义可得1,则.故答案为:﹣16.【考点】双曲线的简单性质.5.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为χ轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t是参数).(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,直线l的参数方程化为普通方程;(Ⅱ)若直线l与曲线C相交于A、B两点,且|AB|=,试求实数m的值.【答案】(Ⅰ),;(Ⅱ)或.【解析】(Ⅰ)利用,代入曲线的方程可得曲线的直角坐标方程,消去可得直线的普通方程;(Ⅱ)先将直线的参数方程代入曲线的方程可得,再利用参数的几何意义可得实数的值.试题解析:(Ⅰ)曲线C的极坐标方程是ρ=4cos化为直角坐标方程为:直线的直角坐标方程为:(5分)(Ⅱ)解法一:由(Ⅰ)知:圆心的坐标为(2,0),圆的半径R=2,圆心到直线的距离,∴∴(10分)解法二:把(是参数)代人方程得∵∴∴∴(10分)【考点】1、极坐标方程与直角坐标方程的互化;2、参数方程与普通方程的互化;3、参数的几何意义.6.选修4—4:坐标系与参数方程极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴,曲线的极坐标方程为,曲线的参数方程为(为参数,),射线,,与曲线交于(不包括极点)三点.(1)求证:;(2)当时,两点在曲线上,求与的值.【答案】(1)证明过程详见试题解析;(2)的值为2,的值为.【解析】(1)依题意先表示出,,,根据三角函数公式得.(2)把两点的极坐标,化为直角坐标为,又因为经过点的直线方程为,所以.试题解析:(1)依题意,,.则.(2)当时,两点的极坐标分别为,化为直角坐标为,是经过点且倾斜角为的直线,又因为经过点的直线方程为,所以.【考点】1、极坐标与直角坐标;2、参数方程.7.如图,四边形内接于⊙,过点作⊙的切线交的延长线于,已知.证明:(1);(2).【答案】(1)见解析;(2)见解析.【解析】(1)由弦切角定理及已知条件可得,然后由等角对等弧,等弧对等弦使问题得证;(2)易证得∽,根据三角形相似可得比例相等,从而可证得.试题解析:(1)∵与⊙相切于点,∴.又,∴,∴.(2)∵四边形内接于⊙,∴,又,∴∽.∴,即,∴.【考点】1、弦切角定理;2、圆周角定理;3、三角形相似.8.已知为椭圆内一定点,经过引一弦,使此弦在点被平分,则此弦所在的直线方程是 .【答案】【解析】由于此弦所在直线的斜率存在,所以设斜率为,且设弦的两端点坐标为,,则,两式相减得.∵,∴,∴,∴此弦所在的直线方程为.【考点】直线与椭圆的位置关系.【思路点睛】设出两个交点的坐标,将它们代入椭圆的方程,将两个式子相减得到有关相交弦的中点与相减弦所在直线的斜率关系,求出直线的斜率,利用点斜式写出直线的方程.在解决直线与圆锥曲线相交关于相交弦的问题时,一般利用将交点坐标代入圆锥曲线的方程,两个式子相减得到中点与斜率的关系.9.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线(t为参数),(为参数).(Ⅰ)化,的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若上的点P对应的参数方程为,Q为上的动点,求PQ中点M到直线的距离的最小值.【答案】(Ⅰ)为圆心是,半径是1的圆.为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆;(Ⅱ).【解析】第一问将所给的参数方程消参,得到相应的普通方程,利用所得的普通方程可以判断出方程所对应的曲线的类型,第二问根据题中所给的参数值,求得点的坐标,设出动点的坐标,利用中点坐标公式求得,将直线方程化成平面直角坐标方程,利用点到直线的距离公式,结合辅助角公式化简,利用三角函数的性质得出其最小值为.试题解析:(Ⅰ).为圆心是,半径是1的圆.为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线,M到的距离显然,取得最小值.【考点】参数方程与普通方程的转化,极坐标方程与平面直角坐标方程的转化,动点到定直线的距离的最值.10.已知椭圆的左,右焦点分别为,,离心率为,且经过点.(1)求椭圆的方程;(2)直线与椭圆相切,点是直线上的两点,且,,求四边形的面积.【答案】(1);(2).【解析】(1)运用椭圆的离心率和椭圆的关系和点满足椭圆方程,即可解得的值,进而得到椭圆的方程;(2)将直线方程代入椭圆方程,运用直线和椭圆相切的条件,利用判别式等于,求解实数的值,在由点到直线的距离公式和直角梯形的面积公式即可求得四边形的面积.试题解析:(1)依题意,设椭圆的方程为.因为,又,所以,又点在该椭圆上,所以.解得,.所以椭圆的方程为.将直线的方程,代入椭圆的方程中,得,由直线与椭圆仅有一个公共点可知,,化简得,.设,,又因为,所以.故四边形的面积为.【考点】椭圆的标准方程及其简单的几何性质;直线与圆锥曲线问题.【方法点晴】本题主要考察了椭圆的标准方程及其简单的几何性质,着重考查了直线与圆锥曲线的位置关系及应用,把直线方程与圆锥曲线方程联立,根据方程的根与系数的关系是解答此类问题的常用方法和关键,但此类问题思维量和计算量较大,平时主要方法的积累和总结,本题的解答中,把直线的方程代入椭圆的方程,利用的值,利用点到直线的距离公式和,利用梯形的面积公式,从求解四边形的面积.11.(2015秋•通渭县校级期末)抛物线y=x2在点(﹣1,1)处的切线方程为.【答案】2x+y+1=0【解析】直接求出抛物线在点(﹣1,1)处的导数,即切线的斜率,由直线方程的点斜式写出切线方程,化为一般式.解:由y=x2,得:y′=2x,∴y′|x=﹣1=﹣2,所以,抛物线y=x2在点(﹣1,1)处的切线方程为y﹣1=﹣2(x+1),即2x+y+1=0.故答案为2x+y+1=0.【考点】利用导数研究曲线上某点切线方程.12.在极坐标系中,设曲线和相交于点,则=___________.【答案】【解析】曲线和的直角坐标方程分别为和,把代入方程,得,所以.【考点】极坐标方程与直角坐标方程的互化,直线与圆相交弦长.13.(2015秋•栖霞市期末)已知△ABC的两个顶点A,B的坐标分别为(0,﹣),(0,),且AC,BC所在直线的斜率之积等于m(m≠0).(1)求顶点C的轨迹λ的方程,并判断轨迹λ为何种曲线;(2)当m=﹣时,设点P(0,1),过点P作直线l与曲线λ交于E,F两点,且=,求直线l的方程.【答案】(1)见解析;(2).【解析】(1)令C点坐标为(x,y),QC 直线AC,直线BC的斜率,利用AC,BC所在直线的斜率之积等于m,求出轨迹方程,分类讨论图形.(2)求出曲线C的方程,通过直线l的斜率不存在时,以及斜率垂直时,直线l的方程为y=kx+1,代入椭圆方程,设E(x1,y1),F(x2,y2),通过得,以及韦达定理求解直线l的方程.解:(1)令C点坐标为(x,y),则直线AC的斜率,直线BC的斜率,所以有,化简得,.所以当m=﹣1时,λ表示以(0,0)为圆心,为半径的圆,且除去两点;当m <﹣1时,轨迹λ表示焦点在y 轴上的椭圆,且除去两点;当﹣1<m <0时,轨迹λ表示焦点在x 轴上的椭圆,且除去两点; 当m >0时,轨迹λ表示焦点在y 轴上的双曲线,且除去两点.(2)由题意知当时曲线C 为,当直线l 的斜率不存在时,不符合题意.设直线l 的方程为y=kx+1,代入椭圆方程整理得(3+4k 2)x 2+8kx ﹣8=0. 设E (x 1,y 1),F (x 2,y 2),由得,x 1=﹣3x 2. 由韦达定理得,,所以,,消去x 2,解得,所以直线l 的方程为.【考点】直线与圆锥曲线的综合问题;轨迹方程.14. 已知直线l :y =x +,圆O :x 2+y 2=4,椭圆E :+=1(a>b>0)的离心率e =,直线l 被圆O 截得的弦长与椭圆的短轴长相等. (1)求椭圆E 的方程;(2)已知动直线l 1 (斜率存在)与椭圆E 交于P ,Q 两个不同点,且△OPQ 的面积S △OPQ =1,若N 为线段PQ 的中点,问:在x 轴上是否存在两个定点A ,B ,使得直线NA 与NB 的斜率之积为定值?若存在,求出A ,B 的坐标,若不存在,说明理由. 【答案】(1);(2)存在两定点,,使得直线与的斜率之积为定值.【解析】(1)由椭圆的离心率可列方程,直线被圆所截弦长等于椭圆短轴长,则可列方程求得,从而求得,得到椭圆标准方程;(2)先假设直线,与椭圆方程联立可求得长度(用表示),在利用点到直线的距离求得三角形边上的高,从而利用面积为求得的关系,又因为为中点,所以可用来表示其坐标,并且可求得其轨迹方程,然后再假设坐标,表示出的斜率,并且使斜率之积为定值,从而求得坐标. 试题解析:(1)设椭圆半焦距为c , 圆心O 到l 的距离d =,则l 被圆O 截得的弦长为2,所以b =1,由题意得e =,∵b =1,∴a 2=4,b 2=1.∴椭圆E 的方程为(2)设P(x 1,y 1),Q(x 2,y 2),直线l 1的方程为:y =kx +m. 则消去y 得(1+4k 2)x 2+8kmx +4m 2-4=0. x 1+x 2=,x 1.x 2=.|PQ|=.|x 1-x 2|=原点O 到直线l 1的距离d =,则S △OPQ =|PQ|.d ==1,∴2|m|.=1+4k 2,令1+4k 2=n ,∴2|m|.=n ,∴n =2m 2,1+4k 2=2m 2. ∵N 为PQ 中点,∴x N ==,y N ==,∵1+4k 2=2m 2,∴x N =,y N =.∴假设x 轴上存在两定点A(s ,0),B(t ,0)(s≠t),则直线NA 的斜率k 1=,直线NB 的斜率k 2=,∴k 1k 2===.当且仅当s +t =0,st =-2时,k 1k 2=,则s =,t =.综上所述,存在两定点A(,0),B(,0),使得直线NA 与NB 的斜率之积为定值. 【考点】点到直线的距离,离心率,两点间距离,求动点的轨迹方程.15. 若双曲线的实轴长是离心率的2倍,则m= .【答案】【解析】利用离心率公式,建立方程,即可求得双曲线的实轴长. 解:∵,且m >0,∴,解得或(舍去).故答案为:【考点】双曲线的简单性质.16. 如图,正方形边长为2,以为圆心、为半径的圆弧与以为直径的半圆交于点,连结并延长交于点.(1)求证:; (2)求的值.【答案】(1)证明见解析;(2).【解析】对于问题(1)主要利用两次切割线定理,再结合等量代换即可证明结论;对于问题(2),可由(1)的结论并结合直角三角形的射影定理及等面积法即可得到所求. 试题解析:(1)由以为圆心为半径作圆,而为正方形,所以为圆的切线,依据切割线定理得 另外圆以为直径,所以是圆的切线,同样依据切割线定理得,故. (2)连结,因为为圆直径,所以,由得又在中,由射影定理得,【考点】1、切割线定理;2、直角三角形的射影定理.17. 如图所示,在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率 .【答案】【解析】令,则,,则,∴,,∴,∴,故答案为.【考点】椭圆的定义.18.已知双曲线的离心率为,则此双曲线的渐近方程为()A.B.C.D.【答案】C【解析】因为双曲线的离心率为,所以,又因为双曲线中,所以,而焦点在轴上的双曲线的渐近线方程为,所以此双曲线的渐近线方程为,故选C.【考点】1、双曲线的离心率;2、双曲线渐近方程.19.设是双曲线的左、右两个焦点,若双曲线右支上存在一点,使(为坐标原点)且则的值为()A.2B.C.3D.【答案】A【解析】画出图象如下图所示,依题意可知四边形为菱形,所以,设,则,且,解得,则.【考点】1.双曲线;2.向量运算.【思路点晴】有关圆锥曲线的题目,由图双曲线的方程已经知道了,那么我们就先按题意将图形画出来,这是做圆锥曲线题目的时候第一步要做的.由于题目中,也就是平行四边形的对角线相互垂直,所以可以判断它为菱形,这样它的一组邻边就相等,设出点的坐标,然后解出点的坐标,题目就解决出来了.20.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于()A.B.C.D.【答案】D【解析】由题意得,选D.【考点】双曲线的离心率【方法点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.21.圆的圆心到直线的距离为1,则a=A.B.C.D.2【答案】A【解析】圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得,解得,故选A.【考点】圆的方程、点到直线的距离公式【名师】直线与圆的位置关系的判断方法:(1)几何法:利用圆心到直线的距离d与半径长r的大小关系来判断.若d>r,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.22.设是坐标原点,椭圆的左右焦点分别为,且是椭圆上不同的两点。
解析几何 高中数学试题解析版

一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.若椭圆x2+y2a =1(a>0)的离心率为√ 22,则a的值为( )A. 2B. 12C. 2或√ 22D. 2或12【答案】D【解析】【分析】本题考查椭圆的性质的应用及分类讨论的思想,属于基础题.考虑a>1和0<a<1两种情况,根据离心率的公式计算得到答案.【解答】解:当a>1时,离心率为√ a−1√ a =√ 22,解得a=2;当0<a<1时,离心率为√ 1−a=√ 22,解得a=12.综上所述:a=2或a=12.故选:D2.把一个圆心角为120°的扇形卷成一个圆锥的侧面,则此圆锥底面圆的半径与这个圆锥的高之比是( )A. 1∶4B. √ 2∶2C. √ 2∶√ 3D. √ 2∶4【答案】D【解析】【分析】本题考查圆锥的计算,理解圆锥的展开图中扇形的弧长等于圆锥的底面周长是关键.设母线为l,半径为r,利用圆锥的展开图中扇形的弧长等于圆锥的底面周长得到半径与母线的关系,再根据勾股地理得到高,从而可以得出结果.【解答】解:设圆锥的母线为l,底面半径为r,高为ℎ则扇形的弧长为120180π×l=23πl,由圆锥的展开图中扇形的弧长等于圆锥的底面周长,得2πr=23πl,则r=13l,再由勾股定理得ℎ=√ l2−r2=2√ 23l,故r ℎ=13l 2√ 23l =√ 24,故选D .3.已知原点到直线l 的距离为1,圆(x −2)2+(y −√ 5)2=4与直线l 相切,则满足条件的直线l 有 ( ) A. 1条 B. 2条C. 3条D. 4条【答案】C 【解析】【分析】本题主要考查点到直线的距离,圆与圆位置关系,先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定公切线的直线条数. 【解答】解:∵(x −2)2+(y −√ 5 )2=4, ∴圆心坐标(2,√ 5),半径为2, ∵以坐标原点为圆心,以1为半径, ∴圆方程x 2+y 2=1, ∴两圆圆心距√ 5+22=3, ∴两圆相外切,∴两圆有三条公切线,(两条外公切线,一条内公切线). 故选C .4.已知PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=( ) A. 9 B. −9C. −3D. 3【答案】B 【解析】【分析】由共面向量定理得PC ⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ ,从而(7,6,λ)=x(2,1,−3)+y(−1,2,3),由此能求出λ的值. 本题考查实数值的求法,考查共面向量定理等基础知识,考查运算求解能力,是基础题. 【解答】解:∵PA ⃗⃗⃗⃗⃗ =(2,1,−3),PB ⃗⃗⃗⃗⃗ =(−1,2,3),PC ⃗⃗⃗⃗⃗ =(7,6,λ), P ,A ,B ,C 四点共面,∴存在一对实数x ,y ,PC⃗⃗⃗⃗⃗ =x PA ⃗⃗⃗⃗⃗ +y PB ⃗⃗⃗⃗⃗ , ∴(7,6,λ)=x(2,1,−3)+y(−1,2,3),∴{7=2x−y6=x+2yλ=−3x+3y,解得λ=−9.故选:B.5.已知点A为圆(x+3)2+(y−2)2=1上的动点,点B的坐标为(1,1),P为x轴上一动点,则|AP|+|BP|的最小值是( )A. 3B. 4C. 5D.6【答案】B【解析】【分析】本题考查到圆上点的距离的最值及点关于线的对称点的求法,属于拔高题.根据三角形三边关系以及两点间距离公式求解即可.【解答】解:设圆心M(−3,2),半径为1,B关于x轴的对称点B1(1,−1),连接MB1交x轴于N点,则N即是P,因为这时|NB|=|NB1|,|NB|+|MN|=|MB1|,当P在x轴的其它位置F时,|FB|=|FB1|,借助图形可得|FB|+|FM|>|MB1|(三角形的两边和大于第三边),所以|AP|+|BP|的最小值是为|MB1|−1=√ 42+32−1=5−1=4,此时A为线段MB1与圆的交点.故选B.6.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点,若AB的中点坐标为(1,−1),则E的方程为( )A. x245+y236=1 B. x236+y227=1 C. x227+y218=1 D. x218+y29=1【答案】D【解析】【分析】本题考查求椭圆的方程,考查直线与椭圆的位置关系,点差法的运用,考查学生的计算能力,属于中档题,设A(x1,y1),B(x2,y2),代入椭圆的方程,两式相减,根据线段AB的中点坐标为(1,−1),进而可得a,b的关系,根据右焦点为F(3,0),求出a,b的值,即可得出椭圆的方程.【解答】解:设A(x 1,y 1),B(x 2,y 2),代入椭圆方程得{x 12a 2+y 12b 2=1x 22a 2+y 22b2=1, 相减得x 12−x 22a 2+y 12−y 22b2=0, ∴x 1+x 2a 2+y 1−y 2x 1−x 2⋅y 1+y 2b2=0,∵x 1+x 2=2,y 1+y 2=−2,k AB =y 1−y2x 1−x 2=−1−01−3=12,∴2a 2+12×−2b2=0,化为a 2=2b 2,又c =3=√ a 2−b 2,解得a 2=18,b 2=9. ∴椭圆E 的方程为x 218+y 29=1.故选D .7.已知圆C:x 2+y 2=1,直线l:x +y +2=0,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A ,B ,则直线AB 过定点 ( ) A. (−12,−12)B. (−1,−1)C. (−12,12)D. (12,−12)【答案】A 【解析】【分析】本题考查直线与圆的位置关系,涉及圆方程的综合应用,属于中档题.根据题意,设P 的坐标为(t,−2−t),由圆的切线性质可得PA ⊥AC ,PB ⊥BC ,则有点A 、B 在以PC 为直径的圆上,求出该圆的方程,与圆C 的方程联立可得直线AB 的方程,将其变形分析可得答案. 【解答】解:根据题意,P 为直线l :x +y +2=0上的动点,设P 的坐标为(t,−2−t), 过点P 作圆C 的两条切线,切点分别为A ,B ,则PA ⊥AC ,PB ⊥BC , 则点A 、B 在以PC 为直径的圆上,又由C(0,0),P(t,−2−t),则以PC 为直径的圆的方程为x(x −t)+y(y +2+t)=0, 变形可得:x 2+y 2−tx +(t +2)y =0,则有{x 2+y 2=1x 2+y 2−tx +(t +2)y =0,联立可得:1−tx +(t +2)y =0,变形可得:1+2y −t(x −y)=0, 即直线AB 的方程为1+2y −t(x −y)=0,则有{1+2y =0x −y =0,解可得{x =−12y =−12,故直线AB 过定点(−12,−12), 故选:A .8.已知F 1,F 2是椭圆与x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过左焦点F 1的直线与椭圆交于A ,B 两点,且满足|AF 1|=2|BF 1|,|AB|=|BF 2|,则该椭圆的离心率是( ) A. 12B. √ 33C. √ 32D. √ 53【答案】B 【解析】【分析】本题考查椭圆的简单性质的应用,考查数形结合以及转化思想的应用,属于中档题. 利用已知条件,画出图形,通过三角形的边长关系,结合余弦定理,求解椭圆的离心率即可. 【解答】解:作出图形,如下:由题意可得:|F 1B|+|BF 2|=2a ,|AB|=|BF 2|,可得|AF 1|=a ,|AF 2|=a ,|AB|=|BF 2|=32a ,|F 1F 2|=2c , 在△ABF 2中,由余弦定理得cos∠BAF 2=94a 2+a 2−94a 22×32a×a=13,在△AF 1F 2中,由余弦定理得cos∠BAF 2=a 2+a 2−4c 22×a×a =1−2(c a)2,所以13=1−2(ca )2,即e =c a =√ 33. 故选:B .二、多选题(本大题共4小题,共20.0分。
解析几何大题及答案

解析几何大题及答案解析几何是数学中的一个重要分支,研究的是空间图形的性质和变换。
在高中数学中,解析几何是一个关键的考点,也是学生容易遇到的难点之一。
本文将解析几何中的几个大题进行解析,并给出详细的答案。
一、平面直角坐标系与向量1. 设平面上一直线的方程为3x-y+4=0,求该直线的斜率及与坐标轴的交点坐标。
答案:首先将直线的方程转化为斜截式的形式,即y=3x+4。
由此可得该直线的斜率为3。
与x轴的交点坐标可通过令y=0,解得x=-4/3;与y轴的交点坐标可通过令x=0,解得y=4。
因此,该直线与x轴的交点坐标为(-4/3,0),与y轴的交点坐标为(0,4)。
2. 已知平面内的向量a=(4,3),求向量2a的模和方向角。
答案:向量2a=(2*4,2*3)=(8,6)。
模可以通过向量的标准模公式计算:|2a|=√((8)^2+(6)^2)=√100=10。
方向角可以通过向量的方向角公式计算:tanθ=y/x=6/8=3/4,所以θ=arctan(3/4)。
因此,向量2a的模为10,方向角为arctan(3/4)。
二、直线的方程与位置关系1. 设直线L1过点A(1,3)且与直线L2:2x+3y-7=0相交于点B,求线段AB的中点坐标。
答案:首先求直线L1的方程,由过点A(1,3),设斜率为k,则直线L1的方程为y-3=k(x-1)。
将直线L2的方程与直线L1的方程联立,可求出点B的坐标。
解方程组得到B的坐标为(-1,3)。
线段AB的中点坐标可以通过两点坐标的平均值计算:((1+(-1))/2,(3+3)/2)=(0,3)。
因此,线段AB的中点坐标为(0,3)。
2. 设直线L1:x+2y-3=0与直线L2:2x-y-1=0相交于点A,直线L1与直线L3:2x+3y-4=0平行,求直线L3的方程。
答案:由直线L1与直线L2的方程可解得直线L1与直线L2的交点A的坐标为(1,1)。
由直线L1与直线L3平行可得其斜率相等,即2=3k,解得k=2/3。
2025版高考数学总复习第8章平面解析几何高考大题规范解答__解析几何课件 (1)

解法二:(1)依题意,A(-2,0),B(2,0).(1 分) 设 C(x1,y1),则x421+y321=1, 所以 kAC·kBC=x1y+1 2·x1y-1 2(2 分)
=x21y-21 4=3x121--x4421(3 分) =-34.(4 分) 即-34=kAP·kBQ=4+yP2·4-yQ2.故 yPyQ 的值为-9.(5 分)
y=kx+m, 方程(1+2k2)x2+4kmx+2m2-4=0 的判别式 Δ=32k2+16-8m2>0,
x1+x2=-1+4k2mk2, 则x1x2=21m+2-2k42 .
(7 分)
因为 kMA·kMB=1,所以x1y-1 2·x2y-2 2=1, 所以(k2-1)x1x2+(km+2)(x1+x2)+m2-4=0, 整理得(m+2k)(m+6k)=0.(9 分)
[解析] (1)由双曲线定义可知||MF1|-|MF2||=2a=2, ∴a=1,(1 分) 又由|F1F2|=4,∴c=2,(2 分) ∵a2+b2=c2,∴b= 3,(3 分) ∴双曲线 C 的方程为 x2-y32=1.(4 分)
(2)①证明:设 M(x0,y0),P(x1,y1),Q(x2,y2), 则 y1= 3x1①,y2=- 3x2②, 将①+②可得 y1+y2= 3(x1-x2), 将①-②可得 y1-y2= 3(x1+x2),(5 分) ∴ 3y1x+1+y2x2= 3y1x-1-y2x2, 即xy11++yx22=3yx11--yx22,(6 分)
由题可知|MP|=|MQ|, ∴x1+x2=2x0, y1+y2=2y0, ∴xy00=3yx11--yx22,即 kPQ=3yx00,(7 分) ∴直线 PQ 的方程为 y-y0=3yx00(x-x0), 即 3x0x-y0y=3x20-y20,
(完整版)解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆()2222:10x y C a b a b+=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线,AP BP 的斜率分别为12,k k ,且1214k k =-,AP OM ∥,BP ON ∥.(1)求椭圆C 的方程;(2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由.【答案】(1)22:14x C y +=;(2)定值1. 【解析】(1)221,11442,AP BPb k k b a a ⎫=⎪=-⇒⇒=⎬⎪=⎭g ,椭圆22:14x C y +=.(2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y ,()22222,4184401,4y kx t k x ktx t x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 122841kt x x k +=-+,21224441t x x k -=+,()()1212121212121211404044y y k k y y x x kx t kx t x x x x ⋅=-⇒⋅=-⇒+=⇒+++=, ()()22121241440kx x kt x x t ++++=,()2222222448414402414141t ktk kt t t k k k ⎛⎫-+-+=⇒-= ⎪++⎝⎭,MN ====,d =,1S ===. ∴OMN △的面积为定值1.20.(本小题满分12分)[2017平安一中]上顶点B 是抛物线24x y =的焦点. (1)求椭圆M 的标准方程;(2)若P 、Q 是椭圆M 上的两个动点,且OP ⊥OQ (O 是坐标原点),由点O 作OR ⊥PQ 于R ,试求点R 的轨迹方程.【答案】(1【解析】(1① 又1b =······②所以椭圆M(2)(i )若直线PQ ∥x 轴,设直线:PQ y m =OP ⊥OQ (ii )若直线PQ 不平行x 轴,设直线:PQ x ty n =+()t R n R ∈∈,,联立椭圆M 的方程消x 得222(2)2(2)0t y tny n +++-=,设11()P x y ,,22()Q x y ,,OP ⊥OQ 得0OP OQ ⋅=u u u r u u u r ,即12120x x y y +=, 即1212()()0ty n ty n y y +++=······⑤又原点O 到直线PQ 所以动点R20.(本小题满分12分)[2017郑州一中]已知圆M :222()0x y r r +=>与直线1l :40x +=相切,设点A 为圆上一动点,AB x ⊥轴于B ,且动点N 满足2AB NB =u u u r u u u r ,设动点N 的轨迹为曲线C . (1)求曲线C 的方程;(2)直线l 与直线1l 垂直且与曲线C 交于P ,Q 两点,求OPQ △面积的最大值.【答案】(1)2214x y +=;(2)1. 【解析】(1)设动点()N x y ,,00()A x y ,,因为AB x ⊥轴于B ,所以0(0)B x ,, 设圆M 的方程为222:x y M r +=, 由题意得2r ==, 所以圆M 的方程为22:4x M y +=.由题意,2AB NB =u u u r u u u r,所以00(0)2()y x x y -=--,,, 所以,即002x xy y =⎧⎨=⎩,将(2)A x y ,代入圆22:4x M y +=,得动点N 的轨迹方程2214x y +=.(2)由题意设直线l :0x m +=,设直线l 与椭圆2214x y +=交于11()P x y ,,22()Q x y ,,联立方程2244y m x y ⎧=-⎪⎨+=⎪⎩,得2213440x m ++-=, 222192413(44)16(13)0m m m ∆=-⨯-=-+>,解得2 13m <,12x ==,又因为点O 到直线l 的距离||2m d =,122||PQ x x =-=。
2023年高考优质解析几何大题练习【含答案】

新高考优质解析几何大题练习一.解答题(共30小题)1.(2022秋•浙江月考)如图,已知抛物线C:y2=2px(p>0)的焦点F,且经过点A(2p,m)(m>0),|AF|=5.(1)求p和m的值;(2)点M,N在C上,且AM⊥AN.过点A作AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.2.(2022秋•浙江月考)已知点A(2,1)在双曲线C:﹣=1(b>0)上.(Ⅰ)求双曲线C的渐近线方程;(Ⅱ)设直线l:y=k(x﹣1)与双曲线C交于不同的两点E,F,直线AE,AF分别交直线x=3于点M,N.当△AMN的面积为时,求k的值.3.(2022秋•玄武区校级月考)设A,B为双曲线C:﹣=1(a>b>0)的左、右顶点,直线l过右焦点F且与双曲线C的右支交于M,N两点,当直线l垂直于x轴时,△AMN为等腰直角三角形.(1)求双曲线C的离心率;(2)已知AB=4,若直线AM,AN分别交直线x=1于P,Q两点,若D(t,0)为x 轴上一动点,当直线l的倾斜角变化时,若∠PDQ为锐角,求t的取值范围.4.(2022•南京模拟)已知点F1,F2分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点F2到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线l:y=mx+n与双曲线C交于两点M,N,直线OM,ON的斜率分别记为k OM,k ON,且,求证:直线l过定点,并求出定点坐标.5.(2022春•开福区校级月考)已知双曲线C的渐近线方程为,且过点P(3,).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ 与C交于另一点D,过Q点作QN⊥AD于N,证明:直线AD过定点M,且点N在以QM为直径的圆上.6.(2022秋•皇姑区校级月考)已知椭圆Γ的方程为,圆C与x轴相切于点T(2,0),与y轴正半轴相交于A,B两点,且|AB|=3,如图.(1)求圆C的方程;(2)如图,过点(0,1)的直线l与椭圆Γ相交于P,Q两点,求证:射线AO平分∠PAQ.7.(2022秋•开福区校级月考)已知双曲线经过点(2,﹣3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程;(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M(m,0),使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.8.(2022秋•锦州期中)已知双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点;且C的一条渐近线与直线x﹣2y+2=0平行.(1)求双曲线C的方程;(2)若直线l与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于A、B两点,O为坐标原点,试判断△AOB的面积是否为定值,若是,请求出;若不是,请说明理由.9.(2022秋•湖北期中)在△ABC中,已知A(﹣1,0),B(﹣2,0),且sin B=sin A.(1)求顶点C的轨迹E的方程;(2)曲线E与y轴交于P,Q两点,T是直线y=2上一点,连TP,TQ分别与E交于M,N两点(异于P,Q两点),试探究直线MN是否过定点,若是求定点,若不是说明理由.10.(2022秋•南阳期中)已知动点P到两个定点的距离之和为4,记点P的轨迹为Γ.(1)求Γ的方程;(2)若点Q(0,﹣3),过点T(0,1)的直线l与Γ交于M,N两点,求△QMN面积的最大值.11.(2022•临澧县校级开学)已知椭圆C的方程为+=1(a>0),斜率为k(k≠0)的直线与C交于M,N两点.(1)若G为MN的中点,O为坐标原点,且直线OG的斜率为﹣,求椭圆C的方程;(2)在(1)的条件下,若P是椭圆C的左顶点,直线PM的斜率为k PM,直线PN的斜率为k PN,k PM•k PN=﹣,F是椭圆的左焦点,要使F在以MN为直径的圆内,求k 的取值范围.12.(2022秋•辽宁期中)如图所示:已知椭圆C:的长轴长为4,离心率.A是椭圆的右顶点,直线l过点M(﹣1,0)交椭圆于C,D两点,记△ACD的面积为S.(1)求椭圆C的标准方程;(2)求S的最大值.13.(2022•烟台三模)已知椭圆C:+=1(a>b>0)的离心率为,(,1)为C与抛物线x2=2py的交点.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,斜率为k的直线过抛物线的焦点F且与椭圆交于M,N两点,试探究直线AM,AN的斜率之积是否为定值?若是,求出此定值;若不是,说明理由.14.(2022•雨花区校级模拟)如图,已知椭圆,其左、右焦点分别为F1,F2,过右焦点F2且垂直于x轴的直线交椭圆于第一象限的点P,且.(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,说明理由.15.(2022•鞍山模拟)已知O为坐标原点,F1、F2为椭圆C的左、右焦点,|F1F2|=2,P 为椭圆C的上顶点,以P为圆心且过F1、F2的圆与直线相切.(1)求椭圆C的标准方程;(2)若过点F2作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由.16.(2022•洛阳模拟)已知抛物线C:y2=2px(p>0),A是C上位于第一象限内的动点,它到点B(3,0)距离的最小值为.直线AB与C交于另一点D,线段AD的垂直平分线交C于E,F两点.(1)求p的值;(2)若中,证明A,D,E,F四点共圆,并求该圆的方程.17.(2022•德州二模)已知△ABC的两个顶点A,B的坐标分别为(﹣,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M、N两点,点D在曲线G上,O是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.18.(2022•襄城区校级四模)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点到F点的距离为.(1)求抛物线的方程及点A坐标;(2)设斜率为k的直线l过点B(2,0)且与抛物线交于不同的两点M、N,若且,求斜率k的取值范围.19.(2021秋•淄博期末)已知O为坐标原点,A(x1,y1),B(x2,y2)是直线l与抛物线C:y2=4x的两个交点,满足.试求y1y2的值,并证明直线l恒过定点.20.(2021秋•十堰期末)已知抛物线,,点M(x0,y0)在C2上,且不与坐标原点O重合,过点M作C1的两条切线,切点分别为A,B.记直线MA,MB,MO的斜率分别为k1,k2,k3.(1)当x0=1时,求k1+k2的值;(2)当点M在C2上运动时,求的取值范围.21.(2021秋•武汉期末)已知双曲线的左、右焦点分别为,动点M满足|MF2|﹣|MF1|=2.(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点N(4,0),且∠ONP=∠ONQ,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点.22.(2021秋•菏泽期末)已知Rt△ABC中,A(﹣1,0),B(1,0),∠CAB=90°,,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.(1)求曲线E的方程;(2)过点(1,0)的直线l与曲线E交于M,N两点,则在x轴上是否存在定点Q.使得的值为定值?若存在,求出点Q的坐标和该定值;若不存在,请说明理由.23.(2021秋•南京月考)已知双曲线E:﹣=1(a>0,b>0)过点D(3,1),且该双曲线的虚轴端点与两顶点A1,A2的张角为120°.(1)求双曲线E的方程;(2)过点B(0,4)的直线l与双曲线E左支相交于点M,N,直线DM,DN与y轴相交于P,Q两点,求|BP|+|BQ|的取值范围.24.(2018秋•福田区校级期末)已知椭圆C的中心是坐标原点O,它的短轴长2,焦点F(c,0),点A(﹣c,0),且=2.(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P、Q两点,且以线段PQ为直径的圆过坐标原点O,若存在,求出直线PQ的方程;不存在,说明理由.25.(2021•辽宁模拟)已知抛物线C1:y2=2px(p>0),椭圆C2:=1(a>b>0),抛物线与椭圆有共同的焦点F(4,0),且椭圆C2的离心率e=.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)直线l1的方程为x=﹣4,若不经过点P(4,8)的直线l2与抛物线交于A,B(A,B分别在x轴两侧),与直线l1交于点M,与椭圆交于点C,D,设PA,PM,PB的斜率分别为k1,k2,k3,若k1+k3=2k2.(ⅰ)证明:直线l2恒过定点;(ⅱ)点D关于x轴的对称点为D′,试问△CFD′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.26.(2021•平邑县校级开学)已知椭圆(a>b>0)过点(,0),其焦距的平方是长轴长的平方与短轴长的平方的等差中项.(1)求椭圆的标准方程:(2)直线l过点M(1,0),与椭圆分别交于点A,B,与y轴交于点N,各点均不重合且满足,,求λ+μ.27.(2022秋•青羊区校级月考)已知椭圆=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆有相同的焦点,点P为抛物线与椭圆在第一象限的交点,且|PF1|=.(1)求椭圆的方程;(2)过F作两条斜率不为0且互相垂直的直线分别交椭圆于A,B和C,D,线段AB 的中点为M,线段CD的中点为N,证明:直线MN过定点,并求出该定点的坐标.28.(2022秋•思明区校级期中)在平面直角坐标系xOy中,△ABC的周长为12,AB,AC 边的中点分别为F1(﹣1,0)和F2(1,0),点M为BC边的中点.(1)求点M的轨迹方程;(2)设点M的轨迹为曲线Γ,直线MF1与曲线Γ的另一个交点为N,线段MF2的中点为E,记,求S的最大值.29.(2022秋•迎泽区校级月考)已知抛物线C:x2=2py(p>0)与圆O:x2+y2=12相交于A,B两点,且点A的横坐标为是抛物线C的焦点,过焦点的直线l与抛物线C 相交于不同的两点M,N.(1)求抛物线C的方程.(2)过点M,N作抛物线C的切线l1,l2,P(x0,y0)是l1,l2的交点,求证:点P在定直线上.参考公式:(cx2)′=2cx,其中c为常数.30.(2022秋•香坊区校级月考)动点M与定点A(1,0)的距离和M到定直线x=9的距离之比是常数.(1)求动点M的轨迹G的方程;(2)设O为原点,点B(﹣3,0),过点A的直线l与M的轨迹G交于P、Q两点,且直线l与x轴不重合,直线BP、BQ分别与y轴交于R、S两点,求证:|OR|⋅|OS|为定值.新高考优质解析几何大题练习参考答案与试题解析一.解答题(共30小题)1.(2022秋•浙江月考)如图,已知抛物线C:y2=2px(p>0)的焦点F,且经过点A(2p,m)(m>0),|AF|=5.(1)求p和m的值;(2)点M,N在C上,且AM⊥AN.过点A作AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.【答案】(1)p=2,m=4;(2)证明见解析.【解答】解:(1)由抛物线定义知:,则p=2,又A(4,m)(m>0)在抛物线上,则m2=4×4,可得m=4.(2)证明:设M(x1,y1),N(x2,y2),由(1)知:A(4,4),所以,,又AM⊥AN,所以(x1﹣4)(x2﹣4)+(y1﹣4)(y2﹣4)=x1x2﹣4(x1+x2)+y1y2﹣4(y1+y2)+32=0,令直线MN:x=ky+n,联立C:y2=4x,整理得y2﹣4ky﹣4n=0,且Δ=16k2+16n>0,所以y1+y2=4k,y1y2=﹣4n,则,,综上,n2﹣16k2﹣12n﹣16k+32=(n﹣4k﹣8)(n+4k﹣4)=0,当n=8+4k时,MN:x=k(y+4)+8过定点B(8,﹣4);当n=4﹣4k时,MN:x=k(y﹣4)+4过定点(4,4),即A,M,N共线,不合题意;所以直线MN过定点B(8,﹣4),又AD⊥MN,故D在以AB为直径的圆上,而AB中点为Q(6,0),即为定值,得证.2.(2022秋•浙江月考)已知点A(2,1)在双曲线C:﹣=1(b>0)上.(Ⅰ)求双曲线C的渐近线方程;(Ⅱ)设直线l:y=k(x﹣1)与双曲线C交于不同的两点E,F,直线AE,AF分别交直线x=3于点M,N.当△AMN的面积为时,求k的值.【答案】(Ⅰ)y=±x.(Ⅱ)2.【解答】解:(Ⅰ)因为点A(2,1)在双曲线上,所以﹣=1,b2=1,即双曲线C的方程为﹣y2=1,所以渐近线方程为y=±x,即y=±x.(Ⅱ)设直线AE的方程为y=k1(x﹣2)+1,直线AF的方程为y=k2(x﹣2)+1,联立,得(1﹣2k1)2x2+(8k12﹣4k1)x﹣8k12+8k1﹣4=0,所以x A+x E=﹣=,所以x E=﹣2=,y E=,所以E(,),同理可得F(,),联立,得M(3,k1+1),同理N(3,k2+1),所以|MN|=|k1﹣k2|,=|MN|×2=|k1﹣k2|=,所以S△AMN不妨设k1>k2,即k1=k2+,所以E(,),又E,F在直线l上,所以,解得,所以k的值为2.3.(2022秋•玄武区校级月考)设A,B为双曲线C:﹣=1(a>b>0)的左、右顶点,直线l过右焦点F且与双曲线C的右支交于M,N两点,当直线l垂直于x轴时,△AMN为等腰直角三角形.(1)求双曲线C的离心率;(2)已知AB=4,若直线AM,AN分别交直线x=1于P,Q两点,若D(t,0)为x 轴上一动点,当直线l的倾斜角变化时,若∠PDQ为锐角,求t的取值范围.【答案】(1)2;(2)(﹣∞,﹣2)∪(4,+∞).【解答】解:(1)由l⊥x轴,△AMN为等腰直角三角形,可得|AF|=|NF|=|MF|,所以a+c=,即c2﹣ac﹣2a2=0,可得e2﹣e﹣2=0,解得e=2或e=﹣1(舍),所以双曲线的离心率为2;(2)由AB=4,可得2a=4,即a=2,所以直线PQ的方程为:x=1,由(1)可得离心率为2,可得c=4,b==2,所以双曲线的方程为:﹣=1;由题意可得直线l的斜率不为0,设直线l的方程为x=my+4,m≠±,设M(x1,y1),N(x2,y2),联立,整理可得:(3m2﹣1)y2+24my+36=0,可得y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+8=,x1x2=(my1+4)(my2+4)=m2y1y2+4m(y1+y2)+16=,直线AM的方程为y=(x+2),直线AN的方程为:y=(x+2),令x=1,可得P(1,),Q(1,),∵D(t,0),∴=(1﹣t,),=(1﹣t,),∵•=(1﹣t)2+×=(1﹣t)2+=(1﹣t)2+=(1﹣t)2﹣9,∵∠PDQ为锐角,∴•>0,∴(1﹣t)2﹣9>0,∴t<﹣2或t>4.∴t的取值范围为(﹣∞,﹣2)∪(4,+∞).4.(2022•南京模拟)已知点F1,F2分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点F2到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线l:y=mx+n与双曲线C交于两点M,N,直线OM,ON的斜率分别记为k OM,k ON,且,求证:直线l过定点,并求出定点坐标.【答案】(1);(2)证明解析;定点为(﹣2,0)或(2,0).【解答】解:(1)由题知,F2(c,0),其中一条渐近线为,即bx﹣ay=0,所以,解得,所以,(2)证明:设M(x1,y1),N(x2,y2),将y=mx+n代入,整理得:(5m2﹣4)x2+10mnx+5n2+20=0,则,由Δ=100m2n2﹣4(5m2﹣4)(5n2+20)=80(n2﹣5m2+4)>0得n2﹣5m2+4>0,因为=,所以,得n2=4m2,即n=±2m,所以直线l的方程为y=m(x±2),所以当n2﹣5m2+4>0,且n=2m时,直线l过定点(﹣2,0);所以当n2﹣5m2+4>0,且n=﹣2m时,直线l过定点(2,0).5.(2022春•开福区校级月考)已知双曲线C的渐近线方程为,且过点P(3,).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ 与C交于另一点D,过Q点作QN⊥AD于N,证明:直线AD过定点M,且点N在以QM为直径的圆上.【答案】(1)﹣y2=1.(2)直线AD过定点(3,0).点N在以QM为直径的圆上.【解答】解:(1)因为双曲线C的渐近线方程为,故设C的方程为﹣y2=λ(λ≠0),又C过点P(3,).所以﹣()2=λ,解得λ=1,所以C的方程为﹣y2=1.(2)证明:显然直线BQ的斜率不为0,设直线BQ为x=my+1,B(x1,y1),D(x2,y2),A(x1,﹣y1),联立,消去x整理得(m2﹣3)y2+2my﹣2=0,依题意m2﹣3≠0且Δ=4m2+8(m2﹣3)>0,即m2>2且m2≠3,所以y1+y2=﹣,y1y2=﹣,直线AD的方程为y+y1=(x﹣x1),令y=0,得x=+x1=====3,所以直线AD过定点(3,0).过Q点作QN⊥AD于N,设QM的中点为R,若N和M不重合,则△QNM为直角三角形,所以|RN|=|MQ|,若N和M重合,|RN|=|MQ|,所以点N在以QM为直径的圆上.6.(2022秋•皇姑区校级月考)已知椭圆Γ的方程为,圆C与x轴相切于点T(2,0),与y轴正半轴相交于A,B两点,且|AB|=3,如图.(1)求圆C的方程;(2)如图,过点(0,1)的直线l与椭圆Γ相交于P,Q两点,求证:射线AO平分∠PAQ.【答案】(1);(2)证明见解析.【解答】解:(1)依题意,设圆心C(2,b),r=b,,解得,所以所求圆方程为:.(2)证明:x=0代入圆C方程,得y=1或y=4,所以B(0,1),A(0,4),若过B点的直线斜率不存在,此时A,P,Q在y轴上,∠PAB=∠QAB=0,射线AO平分∠PAQ;若过B(0,1)的直线l斜率存在,设其方程为y=kx+1,联立整理得(2k2+1)x2+4kx﹣6=0,Δ=16k2+24(2k2+1)=8(8k2+3)>0,设P(x1,y1),Q(x2,y2),,=,∴∠PAB=∠QAB.所以射线AO平分∠PAQ.综上,射线AO平分∠PAQ.7.(2022秋•开福区校级月考)已知双曲线经过点(2,﹣3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程;(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M(m,0),使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.【答案】(1);(2)存在M(﹣1,0),使得以线段AB为直径的圆恒过M点.【解答】解:(1)∵两条渐近线的夹角为60°,∴渐近线的斜率或,即或;当时,由,得:a2=1,b2=3,∴双曲线C的方程为:;当时,方程无解;综上所述:双曲线C的方程为:.(2)由题意得:F2(2,0),假设存在定点M(m,0)满足题意,则恒成立;①当直线l斜率存在时,设l:y=k(x﹣2),A(x1,y1),B(x2,y2),由得:(3﹣k2)x2+4k2x﹣(4k2+3)=0,∴,∴,,∴==0,∴(4k2+3)(1+k2)﹣4k2(2k2+m)+(m2+4k2)(k2﹣3)=0,整理可得:k2(m2﹣4m﹣5)+(3﹣3m2)=0,由,得:m=﹣1;∴当m=﹣1时,恒成立;②当直线l斜率不存在时,l:x=2,则A(2,3),B(2,﹣3),当M(﹣1,0)时,,,∴成立;综上所述:存在M(﹣1,0),使得以线段AB为直径的圆恒过M点.8.(2022秋•锦州期中)已知双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点;且C的一条渐近线与直线x﹣2y+2=0平行.(1)求双曲线C的方程;(2)若直线l与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于A、B两点,O为坐标原点,试判断△AOB的面积是否为定值,若是,请求出;若不是,请说明理由.【答案】(1);(2)△AOB的面积为定值2,理由见解答.【解答】解:(1)∵双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点,∴c=,又C的一条渐近线与直线x﹣2y+2=0平行,∴=,又a2+b2=c2=5,解得a=2,b=1,∴双曲线C的方程为;(2)设直线l的方程为y=kx+m,联立,可得(4k2﹣1)x2+8kmx+4m2﹣4=0,∴Δ=64k2m﹣16(4k2﹣1)(m2+1)=0,∴4k2=m2+1,设直线l与x轴交点为D,则OD=||,=S△OAD+S△OBD==,∴S△AOB又双曲线的渐近线方程为y=±x,联立直线l:y=kx+m,可得A(,),B(,),===,∴S△AOB又4k2=m2+1,=2,∴△AOB的面积为定值.∴S△AOB9.(2022秋•湖北期中)在△ABC中,已知A(﹣1,0),B(﹣2,0),且sin B=sin A.(1)求顶点C的轨迹E的方程;(2)曲线E与y轴交于P,Q两点,T是直线y=2上一点,连TP,TQ分别与E交于M,N两点(异于P,Q两点),试探究直线MN是否过定点,若是求定点,若不是说明理由.【答案】(1)x2+y2=2(y≠0);(2)直线MN恒过点(0,).【解答】解:(1)A(﹣1,0),B(﹣2,0),由sin B=sin A,得,即,设C(x,y),则,整理得x2+y2=2(y≠0);(2)曲线E:x2+y2=2(y≠0),由题意不妨设P(0,),Q(0,﹣),T(m,)(m≠0),TP:y=,TQ:y=,联立,得(m2+2)x2+4mx=0,得M(,);联立,得(m2+18)x2﹣12mx=0,得N(,).当m≠±3时,直线MN方程为y=.∴直线MN恒过点(0,).10.(2022秋•南阳期中)已知动点P到两个定点的距离之和为4,记点P的轨迹为Γ.(1)求Γ的方程;(2)若点Q(0,﹣3),过点T(0,1)的直线l与Γ交于M,N两点,求△QMN面积的最大值.【答案】(1);(2).【解答】解:(1)由题意可知,P点轨迹为Γ是以,为焦点,长轴长为4的椭圆,即2a=4,,所以a=2,b=1,所以Γ的方程为:;(2)因为直线l的斜率存在,设直线l的方程:y=kx+1,设M(x1,y1),N(x2,y2),,消去y,整理得:(k2+4)x2+2kx﹣3=0,Δ=(2k)2+4(k2+4)×3=16(k2+3)>0,所以,,所以,所以△QMN面积,设,所以在上单调递减,故当,即k=0时,△BMN面积取得最大值,最大值为,所以△QMN面积的最大值.11.(2022•临澧县校级开学)已知椭圆C的方程为+=1(a>0),斜率为k(k≠0)的直线与C交于M,N两点.(1)若G为MN的中点,O为坐标原点,且直线OG的斜率为﹣,求椭圆C的方程;(2)在(1)的条件下,若P是椭圆C的左顶点,直线PM的斜率为k PM,直线PN的斜率为k PN,k PM•k PN=﹣,F是椭圆的左焦点,要使F在以MN为直径的圆内,求k 的取值范围.【答案】(1);(2).【解答】解:(1)设M,N两点坐标分别为M(x1,y1),N(x2,y2),G(x0,y0),代入椭圆方程,得,则,可得,因为,所以,所以a2=4,椭圆C的方程为.(2)设MN方程为y=kx+m,则,所以(3+4k2)x2+8kmx+4m2﹣12=0,所以,,所以,所以=,所以=,解得m=2k(舍)或m=﹣k,若F在以MN为直径的圆内,则,即,,即4k2﹣12+8k2+3k2﹣12k2+3+4k2=0,即7k2﹣9<0,且k≠0,解得且k≠0,所以k的取值范围为.12.(2022秋•辽宁期中)如图所示:已知椭圆C:的长轴长为4,离心率.A是椭圆的右顶点,直线l过点M(﹣1,0)交椭圆于C,D两点,记△ACD的面积为S.(1)求椭圆C的标准方程;(2)求S的最大值.【答案】(1);(2).【解答】解:(1)令椭圆E的半焦距为c,依题意,a=2,=,解得c=,则b2=a2﹣c2=1,所以椭圆E的标准方程为.(2)依题意,设直线l:x=ty﹣1,设C(x1,y1),D(x2,y2),由,消去x并整理得:(t2+4)y2﹣2ty﹣3=0,则y1+y2=,y1y2=﹣,|y1﹣y2|===,由(1)知A(2,0),|AM|=3,则有S===,令u=,显然函数y=在[,+∞)上单调递增,,当且仅当,即=±1时取等号.显然取等号情况不成立,故当=时S取得最大值,即S≤,所以S的最大值为.13.(2022•烟台三模)已知椭圆C:+=1(a>b>0)的离心率为,(,1)为C与抛物线x2=2py的交点.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,斜率为k的直线过抛物线的焦点F且与椭圆交于M,N两点,试探究直线AM,AN的斜率之积是否为定值?若是,求出此定值;若不是,说明理由.【答案】(1);(2)直线AM,AN的斜率之积为定值.【解答】解:(1)由题意可知,,可得a2=2c2,又a2=b2+c2,可得a2=2b2,所以椭圆方程为,将代入方程得:,解得b2=4,所以a2=8,所以椭圆C的方程:;(2)直线AM,AN的斜率之积为定值,且定值为.由(1)可得A(0,2),将代入抛物线可得6=2p,p=3,所以抛物线方程为x2=6y,所以,则设直线MN的方程为,设M(x1,y1),N(x2,y2),联立直线MN的方程,,消去y,整理得(2+4k2)x2+12kx﹣7=0,所以,,,所以=,所以,直线AM,AN的斜率之积为定值.14.(2022•雨花区校级模拟)如图,已知椭圆,其左、右焦点分别为F1,F2,过右焦点F2且垂直于x轴的直线交椭圆于第一象限的点P,且.(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,说明理由.【答案】(1),(2)(0,1).【解答】解:(1)∵,∴,∵,∴,∵a2=c2+1,∴,∴椭圆方程为:.(2)动直线l的方程为:,由得,设A(x1,y1),B(x2,y2),则..由对称性可设存在定点M(0,m)满足题设,则,⇒6(m2﹣1)k2+(3m2+2m﹣5)=0,由题意知上式对∀k∈R成立,∴m2﹣1=0且3m2+2m﹣5=0,解得m=1.∴存在定点M,使得以AB为直径的适恒过这个点,且点M的坐标为(0,1).15.(2022•鞍山模拟)已知O为坐标原点,F1、F2为椭圆C的左、右焦点,|F1F2|=2,P 为椭圆C的上顶点,以P为圆心且过F1、F2的圆与直线相切.(1)求椭圆C的标准方程;(2)若过点F2作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由.【答案】(1);(2)存在;.【解答】解:(1)依题意,F1(﹣1,0),F2(1,0),,由椭圆定义知:椭圆长轴长,即,而半焦距c=1,即有短半轴长b=1,所以椭圆C的标准方程为:.(2)依题意,设直线l方程为x=my+1,由消去x并整理得(m2+2)y2+2my﹣1=0,设M(x1,y1),N(x2,y2),则,,假定存在点T(t,0),直线TM与TN的斜率分别为,,=,要使k TM⋅k TN为定值,必有﹣1﹣2(1﹣t)+(1﹣t)2=0,即,当时,∀m∈R,,当时,∀m∈R,,所以存在点,使得直线TM与TN的斜率之积为定值.16.(2022•洛阳模拟)已知抛物线C:y2=2px(p>0),A是C上位于第一象限内的动点,它到点B(3,0)距离的最小值为.直线AB与C交于另一点D,线段AD的垂直平分线交C于E,F两点.(1)求p的值;(2)若中,证明A,D,E,F四点共圆,并求该圆的方程.【答案】(1)2;(2)(x﹣9)2+(y﹣2)2=64.【解答】解:(1)设A(2py2,2py),则,令t=y2∈[0,+∞),则,对于二次函数m=4p2t2+(4p2﹣12p)t+9,其对称轴为,当p≥3时,在[0,+∞)上单调递增,其最小值为9,即|AB|的最小值为3,不满足题意,当0<p<3时,,所以当时m=4p2t2+(4p2﹣12p)t+9取得最小值,即所以,解得p=2或p=4(舍),所以p=2;(2)由(1)可得,当时,,点A(1,2),所以,直线AB的方程为y=﹣x+3,由可得x2﹣10x+9=0,解得x=1或x=9,所以D(9,﹣6),所以AD的中点为N(5,﹣2),所以直线EF的方程为y+2=1⋅(x﹣5),即y=x﹣7,设E(x1,y1),F(x2,y2),由可得y2﹣4y﹣28=0,所以y1+y2=4,y1y2=﹣28,所以线段EF的中点为,因为,所以d,D,E,F四点共圆,圆心为M(9,2),半径为8,所以该圆的方程为(x﹣9)2+(y﹣2)2=64.17.(2022•德州二模)已知△ABC的两个顶点A,B的坐标分别为(﹣,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M、N两点,点D在曲线G上,O是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【答案】;(2)四边形OMDN的面积是定值,其定值为.【解答】解:(1)因为圆E为△ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|,所以点C的轨迹为以点A和点B为焦点的椭圆,所以,a=2,则b=1,所以曲线G的方程为.(2)由y≠0可知直线l的斜率存在,设直线l方程是y=kx+m,由平面图形OMDN是四边形,可知m≠0,代入到,得(1+4k2)x2+8kmx+4m2﹣4=0,所以Δ=16(4k2+1﹣m2)>0,,.所以,所以,又点O到直线MN的距离,由,得,,因为点D在曲线G上,所以将D点坐标代入椭圆方程得1+4k2=4m2.由题意四边形OMDN为平行四边形,所以OMDN的面积为,由1+4k2=4m2,代入得,故四边形OMDN的面积是定值,其定值为.18.(2022•襄城区校级四模)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点到F点的距离为.(1)求抛物线的方程及点A坐标;(2)设斜率为k的直线l过点B(2,0)且与抛物线交于不同的两点M、N,若且,求斜率k的取值范围.【答案】(1),(2).【解答】解:(1)由抛物线定义可知:,得p=2,∴抛物线方程为x2=4y,将点坐标代入抛物线方程得:∴点A坐标为,(2)直线l的方程为y=k(x﹣2),设M、N两点的坐标分别为(x1,y1),(x2,y2).联立消去y,整理得:x2﹣4kx+8k=0,由Δ>0⇒16k2﹣32k>0⇒k<0或k>2.且x1+x2=4k,x1x2=8k,又即(x1﹣2,y1)=λ(x2﹣2,y2)∴,∵,∴,又,令,∴,又:k<0或k>2.∴k的取值范围是.19.(2021秋•淄博期末)已知O为坐标原点,A(x1,y1),B(x2,y2)是直线l与抛物线C:y2=4x的两个交点,满足.试求y1y2的值,并证明直线l恒过定点.【答案】y1y2=﹣8,证明见解析.【解答】证明:设l:x=my+n,A(x1,y1),B(x2,y2).由得y2﹣4my﹣4n=0.∴y1+y2=4m,y1y2=﹣4n,∴x1+x2=4m2+2n,x1x2=n2.又•=﹣4,∴x1x2+y1y2=n2−4n=−4,解得n=2,∴y1y2=﹣8.∴直线l方程为x=my+2,∴直线l恒过点(2,0).20.(2021秋•十堰期末)已知抛物线,,点M(x0,y0)在C2上,且不与坐标原点O重合,过点M作C1的两条切线,切点分别为A,B.记直线MA,MB,MO的斜率分别为k1,k2,k3.(1)当x0=1时,求k1+k2的值;(2)当点M在C2上运动时,求的取值范围.【答案】(1)k1+k2=4.(2)(﹣∞,﹣4]∪[4,+∞).【解答】解:(1)因为x0=1,所以y0=﹣1.设过点M并与C1相切的直线方程为y=k(x﹣1)﹣1.联立方程组整理得x2﹣kx+k+1=0,则Δ=(﹣k)2﹣4(k+1)=k2﹣4k﹣4=0.由题可知,k1,k2即方程k2﹣4k﹣4=0的两根,故k1+k2=4.(2)因为,所以可设过点M并与C1相切的直线的方程为.联立方程组整理得,则.由题可知,k1+k2=4x0,.又,所以.当x0>0时,,所以,当且仅当时,等号成立.当x0<0时,,所以,当且仅当时,等号成立.故的取值范围为(﹣∞,﹣4]∪[4,+∞).21.(2021秋•武汉期末)已知双曲线的左、右焦点分别为,动点M满足|MF2|﹣|MF1|=2.(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点N(4,0),且∠ONP=∠ONQ,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点.【答案】(1)x2﹣=1(x≤﹣1);(2)证明过程见详解,定点(,0).【解答】解:(1)动点M满足|MF2|﹣|MF1|=2<|F1F2|,所以动点M的轨迹为双曲线的左支,且2a=2,c=,所以可得a=1,b2=c2﹣a2=10﹣1=9,所以双曲线的方程为:x2﹣=1(x≤﹣1);(2)证明:由题意可得P,Q关于x轴对称,设直线PB的方程为:y=kx+t,设P(x1,y1),B(x2,y2),则Q(x1,﹣y1),联立,整理可得:(9﹣k2)x2﹣2ktx﹣t2﹣9=0,则x1+x2=,x1x2=,则直线BQ的方程为:y=(x﹣x2)+y2,因为直线过N(4,0)点,所以0=(4﹣x2)+y2,整理可得:(x2﹣4)(y2+y1)=y2(x2﹣x1),即2kx1x2+(t﹣4k)(x1+x2)﹣8t=0,所以+﹣8t=0,整理可得:﹣2kt2﹣18k+2kt2﹣8k2t﹣72t+8tk2=0,即k=﹣4t,所以直线PB的方程为:y=﹣4tx+t=﹣4t(x﹣),可证得:直线PB恒过定点(,0)22.(2021秋•菏泽期末)已知Rt△ABC中,A(﹣1,0),B(1,0),∠CAB=90°,,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.(1)求曲线E的方程;(2)过点(1,0)的直线l与曲线E交于M,N两点,则在x轴上是否存在定点Q.使得的值为定值?若存在,求出点Q的坐标和该定值;若不存在,请说明理由.【答案】(1).(2)存在点.【解答】解:(1)由题意,可得,而,所以点P的轨迹为以A,B为焦点,长轴长为的椭圆,由,故,所以曲线E的方程为.(2)当直线l的斜率为不为0时,设直线l的方程为x=my+1,设定点Q(t,0),联立方程组消x可得(m2+2)y2+2my﹣1=0,设M(x1,y1),N(x2,y2),可得,所以=(my1+1﹣t)(my2+1﹣t)+y1y2==,要使上式为定值,则,解得,此时,当直线l的斜率为0时,,此时,也符合;所以,存在点,使得为定值.23.(2021秋•南京月考)已知双曲线E:﹣=1(a>0,b>0)过点D(3,1),且该双曲线的虚轴端点与两顶点A1,A2的张角为120°.(1)求双曲线E的方程;(2)过点B(0,4)的直线l与双曲线E左支相交于点M,N,直线DM,DN与y轴相交于P,Q两点,求|BP|+|BQ|的取值范围.【答案】(1).;(2)|BP|+|BQ|的取值范围是(,18﹣6).【解答】解:(1)由已知可得,结合a2+b2=c2,解得,故双曲线E的方程;.(2)设直线方程y=kx+4,M(x1,y1),N(x2,y2),直线DM的方程为y﹣1=(x﹣3),可得P(0,1﹣),直线DN的方程为y﹣1=(x﹣3),可得Q(0,1﹣),联立,消去y,整理可得(1﹣3k2)x2﹣24kx﹣54=0,则,可得,|BP|+||BQ|=4﹣y M+4﹣y N=6+=6+3×=6+3×=6+3×===8﹣,又,∴3k+5∴|BP|+|BQ|的取值范围是(,18﹣6).24.(2018秋•福田区校级期末)已知椭圆C的中心是坐标原点O,它的短轴长2,焦点F(c,0),点A(﹣c,0),且=2.(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P、Q两点,且以线段PQ为直径的圆过坐标原点O,若存在,求出直线PQ的方程;不存在,说明理由.【答案】见试题解答内容【解答】解:(1)由题意知,b=,F(c,0),A(﹣c,0),则,,由=2,得c=,解得:c=2.∴a2=b2+c2=6,∴椭圆的方程为,离心率为;(2)A(3,0),设直线PQ的方程为y=k(x﹣3),联立,得(1+3k2)x2﹣18k2x+27k2﹣6=0,设P(x1,y1),Q(x2,y2),则,.∴=k2()=.由已知得OP⊥OQ,得x1x2+y1y2=0,即,解得:k=,符合Δ>0,∴直线PQ的方程为y=.25.(2021•辽宁模拟)已知抛物线C1:y2=2px(p>0),椭圆C2:=1(a>b>0),抛物线与椭圆有共同的焦点F(4,0),且椭圆C2的离心率e=.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)直线l1的方程为x=﹣4,若不经过点P(4,8)的直线l2与抛物线交于A,B(A,B分别在x轴两侧),与直线l1交于点M,与椭圆交于点C,D,设PA,PM,PB的斜率分别为k1,k2,k3,若k1+k3=2k2.(ⅰ)证明:直线l2恒过定点;(ⅱ)点D关于x轴的对称点为D′,试问△CFD′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【答案】(Ⅰ)椭圆C2的方程为,抛物线C1的方程为y2=16x;(Ⅱ)(i)证明见解析;(ii)△CFD'的面积存在最大值,最大值为.【解答】(Ⅰ)解:设椭圆的半焦距为c,因为抛物线与椭圆有共同的焦点F(4,0),则y2=16x且c=4,因为椭圆C2的离心率为e=,解得a=5,所以b2=a2﹣c2=9,故椭圆C2的方程为,抛物线C1的方程为y2=16x;(Ⅱ)(i)证明:当直线l2的斜率k=0时,不符合题意;当直线l2的存在且不为0时,设直线l2:y=kx+b,令x=﹣4,可得y=﹣4k+b,则点M(﹣4,﹣4k+b),设A(x1,y1),B(x2,y2),联立,可得ky2﹣16y+16b=0,则Δ>0,所以,直线PA的斜率,同理可得直线PB的斜率为,直线PM的斜率为,因为k1+k3=2k2,所以,即,整理可得,,所以b=4k或b=﹣4k,当b=4k时,y1y2=64,与A,B在x轴两侧矛盾;当b=﹣4k时,直线l2的方程为y=kx﹣4k,即直线l2恒过定点(4,0);(ii)解:设C(x3,y3),D(x4,y4),D'(x4,﹣y4),设直线CD的方程为x=ty+4(t≠0),代入椭圆C2的方程可得,(9t2+25)y2+72ty﹣81=0,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
4
p 9 .此时 C2 的焦点坐标为( 9 ,0),该焦点不在直线 AB 上.
8
16
(II)解法一: 假设存在 m 、 p 的值使 C2 的焦点恰在直线 AB 上,由(I)知直线 AB 的斜
率存在,故可设直线 AB 的方程为 y k(x 1) .
y k(x 1)
由
x
2
4
y2 3
消去 1
解法二:(Ⅰ)同解法一. (Ⅱ)已知圆的方程为(x+2)2+(y-1)2=5,所以圆心 M 的坐标为(-2,1).
设 A,B 的坐标分别为(x1,y1),(x2,y2).由题意 x1 x2 且
x12 y12 1,
①
94
x2 2 y2 2 1,
②
94
由①-②得
(x1 x2 )(x1 x2 ) ( y1 y2 )( y1 y2 ) 0.
x2 a2
y2 b2
1(a,b
0) 的左、右顶点,椭圆长半轴的长等于焦距,且
x 4 为它的右准线。
(Ⅰ)、求椭圆的方程;
(Ⅱ)、设 P 为右准线上不同于点(4,0)的任意一点,若直线 AP, BP 分别与椭圆相交于 异于 A, B 的点 M、N ,证明点 B 在以 MN 为直径的圆内。
点评:本小题主要考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学 知识进行推理运算的能力和解决问题的能力。
x2 2
,
y1
2
y2
),
依题意,计算点 B 到圆心 Q 的距离与半径的差
BQ 2 - 1 4
MN
2 =(
x1
x2 2
-2)2+(
y1
2
y2
1
)2-
4
[(x1-x2)2+(y1-y2)2]
=(x1-2) (x2-2)+y1y1
○3
又直线 AP 的方程为 y= y1 (x 2) ,直线 BP 的方程为 y= y2 (x 2) ,
MN
2
=
54(2-x1 )(x2
2)
0.
从而,点 B 在以 MN 为直径的圆内。
4、已知椭圆
C1:
x2 4
y2 3
1,抛物线
C2: ( y m)2
2 px( p
0) ,且
C1、C2 的公共弦
AB
过
椭圆 C1 的右焦点.
(Ⅰ)当 AB⊥ x 轴时,求 m 、 p 的值,并判断抛物线 C2 的焦点是否在直线 AB 上;
③
9
4
因为 A、B 关于点 M 对称,所以 x1+ x2=-4, y1+ y2=2,
代入③得 y1 y2 = 8 ,即直线 l 的斜率为 8 ,
x1 x2 9
9
8
所以直线 l 的方程为 y-1= (x+2),即 8x-9y+25=0.(经检验,所求直线方程符合题意.)
9
2、已知椭圆 x 2 y 2 1 的左焦点为 F,O 为坐标原点。 2
(Ⅱ)是否存在 m 、 p 的值,使抛物线 C2 的焦点恰在直线 AB 上?若存在,求出符合条件的
m 、 p 的值;若不存在,请说明理由.
解:(Ⅰ)当 AB⊥x 轴时,点 A、B 关于 x 轴对称,所以 m=0,直线 AB 的方程为: x =1,
从而点 A 的坐标为(1, 3 )或(1,- 3 ). 因为点 A 在抛物线上.所以 9 2p ,即
因为
(
y1
( y2
m)2 m)2
2 px1 2 px2
,所以
y1
y2
2m
2p
x2 y2
x1 y1
. …………⑥
将②、③代入⑥得 m2 3 p( p 2)2 . ……………⑦ 16 10 p
3( p 4)( p 2)2
由⑤、⑦得
3 p( p 2)2 .即 3 p2
20 p 32 0
解析几何大题答案
1、椭圆
x2 a2
y2 b2
1(a,b
0) 的两个焦点
F1 、 F2 , 点
P
在椭圆
C
上,且
P
F1 ⊥ PF2,,|
P
4
14
F1|= 3 ,,| P F2|= 3 .
(I)求椭圆 C 的方程;
(II)若直线 L 过圆 x2+y2+4x-2y=0 的圆心 M 交椭圆于 A、B 两点,且 A、B 关于点 M 对称,
代入椭圆 C 的方程得 (4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.
因为 A,B 关于点 M 对称.
所以 x1 x2 18k 2 9k 2.
2
4 9k 2
解得 k 8 , 9
所以直线 l 的方程为 y 8 (x 2) 1, 即 8x-9y+25=0. (经检验,符合题意) 9
a2
的距离为 ,由于 c2=a2-b2,a2=1+cos+sin,b2=sin(0 )
y
得 (3 4k 2 )x2
8k 2x
4k 2
12
0 …①
设 A、B 的坐标分别为(x1,y1), (x2,y2),
则
x1,x2
是方程①的两根,x1+x2=
3
8k 2 4k
2
.
由
( y m)2 2
y
k(x
1)
px
消去
y
得 (kx
k
m)2
2 px
.
y A
O
x
B
………………②
因为 C2 的焦点 F ( p , m) 在直线 y k(x 1) 上, 2
a2 解:(Ⅰ)依题意得 a=2c, =4,解
c 得 a=2,c=1,从而 b= 3 .
2 M
1
-4
A -2
2B
4
故椭圆的方程为 x 2 y 2 1 . 43
-1
N -2
(Ⅱ)解法 1:由(Ⅰ)得 A(-2,0), B(2,0).设 M(x0,y0).
3 ∵M 点在椭圆上,∴y0= (4-x02).
(Ⅰ)求过点 O、F,并且与椭圆的左准线 l 相切的圆的方程; (Ⅱ)设过点 F 且不与坐标轴垂直交椭圆于 A、B 两点,线段 AB 的垂直平分线与 x 轴交于点 G,求点 G 横坐标的取值范围.
本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法, 考查运算能力和综合解题能力。
求直线 L 的方程。
解法一:(Ⅰ)因为点 P 在椭圆 C 上,所以 2a PF1 PF2 6 ,a=3.
在 Rt△PF1F2 中, F1F2
从而 b2=a2-c2=4,
PF2 2 PF1 2 2 5, 故椭圆的半焦距 c= 5 ,
所以椭圆 C 的方程为 x 2 y 2 =1. 94
(Ⅱ)设 A,B 的坐标分别为(x1,y1)、(x2,y2). 由圆的方程为(x+2)2+(y-1)2=5,所以圆心 M 的坐标为(-2,1). 从而可设直线 l 的方程为 y=k(x+2)+1,
=
p(k 2 2) k2
.
解得
p
(4k 2
8k 2 3)(k 2
2)
……………………④
又 AB 过 C1、、\、、C2 的焦点,所以
AB
(x1
p 2
)
(
x2
p) 2
x1
x2
p (2 1 2
x1
)
(2
1 2
x2 ) ,
则
p
4
3 2
( x1
x2 )
4
12k 2 4k 2 3
4k 2 12 4k 2 3 .
2
4
(II)设直线 AB 的方程为 y k(x 1)(k 0),
代入 x2 y2 1, 整理得 (1 2k 2 )x2 4k 2 x 2k 2 2 0. 2
直线 AB 过椭圆的左焦点 F,方程有两个不等实根。
记 A(x1, y1), B(x2 , y2 ), AB 中点 N (x0 , y0 ),
x
2
p )
2
x1
x2
p
(2
1 2
x1 ) (2
1 2
x2 )
.
即
x1
x2
2 3
(4
p)
.
……①
由(Ⅰ)知 x1 x2 , p 2 ,于是直线 AB 的斜率 k
y2 y1 x2 x1
m0 p 1
2m
,
p2
……
2
②
且直线 AB 的方程是 y 2m (x 1) , p2
所以
y1
3
3
由上知,满足条件的 m 、 p 存在,且 m 6 或 m 6 , p 4 .
3
3
3
解法二: 设 A、B 的坐标分别为 (x1, y1) , (x2 y2 ) .
因为 AB 既过 C1 的右焦点 F (1,0) ,又过 C2 的焦点 F ( p , m) , 2
所以
AB
( x1
p 2
)
(
5 2
(2-x0).
∵2-x0>0,∴ BM · BP >0,则∠MBP 为锐角,从而∠MBN 为钝角,
故点 B 在以 MN 为直径的圆内。 解法 2:由(Ⅰ)得 A(-2,0),B(2,0).设 M(x1,y1),N(x2,y2),
则-2<x1<2,-2<x2<2,又 MN
的中点 Q
的坐标为(
x1