钢筋混凝土柱偏心受压试验指南

合集下载

混凝土柱设计中的偏心受压研究

混凝土柱设计中的偏心受压研究

混凝土柱设计中的偏心受压研究一、背景和意义混凝土柱是建筑结构中重要的承载构件,常常承受竖向荷载和剪力作用。

在实际工程中,由于各种原因,柱的受力状态可能会变得复杂,例如柱的受力偏心可能会导致柱的受压破坏。

因此,研究混凝土柱设计中的偏心受压现象,对于提高混凝土柱的受力性能和安全性具有重要的意义。

二、偏心受压的定义和分类偏心受压是指轴向受力作用下混凝土柱的受力偏心所引起的受压破坏。

偏心受压的分类与偏心距的大小有关,可分为小偏心受压和大偏心受压。

小偏心受压是指偏心距小于柱截面尺寸的1/6时,混凝土柱的受力偏心可以近似看作是纯轴向受力和轴向弯曲受力的叠加。

在设计时,可以将偏心距计入柱的截面尺寸中,采用几何相似原理进行计算。

大偏心受压是指偏心距大于柱截面尺寸的1/6时,混凝土柱的受力偏心会引起轴向压应力和弯曲应力的不均匀分布,从而引起柱的受压破坏。

在设计时,必须考虑偏心距所引起的偏心率和弯矩增大系数等因素,采用复杂计算方法进行设计。

三、偏心受压的影响因素偏心受压的受力状态受到多种因素的影响,主要包括以下几点:1.偏心距大小:偏心距越大,柱的受力状态越复杂,受力偏心越容易引起偏心受压。

2.柱截面形状:柱的截面形状对偏心受压的受力状态有重要影响。

一般来说,矩形截面的偏心受压性能较好,而圆形和多边形截面的受力性能较差。

3.混凝土强度:混凝土的强度直接影响柱的受力性能。

一般来说,混凝土的强度越高,柱的受力性能越好。

4.纵向配筋率:纵向配筋率对柱的受力性能也有重要影响。

适当增加纵向配筋率可以提高柱的受力性能,但过多的纵向配筋会增加柱的刚度,降低柔性,对柱的受力性能不利。

四、偏心受压的设计方法在混凝土柱设计中,为了避免偏心受压现象的发生,需要采用合适的设计方法,保证柱的受力状态稳定可靠。

具体的设计方法如下:1.确定偏心距大小:在设计时,需要根据实际情况确定偏心距大小,并考虑柱的截面形状、混凝土强度和纵向配筋率等因素进行综合考虑。

小偏心钢筋混凝土柱受压性能的尺寸效应试验

小偏心钢筋混凝土柱受压性能的尺寸效应试验

⼩偏⼼钢筋混凝⼟柱受压性能的尺⼨效应试验2019-10-17摘要:为分析⼩偏⼼钢筋混凝⼟柱受压性能的尺⼨效应,对偏⼼距分别为0.1倍截⾯有效⾼度和0.25倍截⾯有效⾼度的2组⼏何相似的钢筋混凝⼟柱进⾏偏⼼受压破坏试验,柱截⾯⼏何尺⼨分别为200 mm×200 mm,400 mm×400 mm,800 mm×800 mm,对⽐分析了其破坏形态、截⾯应变分布、承载⼒、变形能⼒,揭⽰了其尺⼨效应规律。

研究结果表明:⼩偏⼼钢筋混凝⼟柱的受压破坏形态和横截⾯应变分布规律基本相同,其尺⼨效应不明显;承载⼒和变形能⼒存在明显尺⼨效应,随着截⾯尺⼨的增⼤,其安全储备降低,变形能⼒减弱。

关键词:⼩偏⼼钢筋混凝⼟柱;尺⼨效应;单调加载;开裂荷载;偏⼼距;安全储备系数中图分类号:TU375.4⽂献标志码:AAbstract: To analyze size effect of small eccentric concrete columns under compressive loads, two groups of reinforced concrete columns, whose eccentricities were 0.1 and 0.25 times effective height of sections, were produced, and the specimen sizes were 200 mm×200 mm, 400 mm×400 mm, 800 mm×800 mm respectively. Damage mode, sectional strain distribution, bearing capacity and deformability of reinforced concrete columns were compared to reveal the size effect law. The results show that the size has less effect on damage mode and the sectional strain distribution of columns,and the size effect laws on bearing capacity and deformability of columns are obvious. The safety storage and deformability of columns decrease with the size increasing.Key words: small eccentric reinforced concrete column; size effect; monotonic loading; crack load; eccentricity;safety storage coefficient0引⾔钢筋混凝⼟结构的⼒学性能主要取决于混凝⼟和钢筋的⼒学性能。

结构设计原理-钢筋混凝土柱偏心受压破坏试验

结构设计原理-钢筋混凝土柱偏心受压破坏试验

4、分析试验中出现的问题,提出解决问 题的办法;
5、对试验中出现的现象及与理论课中产 生的误差进行讨论和分析。
六、思考题 1、偏心受压的破坏现象与哪些情况有关? 2、大、小偏心受压构件破坏形式有何特点?
2φ6 2φ8
图四 偏心受压试样尺寸及配筋图
三、实验设备
1、自平衡加力架:500KN以上; 2、油压千斤顶:50~300KN; 3、压力传感器:50~300KN; 4、静态电阻应变仪:配有可多点测量的 平衡箱;
5、电阻应变片:3×5 (mm)及5×40 (mm); 6、钢卷尺、刻度放大镜及贴片焊线设备; 7、百分表及磁性表架,玻璃片; 8、数字万用表:灵敏度1mV。
4、裂缝的出现和发展用目视或读数显 微镜观察,每级荷载下的裂缝发展情况应 进行记录和描述。
图二 试验过程
图三 试验过程
五、实验报告要求
1、绘出荷载作用下的裂缝开展图,标出 主要裂缝出现时的荷载值;
2、计算侧向位移、绘出计算与实测的p-f 关系曲线图;
3、计算受拉区出现裂缝时的荷载值,受 压区出现裂缝时荷载、破坏荷载、破坏时 钢筋最大应力,分析误差产生的原因;
图一1、实验前测量柱子尺寸及力作用点偏心 矩;
2、预备试验时,预载值取计算破坏荷载 的20%左右。同时,加载后测取读数,观察 试验柱,仪表装置工作是否正常,及时排 除故障后,才能进行正式试验;
3、正式试验开始时,预加5%初荷载, 调试仪器,按计算破坏荷载的20%分级加载, 每级稳定5分钟后读取试验数据,当接近开 裂荷载时,加载值应减至为原分级的一半 或更小,并注意观察裂缝发展情况,同时 拆除构件上装置的位移计后,再继续加载 到破坏;
试验二 钢筋混凝土柱偏心受压破坏试验
一、试验目的及要求

钢筋混凝土柱的轴心受压性能研究

钢筋混凝土柱的轴心受压性能研究

钢筋混凝土柱的轴心受压性能研究一、研究背景钢筋混凝土柱是建筑结构中常见的承重构件之一,在建筑物的整体稳定性和承载能力中起着重要的作用。

随着建筑物的高度不断增加和建筑材料的不断更新换代,对钢筋混凝土柱的轴心受压性能的研究也越来越重要。

二、研究目的本研究旨在探究钢筋混凝土柱在轴心受压状态下的力学性能,包括承载力、变形、破坏模式等方面。

通过对不同参数的钢筋混凝土柱进行试验研究,分析其受力情况,为工程实践提供科学依据。

三、研究方法1.试验方法本研究采用静载试验法对钢筋混凝土柱的轴心受压性能进行测试。

2.试验样品试验样品采用直径为200mm,高度为400mm的圆形钢筋混凝土柱。

混凝土强度等级为C30,钢筋采用HRB400级别。

3.试验参数本研究将试验样品按照不同参数进行分类,包括:钢筋配筋率、箍筋配筋率、混凝土强度等级等。

4.试验步骤将试验样品放置在试验机上,施加逐渐增加的压力,记录试验过程中的承载力、变形等数据,直至试验样品发生破坏。

五、研究结果通过试验分析,得出以下结论:1.钢筋配筋率对钢筋混凝土柱的承载力和变形均有显著的影响。

随着钢筋配筋率的增加,柱的承载力增大,变形也相应减小。

2.箍筋的配筋率对钢筋混凝土柱的承载力和变形也有一定的影响。

在一定范围内,增加箍筋的配筋率可以提高柱的承载力和抗弯能力,但过多的箍筋会使柱的变形增大。

3.混凝土强度等级对钢筋混凝土柱的承载力和变形也有影响。

随着混凝土强度等级的增加,柱的承载力增大,变形减小。

4.钢筋混凝土柱的破坏模式主要包括压缩破坏、剪切破坏和弯曲破坏。

其中,弯曲破坏最为常见。

六、结论与建议1.钢筋混凝土柱的轴心受压性能受多种因素的影响,包括钢筋配筋率、箍筋配筋率、混凝土强度等级等。

2.在工程实践中,应根据具体设计要求和受力情况,合理确定钢筋混凝土柱的配筋方案和混凝土强度等级,以保证其承载能力和变形性能。

3.钢筋混凝土柱的破坏模式主要包括压缩破坏、剪切破坏和弯曲破坏,应根据具体情况进行分析和预测。

钢筋混凝土偏心受压构件正截面受压性能实验

钢筋混凝土偏心受压构件正截面受压性能实验

钢筋混凝土偏心受压构件正截面受压性能实验3.1 实验目的1.掌握制定结构构件试验方案的原则,偏心受压构件正截面受压性能试验的加荷方案和测试方案的设计方法。

2.通过偏心受压构件正截面受压性能试验,了解受压构件发生偏心受压破坏时承载力大小,侧向挠曲变化及裂缝出现和发展过程、破坏特征。

3.掌握偏心受压构件正截面承载力的测定方法,验证偏压构件正截面承载力计算方法。

4.了解偏压构件正位或卧位试验的试件安装、加载装置和加载方法,以及常用结构实验仪器的使用方法。

5.初步掌握结构实验测量数据的整理和分析,实验分析报告的撰写。

3.2 试件及测点布置3.3 实验设备及材料1.静力试验台座、反力架、支座及支墩2.高压油泵全套设备或手动式液压千斤顶3.荷重传感器图柱偏心受压试验示意图3.4 实验步骤(一)试验准备1. 试件的考察,记录相关数据。

2. 混凝土和钢筋力学性能试验。

3. 试件两侧用稀石灰刷白试件,用铅笔画50mm×50mm 的方格线(以便观测裂缝),粘贴应变片或百分表应变装置。

(二)试验加载1. 由教师预先安装或在教师指导下由学生安装试验柱,布置安装试验仪表,要求试验柱垂直、稳定、荷载着力点位置正确、接触良好,并作好试验柱的安全保护工作。

2. 对试验柱进行预加载,利用力传感器进行控制,加荷值可取破坏荷载的10%,分三级加载,每级稳定时间为1 分钟,然后卸载,加载过程中检查试验仪表是否正常。

3. 调整仪表并记录仪表初读数。

4. 按估算极限荷载值的10%左右对试验柱分级加载(第一级应考虑自重),相邻两次加载的时间间隔为2~3 分钟。

在每级加载后的间歇时间内,认真观察试验柱上是否出现裂缝,加载后持续2 分钟后记录电阻应变仪、百分表和手持式应变仪读数。

5. 当达到试验柱极限荷载的90%时,改为按估算极限荷载的5%进行加载,直至试验柱达到极限承载状态,记录试验柱承载力实测值。

6. 当试验柱出现明显较大的裂缝时,撤去百分表,加载到试验柱完全破坏,记录混凝土应变最大值和荷载最大值。

结构设计原理-钢筋混凝土柱偏心受压破坏试验

结构设计原理-钢筋混凝土柱偏心受压破坏试验

编辑ppt
11
4、分析试验中出现的问题,提出解决问 题的办法;
5、对试验中出现的现象及与理论课中产 生的误差进行讨论和分析。
编辑ppt
12
六、思考题 1、偏心受压的破坏现象与哪些情况有关? 2、大、小偏心受压构件破坏形式有何特点?
编辑ppt
13
26φ 28φ
图四 偏心受压试样尺寸及配筋图
编辑ppt
结构设计原理
钢筋混凝土柱偏心受压破坏试验
编辑ppt
1
试验二 钢筋混凝土柱偏心受压破坏试验
一、试验目的及要求 1、通过试验了解偏心受压构件理论计算
的依据和分析方法; 2、观察偏心受压柱的破坏特征及强度变
化规律,进一步增强对钢筋混凝土构件试 验研究和分析能力;
3、加强学生对于理论知识的理解和消化。
编辑ppt
编辑ppt
8
图二 试验过程
编辑ppt
9
图编三辑pp试t 验过程
10
五、实验报告要求
1、绘出荷载作用下的裂缝开展图,标出 主要裂缝出现时的荷载值;
2、计算侧向位移、绘出计算与实测的p-f 关系曲线图;
3、计算受拉区出现裂缝时的荷载值,受 压区出现裂缝时荷载、破坏荷载、破坏时 钢筋最大应力,分析误差产生的原因;
2
二、实验内容
在静荷载作用下,测定柱测向位移和 L/2截面钢筋及混凝土应变,描绘柱体裂缝 出现、扩大与破坏状况及特征,测定开裂 荷载值及破坏荷载值。
编辑ppt
3
三、实验设备 1、自平衡加力架:500KN以上; 2、油压千斤顶:50~300KN; 3、压力传感器:50~300KN; 4、静态电阻应变仪:配有可多点测量的
14
5 2

偏心受压混凝土实验报告

偏心受压混凝土实验报告

偏心受压混凝土实验报告一、实验目的本次实验旨在通过观察和探究偏心受压混凝土的力学性能,深入理解混凝土在不同应力作用下的变形和破坏特点。

二、实验原理2.1 偏心受压混凝土的概念偏心受压混凝土是指受压弯曲的混凝土截面中,压力和压力臂分别偏离截顶点与变形中和线之间的情况。

由于偏心受压,截面产生弯矩,导致混凝土的变形和破坏。

2.2 偏心受压混凝土的破坏形态在偏心受压混凝土的破坏过程中,有两种可能的破坏形态:拉压破坏和剪切破坏。

拉压破坏是指混凝土在偏心压力作用下发生拉伸和压缩变形,最终导致破坏;剪切破坏是指混凝土由于剪切力的作用而发生剪切破坏。

实验中需观察和分析不同试件的破坏形态,以确定混凝土的破坏特点。

2.3 实验设备和试件本次实验需要准备的设备包括:压力机、荷载传感器、位移测量仪、试件模具等。

试件选用常见的矩形截面混凝土柱,其尺寸和数量根据实验设计确定。

三、实验步骤与结果3.1 试件准备按照实验设计要求制作混凝土试件,并预留好试件的偏心距。

试件表面需做好防粘处理,以免在试件受力时粘结剪裂。

3.2 实验装置搭建将试件安装到压力机上的试件模具中,确保试件稳定并对齐装置。

连接荷载传感器和位移测量仪,确保数据采集正常。

3.3 实验参数设定根据实验设计,设置压力机的加载速率和加载方式。

加载速率应保持均匀,并随时观察试件的变形和破坏情况。

3.4 实验操作和数据采集开始加载后,记录并采集荷载-位移曲线,以及相关实验数据。

在试件破坏前,需观察和记录试件的变形特征,如裂缝出现位置、混凝土破坏形态等。

3.5 数据处理与分析根据采集的数据,绘制荷载-位移曲线,并分析试件的破坏形态。

通过对试件破坏的观察和数据分析,得出偏心受压混凝土的力学性能及破坏特点。

四、实验结果4.1 强度试验结果根据数据处理与分析部分的工作,我们得出了试件的荷载-位移曲线,并计算了试件的抗压强度、屈服强度等重要参数。

以下为实验结果的大致总结:- 试件1:抗压强度为XXX MPa,屈服强度为XXX MPa;- 试件2:抗压强度为XXX MPa,屈服强度为XXX MPa;- ...4.2 破坏特点分析根据试件的破坏形态观察和数据分析,我们得出了偏心受压混凝土的破坏特点:- 试件1:破坏形态为拉压破坏,混凝土裂缝发生在偏心区域;- 试件2:破坏形态为剪切破坏,混凝土发生剪切破坏;- ...五、实验结论与总结在本次实验中,我们对偏心受压混凝土的力学性能进行了深入研究。

偏心受压实验

偏心受压实验

钢筋混凝土柱大偏心受压试验
一、试验目的
通过实验研究认识混凝土结构构件的破坏全过程,掌握测试混凝土大偏心受压构件基本性能的实验方法。

二、实验内容
对大偏心受压短柱施加轴向荷载直至破坏,观察加载过程中裂缝的开展情况,将得到的极限荷载与计算值相比较。

三、试件设计
1、试件的主要尺寸,矩形截面b*h*l=200*90*900
2、混凝土强度等级:实测。

3、纵向钢筋:2Φ6,2Φ8(弯起)
4、箍筋:Φ6@100
5、混凝土保护层厚度:15mm
6、试件尺寸及配筋(见下图)
四、试件制作
试件采用干硬性混凝土,振捣器振捣,自然养护28天,制作试件的同时预留混凝土立方体试块(尺寸为150mm*150mm *150mm)和纵向受力钢筋试件,实测混凝土和钢筋的实际强度。

五、加载装置
采用两点加载,用 YAW-5000型 微机控制电液伺服压力试验机,加载图 见下页。

滚动支座
固定支

黑龙江大学
实验报告
一、构件正截面承载力计算
二、构件承载力分析
按照<<混凝土结构设计规范>>给定的材料强度标准值机计算公式,求出本次实验试件的极限承载力,与实测值比较。

三、柱受压破坏类型
如何区分大、小偏心受压短柱,并描述大偏心受压短柱的破坏特征。

四、实验结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢筋混凝土柱偏心受压试验指南
1.在试验柱中部截面粘贴应变片。

2.由教师预先安装或在教师指导下由学生安装试验柱,按似定的偏心距调整试验柱上加载点的位置,布置百分表,连接应变片到应变仪。

3.记录试验梁编号、尺寸、配筋数量和有关数据及指标。

4.检查仪表,调整仪表初读数。

5.利用压力机控制进行分级加载(试验柱出现裂缝前,每级荷载可定为其估算破坏荷载的十分之一左右,试验梁出现裂缝后,每级荷载可定为估算破坏荷载的五分之一左右)。

相邻两级加载的时间间隔,在试验柱出现裂缝前为2~3分钟,在试验柱出现裂缝后为5~10分钟。

6.参照估算的试验柱开裂荷载值,分级缓慢加载,加载间隙注意观察裂缝是否出现。

发现第一条裂缝后记录前一级荷载下压力机荷载读数。

在第一条裂缝出现后继续注意观察裂缝的出现和开展情况。

7.每级加载后,在间歇时间内测读并记录应变仪、百分表以及压力机荷载读数。

8.在所加荷载约为试验柱估算的破坏荷载的60~70%时,用读数放大镜测读试验柱上最大裂缝宽度、用直尺量测裂缝间距。

9.加载至试验柱破坏,记录压力机荷载读数。

10.卸载,记录试验柱破坏时的裂缝分布情况。

11.试验完成,清理试验现场。

相关文档
最新文档