《直角三角形》证明PPT课件二
合集下载
最新北师大版八年级数学下册《直角三角形》精品教学课件

∴∠ABP=∠ACP=90°
∵PB=PC,AP=AP
∴Rt△ABP≌Rt△ACP(HL)
∴∠APB=∠APC
PB=PC,
在△PBD和△PCD中,
∠DPB=∠DPC, DP=DP,
∴△PBD≌△PCD(SAS)
∴∠BDP=∠CDP
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
实践探究,交流新知
猜想: 斜边和一条直角边分别相等的两个直角三角形全等.
1.分析命题: 条件:两个直角三角形的斜边和一条直角边分别相等; 结论:这两个直角三角形全等.
2.数学语言: 已知:如图,在△ABC和△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′; 求证:△ABC≌△A′B′C′.
开放训练,体现应用
例2 如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E
,CF⊥AD于点F.求证:AF=BE.
证明:∵∠BAC=90°
∴∠BAE+∠FAC=90°
∵BE⊥AD,CF⊥AD
∴∠BEA=∠AFC=90°
∴∠BAE+∠EBA=90°
∴∠EBA=∠FAC.
∴∠BFD=∠CED=90°
DF=DE,
在△BDF和△CDE中 ∠BFD=∠CED,
BF=CE,
∴△BDF≌△CDE(SAS)
∴∠B=∠C
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,∠ABC=∠ADC=90°,
BE⊥AC于点E,DF⊥AC于点F,CF=AE,BC=DA.
求证:Rt△ABE≌Rt△CDF.
开放训练,体现应用
例1 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方 向的长度DF相等,两个滑梯的倾斜角∠ABCБайду номын сангаас∠EFD的大小有什么关系?
【冀教版】初中数学八年级上:17.2《直角三角形》ppt课件

证明:∵∠CEF=135°,∠ECB=
1 2
∠ACB=45°,
∴∠CEF+∠ECB=180°,∴EF∥BC.
7.如图所示,在Rt △ ABC
中,∠ACB=90°,∠B=30°,CD⊥AB于D.求证AD= 1
解析:在A直B.角三角形ABC中,由∠B=30°,利用
4
在直角三角形中,30°角所对的直角边等于斜
4.含有30°角的直角三角形的性质 在直角三角形中,30°角所对的直角边等于斜边的一半.
检测反馈 1.在△ ABC中,满足下列条件: ①∠A=60°,∠C=30°;②∠A+∠B=∠C; ③∠A∶∠B∶∠C =3∶4∶5;④∠A=90°-∠C. 其中能确定△ ABC是直角三角形的有 ( C ) A.1个 B.2个 C.3个 D.4个
4
=CD+DE+CE=4+5+5=14.故选C.
4.如图所示, △ ABC中,∠ACB=90的长为( A )
A.20
B.15 C.10
D.18
解析:∵∠ACB=90°,CD是高, ∴∠A+∠ACD=∠ACD+∠BCD=90°,∴∠BCD=∠A=30°, 在Rt △ BCD中,BC=2BD=2×5=10,在Rt △ ABC中, AB=2BC=2×10=20.故选A.
1 2
AB.
由(1)知∠ACD=∠DCE=30°,∴∠ACE=∠A=60°,
∴ △ ACE是等边三角形,∴AC=AE=EC= 1 AB,
∴AE=BE,即点E是AB的中点. ∴CE是AB边上的中线,且CE=
1 2
AB.
2
(2)在Rt △ ABC中,∠C=90°,∠A-∠B=30°,那么 ∠A= 60 ° ,∠B= 30 ° .
教学课件_解直角三角形(第1课时)_2

AC 2
∴∠A=60° , ∠B=90°-∠A=90°- 60°=30°, AB=2AC=2 2 .
巩固练习
1.在下列直角三角形中不能求解的是( D ) A.已知一直角边一锐角 B.已知一斜边一锐角
C.已知两边
D.已知两角
2.在Rt△ABC中,∠C=90°,若BC=1,AB= 5 ,则
tan A的值为( C )
新知讲解
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与
地面所成的角a的问题,可以归结为:在Rt△ABC中,已
知AC=2.4,斜边AB=6,求锐角a的度数
由于 cosa
AC AB
2.4 6
0.4
B
利用计算器求得 a≈66° ∴当梯子底墙距离墙面2.4m时,梯子与地面
α AC
所成的角大约是66°
巩固练习
5.如图,BD是△ABC的高,AB=6, AC=5 3 ,∠A=30°.
(1)求BD和AD的长; (2)求tan C的值.
解:(1)∵BD⊥AC,∴∠ADB=∠BDC=90°
∴sin A= BD,cos A= AD
AB
∵AB=6∠A=30°
AB
∴BD=3,AD=3 3
(2)∵AC=5 3 ∴CD=2 3 在Rt△BCD中,tan C=
(2)锐角之间的关系: ∠ A+ ∠ B= 90º;
(3)边角之间的关系:
A
a sinA= c
b cosA= c
tanA= a
b (4)面积公式:S▲ABC
1 2
a•b
1 2
c•h
B
c a
bC
例题讲解
例1 如图,在Rt△ABC中,∠C=90°,AC= ,2BC= ,6解这个直 角三角形.
∴∠A=60° , ∠B=90°-∠A=90°- 60°=30°, AB=2AC=2 2 .
巩固练习
1.在下列直角三角形中不能求解的是( D ) A.已知一直角边一锐角 B.已知一斜边一锐角
C.已知两边
D.已知两角
2.在Rt△ABC中,∠C=90°,若BC=1,AB= 5 ,则
tan A的值为( C )
新知讲解
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与
地面所成的角a的问题,可以归结为:在Rt△ABC中,已
知AC=2.4,斜边AB=6,求锐角a的度数
由于 cosa
AC AB
2.4 6
0.4
B
利用计算器求得 a≈66° ∴当梯子底墙距离墙面2.4m时,梯子与地面
α AC
所成的角大约是66°
巩固练习
5.如图,BD是△ABC的高,AB=6, AC=5 3 ,∠A=30°.
(1)求BD和AD的长; (2)求tan C的值.
解:(1)∵BD⊥AC,∴∠ADB=∠BDC=90°
∴sin A= BD,cos A= AD
AB
∵AB=6∠A=30°
AB
∴BD=3,AD=3 3
(2)∵AC=5 3 ∴CD=2 3 在Rt△BCD中,tan C=
(2)锐角之间的关系: ∠ A+ ∠ B= 90º;
(3)边角之间的关系:
A
a sinA= c
b cosA= c
tanA= a
b (4)面积公式:S▲ABC
1 2
a•b
1 2
c•h
B
c a
bC
例题讲解
例1 如图,在Rt△ABC中,∠C=90°,AC= ,2BC= ,6解这个直 角三角形.
《三角形的内角》三角形PPT(第2课时)

思考 如果一个都不知道,或只知道1个角,你能知道
三角形各角的度数吗?
新课导入
课堂小结
三角形内角和定理:三角形内角和为 180°。
为了证明的需要,在原来的图形上添加的线叫做辅
助线.
在平面几何里,辅助线通常画成虚线.
推论 直角三角形的两个锐角互余。
反之,有两个角互余的三角形是直角三角形。
B
C
直角三角形的性质:直角三角形的两个锐角互余.
A
应用格式:
在Rt△ABC 中,
∵
∠C =90°,
∴
∠A +∠B =90°.
B
C
直角三角形的表示:
直角三角形可以用符号“Rt△”表示.如:直角三角形ABC 可
以写成Rt△ ABC.
例1 如图,∠C=∠D=90 °,AD,BC相交于点E. ∠CAE与
( )
新课导入
三角形内角和定理的辨析
例题
若一个三角形三个内角度数的比为 2︰3︰4,那么这
个三角形是( B )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .等边三角形
例题
(1)一个三角形中最多有 1 个直角.
(2)一个三角形中最多有 1 个钝角.
(3)一个三角形中至少有 2 个锐角.
60°
x =18°
x =30°
新课导入
例题+变式:根据三角形内角和定理求角度
归纳 ①直接计算: 直接利用三角形的内角和180°进行计算.
②形题数解:
设某一个角为x(或将某一个角视为未知数),其余
的角用x的代数式表示,从而根据题意列出方程(组)求
解,这就是“形题数解”.
《直角三角形》三角形的证明PPT(第1课时)

ห้องสมุดไป่ตู้
例1 已知:Rt△ABC和Rt△A′B′C′,∠C=∠C′=90°,BC=B′C′,BD、B′D′分别是AC、A′C′边 上的中线且BD=B′D′ (如图). 求证: Rt△ABC≌CORt△A′B′C′. 证明:在Rt△BDC和Rt△B′D′C′中, ∵BD=B′D′,BC=B′C′, ∴Rt△BDC≌Rt△B′D′C′ (HL定理). CD=C'D'. 又∵AC=2CD,A′C′=2C′D′,∴AC=A′C′. ∴在Rt△ABC和Rt△A 'B 'C '中, ∵BC=B′C ′,∠C=∠C ′ =90°,AC=A′ C ′ , ∴Rt△ABC≌CORt△A′B′C′(SAS)
跟踪检测
1.如图,一张长方形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度 数是( C) A.30° B.60° C.90° D.120° 2.由下列 条件不能判定△ABC是直角三角形的是(C ) A.∠A=37°,∠C=53° B.∠A=34°,∠B=56° C.∠B=42°,∠C=38° D.∠A=72°,∠B=18° 3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重 合.若BC=5,CD=3,则BD的长为(D ) A.1 B.2 C.3 D.4
(4)∠A=∠A′,∠B=∠B′ (×)
(5)AC=A′C′,AB=A′B′ (HL)
活动探究
活动1:如图,两角及其中一角的对边对应相等的两个三角形全等(AAS); 那么, “两边及其中一边的对角对应相等的两个三角形全等”吗?.
观察下列演示,你有什么发现?
A
B
C
归纳
两边及其中一边的对角对应相等的两个三角形不 一定全等.
例1 已知:Rt△ABC和Rt△A′B′C′,∠C=∠C′=90°,BC=B′C′,BD、B′D′分别是AC、A′C′边 上的中线且BD=B′D′ (如图). 求证: Rt△ABC≌CORt△A′B′C′. 证明:在Rt△BDC和Rt△B′D′C′中, ∵BD=B′D′,BC=B′C′, ∴Rt△BDC≌Rt△B′D′C′ (HL定理). CD=C'D'. 又∵AC=2CD,A′C′=2C′D′,∴AC=A′C′. ∴在Rt△ABC和Rt△A 'B 'C '中, ∵BC=B′C ′,∠C=∠C ′ =90°,AC=A′ C ′ , ∴Rt△ABC≌CORt△A′B′C′(SAS)
跟踪检测
1.如图,一张长方形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度 数是( C) A.30° B.60° C.90° D.120° 2.由下列 条件不能判定△ABC是直角三角形的是(C ) A.∠A=37°,∠C=53° B.∠A=34°,∠B=56° C.∠B=42°,∠C=38° D.∠A=72°,∠B=18° 3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重 合.若BC=5,CD=3,则BD的长为(D ) A.1 B.2 C.3 D.4
(4)∠A=∠A′,∠B=∠B′ (×)
(5)AC=A′C′,AB=A′B′ (HL)
活动探究
活动1:如图,两角及其中一角的对边对应相等的两个三角形全等(AAS); 那么, “两边及其中一边的对角对应相等的两个三角形全等”吗?.
观察下列演示,你有什么发现?
A
B
C
归纳
两边及其中一边的对角对应相等的两个三角形不 一定全等.
解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
2第二课时:直角三角形的证明

如果其中一边的所对的角是直角,那么这两个三角形全等. 请证明你的结论.
如图,在高为2米,坡角为30°的楼梯表面铺毯,地毯长度 约为多米?
2米
30°
习题回顾 3
3.如图,正四棱柱的底面边长为5cm,侧棱长为8cm,一只蚂蚁欲从 正四棱柱的底面上的点A沿棱柱侧面到点C1处吃食物,那么它需要 爬行的最短路径是多少?
请你证明OP平分∠AOB.
P
先把它转化为一个纯数学问题 : 已知:如图,OM=ON,PM⊥OM,PN⊥ON.
求证:∠AOP=∠BOP.
N B
老师期望:你能写出它的证明过程吗?
驶向胜利 的彼岸
议一议
蓄势待发
如图,已知∠ACB=∠BDA=900 , 要使△ABC≌△BDA, 还需要什么条件?把它们分别写出来. 增加AC=BD; C D O 增加BC=AD; 增加∠ABC=∠BAD ; B A 增加∠CAB=∠DBA ; 你能分别写出它们的证明过程吗? 若AD,BC相交于点O,图中还有全等的三角形吗? 你能写出图中所有相等的线段,相等的角吗?
切记!!!
形不一定全等.
命题:两边及其中一边的对角对应相等的两个三角
即(SSA)是一个假冒产品!!!
独立作业
1
习题1.5
A 1.已知:如图,D是△ABC的BC边上 的中点,DE⊥AC,DF⊥AB,垂足分别 为E,F,且DE=DF. 求证: △ABC是等腰三角形. F 分析:要证明△ABC是等腰三角形, D B 就需要证明AB=AC; 从而需要证明∠B=∠C; 进而需要证明∠B∠C所在的△BDF≌△CDE;
回归教材
赢取考试 提升兴趣
回顾 & 思考
1 三角形全等的判定
公理:三边对应相等的两个三角形全等(SSS). 公理:两边及其夹角对应相等的两个三角形全等(SAS). 公理:两角及其夹边对应相等的两个三角形全等(ASA). 推论:两角及其中一角的对边对应相等的两个三角形全等 (AAS). 想一想: 两边及其中一边的对角对应相等的两个三角形全等? 驶向胜利 两边及其中一边的对角对应相等的两个三角形不一定全 的彼岸 等. 如果其中一边的所对的角是直角呢?
解直角三角形ppt课件

经济学中的复利计算
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想一想: 两边及其中一边的对角对应相等的两个三角形全等?
两边及其中一边的对角对应相等的两个三角形不驶向一胜定利 全
等.
的彼岸
如果其中一边的所对的角是直角呢?
如果其中一边的所对的角是直角,那么这两个三角形全等.
请证明你的结论.
我能行 1
命题的证明
命题:两边及其中一边的对角对应相等的两个三角形不 一定全等.
九年级数学(上册)第一章 证明(二)
1.2 直角三角形
直角三角形全等的证明
回顾 & 思考 1
三角形全等的判定
公理:三边对应相等的两个三角形全等(SSS). 公理:两边及其夹角对应相等的两个三角形全等(SAS). 公理:两角及其夹边对应相等的两个三角形全等(ASA). 推论:两角及其中一角的对边对应相等的两个三角形全等 (AAS).
综上所述,直角三角形全等的判定条件可归纳为:
一边及一个锐角对应相等的两个直角三角形全等;
两边对应相等的两个直角三角形全等;
切记!!!
命题:两边及其中一边的对角对应相等
的两个三角形不一定全等.
即(SSA)是一个假冒产品!!!
独立
作业
知识的升华
习题1.5 1,2题.
祝你成功!
独立作业 1
习题1.5
能满足公理(SSS),(SAS),(ASA)
和推论(AAS)中的一个即可.由
已知和根据勾股定理易知,第 C
A C′
A′
三条边也对应相等.
老师期望:你能写出它的证明过程吗? 你能用根据上面的证明用文字写出一个结论吗?
驶向胜利 的彼岸
我能行 3
直角三角形全等的判定 定理及其三种语言
定理:斜边和一条直角边对应相等的两个直角三角形全等 (斜边,直角边或HL).
M
过点N作OB的垂线,两垂线交于点P,
那么射线OP就是∠AOB的平分线. O
● ●
●P
请你证明OP平分∠AOB.
先把它转化为一个纯数学问题: 已知:如图,OM=ON,PM⊥OM,PN⊥ON. 求证:∠AOP=∠BOP.
N B
老师期望:你能写出它的证明过程吗?
驶向胜利 的彼岸
议一议
蓄势待发
如图,已知∠ACB=∠BDA=900 , 要使△ABC≌△BDA, 还需要什么条件?把它们分别写出来.
1.已知:如图,D是△ABC的BC边上
A
的中点,DE⊥AC,DF⊥AB,垂足分别
为E,F,且DE=DF.
求证: △ABC是等腰三角形.
F
E
分析:要证明△ABC是等腰三角形,
就需要证明AB=AC;
B
D
C
从而需要证明∠B=∠C;
进而需要证明∠B∠C所在的△BDF≌△CDE;
而△BDF≌△CDE的条件:
BD=CD,DF=DE均为已知.因此, △ABC是等腰三角形可证. 驶向胜利
在幸运时不与人同享的,在灾难中不会是忠实的友人。——伊索 一个从来没有失败过的人,必然是一个从未尝试过什么的人。 没有真挚朋友的人,是真正孤独的人。——培根 自然界没有风风雨雨,大地就不会春华秋实。 现实很近又很冷,梦想很远却很温暖。 我总觉得,生命本身应该有一种意义,我们绝不是白白来一场的。 你的丑和你的脸没有关系。 人类的精神与动物的本能区别在于,我们在繁衍后代的同时,在下一代身上留下自己的美理想和对于崇高而美好的事物的信念。——苏霍姆林斯 基
老师期望:
的彼岸
请将证明过程规范化书写出来.
独立作业 2
习题1.5
2.已知:如图,AB=CD,DE⊥AC,BF⊥AC,垂
C
足分别为E,F,DE=BF.
D
求证:(1)AE=AF;(2)AB∥CD.
F E
分析:(1)要证明AE=CF,
A
B
由已知条件, AB=CD,DE⊥AC,BF⊥AC, DE=BF. 可证得△ABF≌△CDE,从而可得AF=CE.
增加AC=BD;
C
增加BC=AD;
增加∠ABC=∠BAD ;
增加∠CAB=∠DBA ;
A
你能分别写出它们的证明过程吗?
D
O
B
若AD,BC相交于点O,图中还有全等的三角形吗?
你能写出图中所有相等的线段,相等的角吗? 驶向胜利
你能分别写出它们的证明过程吗?
的彼岸
开启 智慧
知识在于积累
判断下列命题的真假,并说明理由:
证明:这是一个假命题,只要举一个反例即可.如图:B NhomakorabeaB′
B′
●
A (1)
C A′ ● (2)
C′ A′
●
(3) C′
由图(1)和图(2)可知,这两个三角形全等;
由图(1)和图(3)可知,这两个三角形不全等;
因此,两边及其中一边的对角对应相等的两个三驶角向胜形利不
一定全等.
的彼岸
老师提示:举反例证明假命题千万不可忘记噢!
如图,在△ABC和△A′B′C′中, ∠C=∠C′=900 , ∵AC=A′C ′, AB=A′B′(已知), ∴Rt△ABC≌Rt△A′B′C′(HL).
B
B′
驶向胜利
C
A C′
A′
的彼岸
做一做 1
用三角尺作角平分线
如图:在已知∠AOB的两边OA,OB上分别取点M,N,使OM=ON;
A
再过点M作OA的垂线,
定理:斜边和一条直角边对应相等的两个直角三角形全等(斜
边,直角边或HL).
公理:三边对应相等的两个三角形全等(SSS).
公理:两边及其夹角对应相等的两个三角形全等(SAS).
公理:两角及其夹边对应相等的两个三角形全等(ASA).
推论:两角及其中一角的对边对应相等的两个三角形全等
(AAS).
两个锐角对应相等的两个直角三角形全等; 斜边及一个锐角对应相等的两个直角三角形全等; 两直角边对应相等的两个直角三角形全等; 一条直角边和另一条直角边上的中线对应相等 的两个直角三角形全等.
老师期望: 请分别将每个判断的证明过程书写出来.
驶向胜利 的彼岸
小结 拓展 回味无穷
直角三角形全等的判定定理:
我能行 2
两边及其中一边的对角对应命相等题的的两个证三明角形不一定全等.但如
果其中一边的所对的角是直角,那么这两个三角形全等.
已知:如图,在△ABC和△A′B′C′中, AC=A′C ′, AB=A′B′,
∠C=∠C′=900.
求证:△ABC≌△A′B′C′.
B
B′
分析:
要证明△ABC≌△A′B′C′ ,只要
由此AE=CF可证. (2)要证明AB∥CD,
需要证明内错角∠A=∠C;
而由△ABF≌△CDE可得证.
驶向胜利 的彼岸
老师期望:请将证明过程规范化书写出来 .
下课了! 结束寄语
严格性之于数学家,犹如道德之 于人.
证明的规范性在于:条理清晰, 因果相应,言必有据.这是初学证 明者谨记和遵循的原则.