诱导公式的化简与求值题
1分钟学会-诱导公式化简求值问题

1分钟学会-诱导公式化简求值问题诱导公式是指一组六个三角函数之间的关系式,它们可以相互转化。
在求解三角函数值时,有时候可以通过利用诱导公式将一个函数转化为其他函数来简化计算。
以下是一些通过使用诱导公式求解三角函数值的例子。
例1:求解sin(π/4)的值。
我们知道sin(π/4)可以通过利用45度角(π/4弧度)对应的特殊三角形上的边长比例来求解。
但是我们也可以通过使用诱导公式简化计算。
诱导公式中,我们有:sin(π/4) = (sin(π/6) + cos(π/6)) / 2现在,我们已经知道sin(π/6)和cos(π/6)的值,它们都是特殊三角形上45度角对应的边长比例:sin(π/6) = 1/2cos(π/6) = √3/2将这些值代入诱导公式中,我们可以得到:sin(π/4) = (1/2 + √3/2) / 2=(√3+1)/4因此,sin(π/4)的值是(√3 + 1) / 4例2:求解tan(7π/6)的值。
对于tan(θ),我们可以使用诱导公式:tan(θ) = sin(θ) / cos(θ)现在,我们已经知道sin(7π/6)和cos(7π/6)的值,它们可以通过特殊三角形上120度角(或7π/6弧度)对应的边长比例来求解:sin(7π/6) = -1/2cos(7π/6) = -√3/2将这些值代入诱导公式中,我们可以得到:tan(7π/6) = (-1/2) / (-√3/2)=1/√3=√3/3因此,tan(7π/6)的值是√3/3通过使用诱导公式,我们可以将一些三角函数的值转化为其他三角函数的值,从而简化计算。
需要注意的是,诱导公式中的一些值是在特殊三角形上的边长比例,这些值可以通过记忆或者推导得到。
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
高中数学运用诱导公式化简求值精选题

运用诱导公式化简求值精选题42道一.选择题(共16小题)1.记cos(﹣80°)=k,那么tan100°=()A.B.﹣C.D.﹣2.已知cos()=,则sinθ=()A.B.C.﹣D.﹣3.计算:cos210°=()A.B.C.D.4.cos300°=()A.B.﹣C.D.5.已知,则=()A.B.C.D.6.已知sin(α﹣)=,则cos()=()A.﹣B.C.﹣D.7.sin225°=()A.B.C.﹣D.8.cos330°=()A.B.C.D.9.角α的终边在直线y=2x上,则=()A.B.1C.3D.﹣1 10.已知cos(﹣θ)=,则sin()的值是()A.﹣B.﹣C.D.11.已知,则的值等于()A.B.C.D.12.已知,则=()A.B.C.D.13.若,则等于()A.B.C.D.14.sin330°等于()A.B.C.D.15.已知tanθ=3,则等于()A.B.C.0D.16.已知f(α)=,则的值为()A.B.C.D.二.填空题(共18小题)17.已知tan(3π+α)=2,则=.18.已知,则=.19.化简:=.20.设tanα=3,则=.21.已知,且,则=.22.已知,则=.23.化简:的值为.24.化简:=.25.若cos(﹣α)=,则sin(+α)=26.已知,则的值为.27.sin600°=.28.已知,则sinα=.29.已知角α终边上一点P(﹣4,3),则的值.30.化简:=.31.若角θ的终边经过点(﹣3,4),则sin(+θ)+cos(π﹣θ)+tan(2π﹣θ)=.32.已知,则tan(π﹣α)的值是.33.若α∈(0,π),且,则=.34.已知sin(π﹣α)+2cos(π+α)=0,则=.三.解答题(共8小题)35.已知α是第二象限角,且sinα=.(1)求tanα的值;(2)求的值.36.已知α是第三象限角,f(α)=.(1)化简f(α);(2)若cos(α﹣π)=,求f(α)的值;(3)若α=﹣1860°,求f(α)的值.37.若α为第二象限角,sin(+α)=﹣,(1)求sinα的值;(2)若f(α)=,求f(α)的值.38.已知角α为第一象限角,且sinα=.(1)求cosα,tanα的值;(2)求的值.39.已知f(α)=.(1)若α=﹣,求f(α)值;(2)若α为第三象限角,且,求f(α)的值.40.已知角α的终边与单位圆交于点P(,).(1)求sinα、cosα、tanα的值;(2)求的值.41.已知.(1)化简f(α);(2)若,求的值.42.已知,f(α)=.(1)化简f(α);(2)若=﹣,求tanα.运用诱导公式化简求值精选题42道参考答案与试题解析一.选择题(共16小题)1.记cos(﹣80°)=k,那么tan100°=()A.B.﹣C.D.﹣【分析】法一:先求sin80°,然后化切为弦,求解即可.法二:先利用诱导公式化切为弦,求出求出结果.【解答】解:法一:,所以tan100°=﹣tan80°=.法二:cos(﹣80°)=k⇒cos(80°)=k,=.故选:B.【点评】本小题主要考查诱导公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转化思想的应用.2.已知cos()=,则sinθ=()A.B.C.﹣D.﹣【分析】利用二倍角的余弦公式、诱导公式,求得sinθ的值.【解答】解:∵cos()=,∴cos(﹣θ)=2﹣1=﹣=sinθ,即sinθ=﹣,故选:C.【点评】本题主要考查二倍角的余弦公式、诱导公式的应用,属于基础题.3.计算:cos210°=()A.B.C.D.【分析】把所求式子中的角210°变为180°+30°,利用诱导公式cos(180+α)=﹣cosα及特殊角的三角函数值化简,即可求出原式的值.【解答】解:cos210°=cos(180°+30°)=﹣cos30°=﹣.故选:B.【点评】此题考查了运用诱导公式化简求值,其中灵活变换角度,熟练掌握诱导公式是解本题的关键.4.cos300°=()A.B.﹣C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选:C.【点评】本小题主要考查诱导公式、特殊三角函数值等三角函数知识.5.已知,则=()A.B.C.D.【分析】由诱导公式,化简已知条件以及所求的表达式,然后求解即可.【解答】解:∵,∴sin[]=sin()=,则=sin(π﹣α+)=﹣sin(α+)=﹣,故选:C.【点评】本题主要考查给值求值问题,熟记诱导公式即可,属于基础题型.6.已知sin(α﹣)=,则cos()=()A.﹣B.C.﹣D.【分析】运用﹣α、﹣α的诱导公式,计算即可得到.【解答】解:sin(α﹣)=,即为sin(﹣α)=﹣,即有sin[﹣(+α)]=﹣,即cos()=﹣.故选:A.【点评】本题考查三角函数的求值,考查三角函数的诱导公式的运用,考查运算能力,属于基础题.7.sin225°=()A.B.C.﹣D.【分析】把225°写为180°+45°由诱导公式二得特殊角的正弦角,由特殊角正弦值得结果.【解答】解:sin225°=sin(180°+45°)=﹣sin45°=﹣.故选:A.【点评】本题考查用诱导公式化简求值,诱导公式一到四可以把任意角的三角函数化为锐角的三角函数,是基础题.8.cos330°=()A.B.C.D.【分析】由cos(α+2kπ)=cosα、cos(﹣α)=cosα解之即可.【解答】解:cos330°=cos(360°﹣30°)=cos(﹣30°)=cos30°=,故选:C.【点评】本题考查余弦函数的诱导公式.9.角α的终边在直线y=2x上,则=()A.B.1C.3D.﹣1【分析】由已知求得tanα,再由同角三角函数基本关系式化弦为切求解.【解答】解:∵角α的终边在直线y=2x上,∴tanα=2.∴===.故选:C.【点评】本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.10.已知cos(﹣θ)=,则sin()的值是()A.﹣B.﹣C.D.【分析】由已知及诱导公式即可计算求值.【解答】解:cos(﹣θ)=sin[﹣(﹣θ)]=sin()=,故选:C.【点评】本题主要考查了诱导公式在三角函数求值中的应用,属于基础题.11.已知,则的值等于()A.B.C.D.【分析】观察发现,那么=cos(α+)利用诱导公式求解即可.【解答】解:由,则=cos(α+)=sin(α﹣)=.故选:A.【点评】本题主要考查诱导公式的灵活应用和构造思想,属于基本知识的考查.12.已知,则=()A.B.C.D.【分析】由已知直接利用三角函数的诱导公式化简求值.【解答】解:∵,∴=cos[﹣()]=,故选:C.【点评】本题考查三角函数的化简求值,考查诱导公式的应用,是基础题.13.若,则等于()A.B.C.D.【分析】直接利用诱导公式化简求解即可.【解答】解:,则=sin(﹣)=,故选:A.【点评】本题考查诱导公式的应用,三角函数化简求值.14.sin330°等于()A.B.C.D.【分析】根据330°=360°﹣30°,由诱导公式可得答案.【解答】解:∵故选:B.【点评】本题主要考查根据三角函数的诱导公式进行化简求值的问题.属基础题.对于三角函数的诱导公式一定要强化记忆.15.已知tanθ=3,则等于()A.B.C.0D.【分析】由题意利用诱导公式、同角三角函数的基本关系,化简所给的式子,可得结果.【解答】解:∵tanθ=3,则====,故选:B.【点评】本题主要考查应用诱导公式化简三角函数式,同角三角函数的基本关系,要特别注意符号的选取,这是解题的易错点,属于基础题.16.已知f(α)=,则的值为()A.B.C.D.【分析】已知关系式右边利用诱导公式化简确定出f(α),即可求出所求式子的值.【解答】解:f(α)==cosα,则f(﹣)=cos(﹣)=cos(8π+)=cos=.故选:B.【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.二.填空题(共18小题)17.已知tan(3π+α)=2,则=2.【分析】利用诱导公式把tan(3π+α)=2化简,得tanα=2,再利用诱导公式化简所求表达式,令分式的分子分母同除cosα,得到只含有tanα的式子,把tanα=2代入即可.【解答】解:由tan(3π+α)=2,可得tanα=2,则=====2,故答案为:2.【点评】本题主要考查诱导公式和同角三角函数关系式在三角函数化简求值中的应用,应用诱导公式时,注意符号的正负.18.已知,则=.【分析】原式利用诱导公式化简,将sinα的值代入计算即可求出值.【解答】解:∵sinα=,∴cos(+α)=﹣sinα=﹣.故答案为:﹣【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.19.化简:=tanα.【分析】由已知利用诱导公式,同角三角函数基本关系式即可化简求值得解.【解答】解:===tanα.故答案为:tanα.【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.20.设tanα=3,则=2.【分析】利用诱导公式、同角三角函数的基本关系化简所给的式子,可得结果.【解答】解:∵tanα=3,则=====2,故答案为:2.【点评】本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.21.已知,且,则=.【分析】先利用同角三角函数基本关系求得sinα的值,在利用诱导公式对原式化简整理,把cosα和sinα的值代入即可求得答案.【解答】解:∵∴sinα=﹣=﹣∴原式===﹣2故答案为:﹣2【点评】本题主要考查了运用诱导公式化简求值的问题.解题时注意三角函数的正负.22.已知,则=.【分析】利用诱导公式化简求解即可.【解答】解:.故答案为:﹣.【点评】本题主要考查诱导公式.三角函数求值,是基本知识的考查.23.化简:的值为1.【分析】运用诱导公式及特殊角的三角函数值即可求值.【解答】解:=﹣sin(3π+)+cos2640°+tan1665°=sin+cos(360°×7+120°)+tan(360°×4+225°)=+cos(180°﹣60°)+tan(180°+45°)=﹣cos60°+tan45°=﹣+1=1.故答案为:1.【点评】本题主要考查了诱导公式及特殊角的三角函数值的应用,属于基础题.24.化简:=﹣1.【分析】利用诱导公式化简即可求解.【解答】解:===﹣1.故答案为:﹣1.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.25.若cos(﹣α)=,则sin(+α)=【分析】由题意利用诱导公式,求得所给式子的值.【解答】解:cos(﹣α)=,则sin(+α)=cos[﹣(﹣α)]=cos(﹣α)=,故答案为:.【点评】本题主要考查诱导公式的应用,属于基础题.26.已知,则的值为.【分析】由已知利用诱导公式可求tanα的值,进而利用诱导公式,同角三角函数基本关系式化简所求即可求解.【解答】解:因为,可得tanα=,所以====.故答案为:.【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.27.sin600°=.【分析】利用诱导公式直接化简sin600°为﹣sin60°,然后求出它的值即可.【解答】解:sin600°=sin(360°+240°)=sin240°=sin(180°+60°)=﹣sin60°=﹣.故答案为:.【点评】本题考查三角函数求值与化简,正确应用诱导公式是解决三角函数求值的重点,一般思路,负角化简正角,大角化小角(锐角).28.已知,则sinα=﹣.【分析】由已知利用诱导公式即可计算得解.【解答】解:因为,所以﹣sinα=,则sinα=﹣.故答案为:﹣.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.29.已知角α终边上一点P(﹣4,3),则的值.【分析】由条件利用任意角的三角函数的定义,求得sinα和cosα的值,再利用同角三角函数的基本关系、诱导公式求得所给式子的值.【解答】解:∵角α终边上一点P(﹣4,3),∴x=﹣4,y=3,r=|OP|=5,∴sinα==,cosα==﹣,∴原式==﹣=﹣=.故答案为:.【点评】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、诱导公式的应用,属于基础题.30.化简:=1.【分析】由条件利用诱导公式进行化简所给的式子,可得结果.【解答】解:=••=1,故答案为:1.【点评】本题主要考查诱导公式的应用,属于基础题.31.若角θ的终边经过点(﹣3,4),则sin(+θ)+cos(π﹣θ)+tan(2π﹣θ)=.【分析】运用诱导公式化简所求,根据任意角的三角函数的定义即可求解.【解答】解:由诱导公式可得,又角θ的终边经过点(﹣3,4),所以,所以.故答案为:.【点评】本题主要考查了诱导公式,任意角的三角函数的定义在三角函数化简求值中的应用,考查了转化思想,属于基础题.32.已知,则tan(π﹣α)的值是﹣2.【分析】由已知利用诱导公式可得﹣2cosα=﹣sinα,根据同角三角函数基本关系式可求tanα的值,利用诱导公式化简所求即可得解.【解答】解:∵,∴﹣2cosα=﹣sinα,可得tanα=2,∴tan(π﹣α)=﹣tanα=﹣2.故答案为:﹣2.【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.33.若α∈(0,π),且,则=.【分析】由题意,利用诱导公式可得,从而根据诱导公式及同角三角函数的基本关系求解即可.【解答】解:∵α∈(0,π),且,∴,∴,故答案为.【点评】本题考查了诱导公式及同角三角函数的基本关系,考查了推理能力与计算能力,属于基础题.34.已知sin(π﹣α)+2cos(π+α)=0,则=.【分析】由已知利用诱导公式,同角三角函数基本关系式可求tanα=2,进而利用同角三角函数基本关系式化简所求即可求值得解.【解答】解:∵sin(π﹣α)+2cos(π+α)=0,∴sinα﹣2cosα=0,可得tanα=2,∴====.故答案为:.【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.三.解答题(共8小题)35.已知α是第二象限角,且sinα=.(1)求tanα的值;(2)求的值.【分析】(1)由已知利用同角三角函数基本关系式即可求值得解;(2)利用诱导公式,同角三角函数基本关系式化简所求即可求值得解.【解答】(本小题满分14分)解:(1)因为α是第二象限角,且sinα=,所以cosα=﹣=﹣,所以tanα==﹣2.(2)=====.【点评】本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.36.已知α是第三象限角,f(α)=.(1)化简f(α);(2)若cos(α﹣π)=,求f(α)的值;(3)若α=﹣1860°,求f(α)的值.【分析】(1)f(α)利用诱导公式及同角三角函数间的基本关系化简即可得到结果;(2)由已知等式求出sinα的值,代入计算即可求出f(α)的值;(3)把α度数代入计算即可求出f(α)的值.【解答】解:(1)f(α)==cosα;(2)∵cos(α﹣π)=﹣sinα=,即sinα=﹣,且α为第三象限角,∴cosα=﹣=﹣,则f(α)=cosα=﹣;(3)把α=﹣1860°代入得:f(﹣1860°)=cos(﹣1860°)=cosα1860°=cos(5×360°+60°)=cos60°=.【点评】此题考查了同角三角函数基本关系的运用,运用诱导公式化简求值,熟练掌握基本关系是解本题的关键.37.若α为第二象限角,sin(+α)=﹣,(1)求sinα的值;(2)若f(α)=,求f(α)的值.【分析】(1)由已知利用诱导公式可求cosα的值,根据同角三角函数基本关系式可求sinα的值.(2)利用诱导公式即可化简求值得解.【解答】解:(1)∵α为第二象限角,sin(+α)=cosα=﹣,∴sinα==;(2)∵f(α)===sinα,∴f(α)=.【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.38.已知角α为第一象限角,且sinα=.(1)求cosα,tanα的值;(2)求的值.【分析】(1)由已知利用同角三角函数基本关系式即可求解;(2)利用诱导公式,同角三角函数基本关系式即可化简求解.【解答】解:(1)∵角α为第一象限角,且sinα=,∴cos=,tanα==.(2)==3+=3+=7.【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.39.已知f(α)=.(1)若α=﹣,求f(α)值;(2)若α为第三象限角,且,求f(α)的值.【分析】(1)利用诱导公式化简函数解析式,进而根据特殊角的三角函数值即可计算得解.(2)利用诱导公式化简已知等式,结合α为第三象限角,利用同角三角函数基本关系式即可计算得解.【解答】解:(1)由于,又,所以f(α)===﹣.(2)因为,又因为α为第三象限角,所以.【点评】本题主要考查了诱导公式,特殊角的三角函数值,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.40.已知角α的终边与单位圆交于点P(,).(1)求sinα、cosα、tanα的值;(2)求的值.【分析】(1)根据已知角α的终边与单位圆交于点P(,).结合三角函数的定义即可得到sinα、cosα、tanα的值;(2)依据三角函数的诱导公式化简即可:=,最后利用第(1)小问的结论得出答案.【解答】解:(1)已知角α的终边与单位圆交于点P(,).∴x==,r=1,∴sinα=;cosα=;tanα=;(6分)(2)==.(14分)【点评】本题考查任意角的三角函数的定义,运用诱导公式化简求值.本题是基础题,解答关键是熟悉任意角的三角函数的定义,单位圆的知识.41.已知.(1)化简f(α);(2)若,求的值.【分析】(1)利用诱导公式化简f(α)的解析式,可得结果.(2)由题意利用同角三角函数的基本关系求得sinα+cosα和sinα•cosα的值,从而求得要求式子的值.【解答】解:(1)=+cosα=sinα+cosα.(2)若=sinα+cosα,∴平方可得1+2sinαcosα=,∴sinαcosα=﹣.∴===﹣.【点评】本题主要考查利用诱导公式进行化简求值,同角三角函数的基本关系,属于基础题.42.已知,f(α)=.(1)化简f(α);(2)若=﹣,求tanα.【分析】(1)利用诱导公式,同角三角函数基本关系式即可化简得解.(2)由(1)及已知利用诱导公式可得cosα=﹣,分类讨论,利用同角三角函数基本关系式即可计算得解.【解答】解:(1)f(α)===sinα.(2)∵=﹣,∴sin(﹣α)=﹣,可得cosα=﹣,∴α是第二或第三象限角,当α是第二象限角时,sinα==,tan=﹣,当α是第三象限角时,sinα=﹣=﹣,tan=.【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.。
1分钟学会-诱导公式化简求值问题【三角函数】

1分钟学会-诱导公式化简求值问题【三角函数】要解决诱导公式化简求值问题,我们需要熟练掌握三角函数的基本性质和诱导公式。
三角函数分为正弦函数、余弦函数、正切函数和余切函数。
诱导公式是指把角度推导至一定范围内的公式,如将三角函数的角度推导至0-90度范围内,以此进行计算简化。
在解决诱导公式化简求值问题的过程中,需要注意以下几个步骤:1. 确定所给的三角函数公式及其角度范围。
2. 将所给的角度表示成诱导公式中的角度形式。
3. 按照诱导公式进行化简,得到最简形式。
4. 根据所求解的范围,代入得到三角函数的精确值或近似值。
例如,我们要对三角函数$sin(105^{\circ})$进行化简求值。
由于$105^{\circ}$超出了0-90度的范围,因此需要使用诱导公式进行化简。
我们有以下步骤:1. 由于$sin(180^{\circ}-x)=sin(x)$,因此可以将$sin(105^{\circ})$表示为$sin(180^{\circ}-105^{\circ})=sin(75^{\circ})$。
2. 根据诱导公式$sin(A\pm B)=sinAcosB\pm cosAsinB$,将$sin(75^{\circ})$化简为$sin(45^{\circ}+30^{\circ})=sin45^{\circ}cos30^{\circ}+cos45^{\ circ}sin30^{\circ}$。
3. 代入$sin45^{\circ}=\frac{\sqrt{2}}{2}$,$cos30^{\circ}=\frac{\sqrt{3}}{2}$和$sin30^{\circ}=\frac{1}{2}$,得到$sin(105^{\circ})=\frac{\sqrt{6}+\sqrt{2}}{4}$。
最后,需要注意在求值时,应根据题目要求选择精确值或近似值,并保留正确的有效位数。
掌握诱导公式化简求值问题,对于解决三角函数相关计算问题具有重要意义。
诱导公式的化简与求值

诱导公式的化简与求值1.已知角α终边上一点P(﹣,1)(1)求的值(2)写出角α的集合S.考点:任意角的三角函数的定义;运用诱导公式化简求值.专题:计算题.分析:先求出点P(﹣,1)到原点的距离,再由定义求出角α的三角函数值,(1)先用诱导公式化简,再代入角α的三角函数值求值;(2)写出角α的集合S,由于本题中的角是一个特殊角,故可以用终边相同的角将它表示出来.解答:解:点P(﹣,1)到原点的距离是2,由定义sinα=,cosα=﹣(1)==﹣==﹣(2)由sinα=,cosα=﹣知角α的终边与角的终边相同,故α=2kπ+,k∈z故S={α|α=2kπ+,k∈z}2.已知角α的终边经过点P(,﹣).(1)求sinα的值.(2)求式﹣的值考点:任意角的三角函数的定义;运用诱导公式化简求值.专题:计算题.分析:(1)求出|OP|,利用三角函数的定义,直接求出sinα的值.(2)利用诱导公式化简表达式,根据角的终边所在象限,求出cosα=,可得结果.解答:解:(1)∵|OP|=,∴点P在单位圆上.(2分)由正弦函数的定义得sinα=﹣(5分)(2)原式=(9分)=..(10分)由余弦的定义可知,cosα=(11分)即所求式的值为(12分)3.已知角α终边上一点A的坐标为,(1)求角α的集合(6分)(2)化简下列式子并求其值:(6分)考点:三角函数的化简求值;终边相同的角;同角三角函数间的基本关系;诱导公式的作用.专题:计算题.分析:(1)根据角的终边过一个定点,根据三角函数的定义做出角的正弦值,根据角的终边在第四象限,写出与角终边相同的所有的角的集合.(2)首先用诱导公式进行整理,再把正割与余割变化成正弦与余弦的形式,约分整理出最简形式,得到结果.解答:解:(1)点P到原点的距离为r=根据三角函数的定义,得….(2分)∵点P在第四象限,也就是角α在第四象限….(4分)∴α的集合是…(6分)(2)原式=….(8分)==﹣sinα=4.(1)已知tanα=2,求的值(2)已知cos(75°+α)=,其中﹣180°<α<﹣90°,求sin(105°﹣α)+cos(375°﹣α)的值.考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:计算题.分析:(1)利用诱导公式化简表达式,应用tanα=2求出,代入化简后的表达式即可求出原式的值.(2)利用诱导公式化简sin(105°﹣α)+cos(375°﹣α),为2sin(75°+α),利用求出2sin(75°+α)即可.。
1分钟学会-诱导公式化简求值问题【三角函数】

1分钟学会-诱导公式化简求值问题【三角函数】在数学中,诱导公式是指将某个三角函数表达式中的自变量通过某种方式转换成其他三角函数的自变量的公式。
主要应用于三角函数的公式化简和求值。
常见的诱导公式有三个,它们分别是正弦诱导公式、余弦诱导公式和正切诱导公式。
下面我们来一一介绍它们的具体内容以及应用方法。
正弦诱导公式:$$\sin(A+B)=\sin A\cos B+\cos A\sin B$$这个公式主要应用于将$\sin(A+B)$转换成其他三角函数的和的形式。
可以通过将公式右边的$\cos A$换成$\sin(A+\frac{\pi}{2})$,将公式左边的$\sin(A+B)$替换成$\sin C$,最终得到以下诱导公式:$$\sin C=2\sin\frac{C}{2}\cos\frac{C}{2}$$余弦诱导公式:$$\cos(A+B)=\cos A\cos B-\sin A\sin B$$这个公式主要应用于将$\cos(A+B)$转换成其他三角函数的和的形式。
可以通过将公式右边的$\sin A$换成$\cos(A+\frac{\pi}{2})$,将公式左边的$\cos(A+B)$替换成$\cos C$,最终得到以下诱导公式:$$\cos C=2\cos^2\frac{C}{2}-1=1-2\sin^2\frac{C}{2}$$这个公式有一个重要的应用,即将$\cos C$转换成$\sin C$。
正切诱导公式:$$\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}$$这个公式主要应用于将$\tan(A+B)$转换成其他三角函数的和的形式。
可以通过将公式右边的$\tan A$和$\tan B$分别换成$\frac{\sin A}{\cos A}$和$\frac{\sin B}{\cos B}$,并进行通分,最终得到以下诱导公式:$$\tan C=\frac{2\tan\frac{C}{2}}{1-\tan^2\frac{C}{2}}$$这个公式可以看作是正切半角公式的推广。
第五章-5.3-诱导公式高中数学必修第一册人教A版

π
2
− ] ⋅ −sin =
⋅ −cos −sin = −cos2 .
cos π−
sin
⋅ [−sin
π
2
− ] ⋅ −sin =
(2)
tan 2π− sin −2π− sin
sin −π cos
3π
−
2
3π
+
2
.
π
【解析】原式=
tan − sin − sin[π+ 2 + ]
sin = sin ”的( C
)
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解析】若存在 ∈ 使得 = π + −1 ,则当 = 2, ∈ 时, = 2π + ,
则sin = sin(2π + ) = sin ;
∴ cos
11π
2
+ + sin 3π − =
6
11
+
6
11
=
12
..
11
6
,
11
方法帮丨关键能力构建
题型1 利用诱导公式化简
例3 化简:
cos −π
(1)
sin π−
⋅ sin
π
−
2
cos
π
2
+ ;
【解析】原式
=
cos[− π− ]
sin
−cos
sin
⋅ sin[−
4
1
15
cos 2π − = cos = ,∴ sin = ± ,故D符合条件.故选ACD.
诱导公式解答题15题学生

1.(1)化简:()()()()3tan cos 2sin 2cos sin ⎛⎫---+ ⎪⎝⎭----ππαπαααππα; (2)已知1sin 35⎛⎫+= ⎪⎝⎭πα,求5cos 6⎛⎫+ ⎪⎝⎭πα的值. 【来源】江西省樟树中学2017-2018学年人教A 版高一下学期第一次月考数学(理)试题2.已知角α的终边经过点(P m,sin αα为第二象限. (1)求m 的值;(2)若tan =β()()sin cos 3sin sin 2cos cos 3sin sin ⎛⎫++ ⎪⎝⎭+--παβαβπαβαβ的值. 【来源】【全国百强校】广东省揭阳市第一中学2017-2018学年高一下学期第一次月考数学(理)试题3.已知π40,sin 25<<=αα. (1)求tan α的值;(2)求()()()sin 2cos 2sin cos ⎛⎫+-+ ⎪⎝⎭--++παπααπα的值. 【来源】【全国百强校】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题4.已知sin =α,且α是第一象限角。
(1)求cos α的值。
(2)求()()3sin 2tan cos ⎛⎫- ⎪⎝⎭++-πααππα的值。
【来源】河南省林州一中(分校部)2017-2018学年下学期高一4月调研考试数学试题5.求证: ()()()tan 2sin 2cos 6tan 33sin cos 22----=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭παπαπααππαα. 【来源】河南省林州一中(分校部)2017-2018学年下学期高一4月调研考试数学试题6.(1)计算:191425sin cos 634⎛⎫+-+ ⎪⎝⎭tan πππ (2)求()=f x 的定义域. 【来源】江西省樟树中学2017-2018学年人教A 版高一下学期第一次月考数学(文)试题7.已知sin =α,且α是第一象限角。
(1)求cos α的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
诱导公式的化简与求值20题一.解答题(共20小题)1.已知角α终边上一点P(﹣,1)(1)求的值(2)写出角α的集合S.2.已知角α的终边经过点P(,﹣).(1)求sinα的值.(2)求式﹣的值3.已知角α终边上一点A的坐标为,(1)求角α的集合(6分)(2)化简下列式子并求其值:(6分)4.(1)已知tanα=2,求的值(2)已知cos(75°+α)=,其中﹣180°<α<﹣90°,求sin(105°﹣α)+cos(375°﹣α)的值.5.已知α是第三象限角,且(1)化简f(α);(2)若,求f(α)的值.6.已知角α的终边上一点P(x,4),且cosα=﹣.(1)求x的值;(2)求sin(α+π)的值;(3)将角α的终边沿顺时针旋转π弧度得到角β,求sinβ的值.7.已知(1)化简f(α)(2)若α是第三象限角,且,求f(α)的值.8.求值:①sin870°+cos660°+tan1215°﹣tan(﹣300°)+cot(﹣330°)②.9.已知sin(3π+θ)=,求+的值.10.已知.(1)求sinx﹣cosx的值;(2)求的值.11.已知α是第四象限角,且.(1)求tanα的值;(2)求的值.12.已知.①化简f(α).②若sinα是方程10x2+x﹣3=0的根,且α在第三象限,求f(α)的值.③若a=,求f(α)的值.13.(1)已知,求sinα﹣cosα的值.(2)已知且,求cosα﹣sinα的值.14.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且cos()=,求f(α+π)的值;(3)若,求f(α)的值.15.已知f(a)=.(1)化简f(a);(2)若角a的终边经过点P(﹣2,3),求f(a)的值.16.已知.(1)若α是第三象限角,,求f(α)的值;(2)若,求f(α)的值.17.已知0<α<π,tanα=﹣2.(1)求sin(α+)的值;(2)求的值;(3)2sin2α﹣sinαcosα+cos2α18.已知α是第三象限角,且f(α)=.(1)化简f(α);(2)若tan(π﹣α)=﹣2,求f(α)的值;(3)若α=﹣420°,求f(α)的值.19.已知.(Ⅰ)化简f(α);(Ⅱ)若α是第三象限角,且,求f(α)的值.20.(1)已知,计算:(2)已知α为第二象限角,化简.诱导公式的化简与求值20题参考答案与试题解析一.解答题(共20小题)1.已知角α终边上一点P(﹣,1)(1)求的值(2)写出角α的集合S.考点:任意角的三角函数的定义;运用诱导公式化简求值.专题:计算题.分析:先求出点P(﹣,1)到原点的距离,再由定义求出角α的三角函数值,(1)先用诱导公式化简,再代入角α的三角函数值求值;(2)写出角α的集合S,由于本题中的角是一个特殊角,故可以用终边相同的角将它表示出来.解答:解:点P(﹣,1)到原点的距离是2,由定义sinα=,cosα=﹣(1)==﹣==﹣(2)由sinα=,cosα=﹣知角α的终边与角的终边相同,故α=2kπ+,k∈z故S={α|α=2kπ+,k∈z}点评:本题考查任意角三角函数的定义以及终边相同角的表示,利用诱导公式化简求值,求解本题的关键是熟练掌握定义与诱导公式,基础概念只有在掌握熟练得基础上才能正确运用它做题,不出错误.2.已知角α的终边经过点P(,﹣).(1)求sinα的值.(2)求式﹣的值考点:任意角的三角函数的定义;运用诱导公式化简求值.专题:计算题.分析:(1)求出|OP|,利用三角函数的定义,直接求出sinα的值.(2)利用诱导公式化简表达式,根据角的终边所在象限,求出cosα=,可得结果.解答:解:(1)∵|OP|=,∴点P在单位圆上.(2分)由正弦函数的定义得sinα=﹣(5分)(2)原式=(9分)=..(10分)由余弦的定义可知,cosα=(11分)即所求式的值为(12分)点评:本题考查任意角的三角函数的定义,运用诱导公式化简求值,考查计算能力,推理能力,是基础题.3.已知角α终边上一点A的坐标为,(1)求角α的集合(6分)(2)化简下列式子并求其值:(6分)考点:三角函数的化简求值;终边相同的角;同角三角函数间的基本关系;诱导公式的作用.专题:计算题.分析:(1)根据角的终边过一个定点,根据三角函数的定义做出角的正弦值,根据角的终边在第四象限,写出与角终边相同的所有的角的集合.(2)首先用诱导公式进行整理,再把正割与余割变化成正弦与余弦的形式,约分整理出最简形式,得到结果.解答:解:(1)点P到原点的距离为r=根据三角函数的定义,得….(2分)∵点P在第四象限,也就是角α在第四象限….(4分)∴α的集合是…(6分)(2)原式=….(8分)==﹣sinα=点评:本题考查三角函数的恒等变化求值即终边相同的角,本题解题的关键是先用诱导公式进行整理,再把正割与余割变化成正弦与余弦.本题是一个中档题目.4.(1)已知tanα=2,求的值(2)已知cos(75°+α)=,其中﹣180°<α<﹣90°,求sin(105°﹣α)+cos(375°﹣α)的值.考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:计算题.分析:(1)利用诱导公式化简表达式,应用tanα=2求出,代入化简后的表达式即可求出原式的值.(2)利用诱导公式化简sin(105°﹣α)+cos(375°﹣α),为2sin(75°+α),利用求出2sin(75°+α)即可.解答:解:(1)原式=(2分)=(3分)∵,∴(6分),∴原式=(7分)(2)原式=sin(75°+α)+cos(15°﹣α)=2sin(75°+α)(9分)∵,且﹣105°<75°+α<﹣15°,∴sin(75°+α)<0∴(12分)故原式=(14分)点评:本题考查诱导公式的应用,同角三角函数的基本关系式,考查计算能力,是基础题.5.已知α是第三象限角,且(1)化简f(α);(2)若,求f(α)的值.考点:运用诱导公式化简求值;同角三角函数间的基本关系.专题:计算题.分析:(1)直接利用诱导公式化简f(α),应用正切化为正弦、余弦函数,推出结果;(2)求出的最简形式,弦长f(α)的表达式,通过同角三角函数的基本关系式求出它的值.解答:解:(1)f(α)=====﹣cosα(2)∵cos()=﹣sinα=,∴sinα=﹣,∵α是第三象限角,∴cosα=﹣=﹣,∴f(α)=﹣cosα=点评:本题是基础题,考查诱导公式的应用,同角三角函数的基本关系式的应用,考查计算能力,常考题型.6.已知角α的终边上一点P(x,4),且cosα=﹣.(1)求x的值;(2)求sin(α+π)的值;(3)将角α的终边沿顺时针旋转π弧度得到角β,求sinβ的值.考点:任意角的三角函数的定义;运用诱导公式化简求值.专题:计算题.分析:(1)利用三角函数的定义,求出x的值;(2)直接利用诱导公式化简sin(α+π),然后求出它的值;(3)将角α的终边沿顺时针旋转π弧度得到角β,然后直接利用诱导公式,求sinβ的值.解答:解:(1)因为cosα=﹣,所以,所以,x=﹣3;(2)因为cosα=﹣,所以sin(α+π)=cosα=﹣;(3)将角α的终边沿顺时针旋转π弧度得到角β,,sinβ=sin()=cosα=﹣.点评:本题是基础题,考查三角函数的定义,诱导公式的应用,考查计算能力.7.已知(1)化简f(α)(2)若α是第三象限角,且,求f(α)的值.考点:运用诱导公式化简求值.专题:计算题.分析:(1)利用诱导公式化简f(α)的结果为cosα.(2)利用诱导公式求出sinα,再由同角三角函数的基本关系求出cosα,从而得到f(α)的值.解答:解:(1)==cosα.(2)∵,∴,又∵α为第三象限角,∴,∴.点评:本题考查同角三角函数的基本关系,诱导公式的应用,以及三角函数在各个象限中的符号,化简f(α)是解题的突破口.8.求值:①sin870°+cos660°+tan1215°﹣tan(﹣300°)+cot(﹣330°)②.考点:运用诱导公式化简求值.专题:计算题.分析:①先利用诱导公式:终边相同的角的三角函数值相等,将题中的角化到[0°,360°)上,再利用诱导公式将其转化为锐角三角函数值即可②先利用诱导公式化简所求三角式,再利用同角三角函数基本关系式化简即可解答:解:①sin870°+cos660°+tan1215°﹣tan(﹣300°)+cot(﹣330°)=sin(720°+150°)+cos(720°﹣60°)+tan(﹣360°+60°)+cot(﹣360°+30°)=sin150°+cos(﹣60°)+tan60°+cot30°=sin30°+cos60°+tan60°+cot30°=+++=1+2②=====﹣1点评:本题考查了诱导公式的运用和同角三角函数基本关系式的运用,细心和运用恰当的公式是解决本题的关键9.已知sin(3π+θ)=,求+的值.考点:运用诱导公式化简求值.专题:计算题.分析:先根据诱导公式化简已知得到sinθ的值,然后把原式也利用诱导公式及同角三角函数的基本关系化简后,把sinθ代入求值即可.解答:解:∵sin(3π+θ)=﹣sinθ=,∴sinθ=﹣,原式=+=+=+====18.点评:此题要求学生灵活运用诱导公式及同角三角函数间的基本公式化简求值,做题的思路是把所有余弦都要化成正弦.10.已知.(1)求sinx﹣cosx的值;(2)求的值.考点:运用诱导公式化简求值;同角三角函数间的基本关系.专题:三角函数的求值.分析:(1)利用同角三角函数基本关系式直接求出sinx和cosx的值,进而求出结果.(2)先利用诱导公式化简所求的式子,将原式分子分母同除以cos2x,转化成tanx的表达式去解.解答:解:∵sinx=﹣2cosx,又sin2x+cos2x=1,∴5cos2x=1,∴(1)(2)原式==…(12分)点评:本题考查同角三角函数基本关系式的应用和三角函数的诱导公式,计算要准确,属于中档题.11.已知α是第四象限角,且.(1)求tanα的值;(2)求的值.考点:同角三角函数间的基本关系;诱导公式的作用.专题:计算题.分析:(1)由题意知求出,再求tanα的值.(2)利用诱导公式,等价转化为.解答:解:(1)由题意知,,∴;(2)=.点评:本题考查诱导公式的合理运用,解题时要认真审题,注意三角函数恒等变换的灵活运用.12.已知.①化简f(α).②若sinα是方程10x2+x﹣3=0的根,且α在第三象限,求f(α)的值.③若a=,求f(α)的值.考点:三角函数的化简求值;诱导公式的作用.专题:计算题.分析:①把f(α)的分子最后一项的角﹣α变为6π﹣(+α),分母第一项的角3π+α变形为2π+(π+α),第二项中的角变形为﹣(π+α),最后一项变形为4π+(+α),然后各项利用诱导公式及正弦、余弦函数的奇偶性进行化简,约分后即可得到最简结果;②把已知的方程分解因式后,求出方程的两个解,由sinα是方程10x2+x﹣3=0的根,且α在第三象限,可得出sinα的值,代入第一问化简后的式子中,即可求出f(α)的值;③把α的值变形为﹣6π﹣,代入第一问化简后的式子中,利用诱导公式及正弦函数的奇偶性化简,再利用特殊角的三角函数值即可求出f(α)的值.解答:解:①===﹣sinα;…(4分)②由方程10x2+x﹣3=0,解得:,又α在第三象限,∴,则;…(8分)(3)当a=时,.…(12分)点评:此题考查了三角函数的恒等变形,涉及的知识有:正弦、余弦函数的奇偶性,诱导公式,函数的值,以及特殊角的三角函数值,灵活变换角度,熟练掌握诱导公式是解本题的关键.13.(1)已知,求sinα﹣cosα的值.(2)已知且,求cosα﹣sinα的值.考点:运用诱导公式化简求值.专题:计算题.分析:(1)由题意得sinα+cosα=,平方可得2sinαcosα=﹣,代入sinα﹣cosα=﹣=﹣进行运算.(2)由题意得cosα﹣sinα=﹣=﹣,把已知条件代入运算.解答:解:(1)已知,∴sinα+cosα=,1+2sinαcosα=,2sinαcosα=﹣,∴sinα﹣cosα=﹣=﹣=﹣.(2)已知,且,cosα﹣sinα=﹣=﹣=.点评:本题考查同角三角函数的基本关系的应用,诱导公式的应用,判断所求式子的符号是解题的关键.14.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且cos()=,求f(α+π)的值;(3)若,求f(α)的值.考点:诱导公式的作用.专题:三角函数的求值.分析:(1)利用诱导公式化简f(α)=,整理可得结果.(2)利用诱导公式求得sinα=﹣,再利用同角三角函数的基本关系求得cosα=﹣,再由f(α+π)=﹣cos(π+α)=cosα求得结果.(3)利用诱导公式可得f(α)=﹣cos(670π+)=﹣cos,计算求得它的值.解答:解:(1)f(α)===﹣cosα.(2)若α是第三象限角,且cos()=,故﹣sinα=,sinα=﹣,∴cosα=﹣=﹣.∴f(α+π)=﹣cos(π+α)=cosα=﹣.(3)若,则f(α)=﹣cos=﹣cos(670π+)=﹣cos=﹣.点评:本题主要考查应用诱导公式化简三角函数式,同角三角函数的基本关系的应用,要特别注意符号的选取,这是解题的易错点,属于基础题.15.已知f(a)=.(1)化简f(a);(2)若角a的终边经过点P(﹣2,3),求f(a)的值.考点:诱导公式的作用;任意角的三角函数的定义.专题:计算题.分析:(1)利用三角函数的诱导公式即可求得f(a);(2)角a的终边经过点P(﹣2,3),利用任意角的三角函数的定义,可求得f(a)的值.解答:解:(1)∵sin(a﹣)=﹣cosa,cos(﹣a)=﹣sina,tan(7π﹣a)=﹣tana,tan(﹣a﹣5π)=﹣tan(5π+a)=﹣tana,sin(a﹣3π)=﹣sina,∴f(a)==﹣cosa;(2)∵a的终边经过点P(﹣2,3),∴cosa=﹣=﹣,∴f(a)=.点评:本题考查三角函数的诱导公式与任意角的三角函数的定义,掌握诱导公式是基础,属于基础题.16.已知.(1)若α是第三象限角,,求f(α)的值;(2)若,求f(α)的值.考点:诱导公式的作用;同角三角函数间的基本关系.专题:三角函数的求值.分析:利用诱导公式化简f(α)得到最简结果,(1)由α为第三象限,sinα的值小于0,得到cosα的值小于0,由sinα的值,利用同角三角函数间的基本关系求出cosα的值,即可确定出f(α)的值;(2)将α的度数代入f(α)中,利用诱导公式化简即可得到结果.解答:解:f(α)==﹣cosα,(1)∵α是第三象限角,sinα=﹣<0,∴cosα<0,∴cosα=﹣=﹣,则f(α)=﹣cosα=;(2)将α=﹣代入得:f(﹣)=﹣cos(﹣)=﹣cos(11π+)=﹣cos(π+)=cos=.点评:此题考查了诱导公式的作用,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键.17.已知0<α<π,tanα=﹣2.(1)求sin(α+)的值;(2)求的值;(3)2sin2α﹣sinαcosα+cos2α考点:同角三角函数间的基本关系;诱导公式的作用.专题:计算题.分析:(1)由已知中0<α<π,tanα=﹣2,根据同角三角函数关系,我们可以求出sinα,cosα的值,代入两角和的正弦公式,即可求出sin(α+)的值;(2)利用诱导公式,我们可以将原式化为用α的三角函数表示的形式,弦化切后,tanα=﹣2,即可得到答案.(3)根据sin2α+cos2α=1,我们可以将2sin2α﹣sinαcosα+cos2α化为齐次分式,弦化切后,代入tanα=﹣2,即可得到答案.解答:解:因为0<α<π,tanα=﹣2,所以sinα=,cosα=(1)sin(α+)=sinαcos+cosαsin=+()×=(2)原式===﹣1(3)原式===点评:本题考查的知识点是同角三角函数间的基本关系,诱导公式,两角和的正弦公式,其中(2)(3)中齐次分式弦化切是三角函数给值求值中最常用的方法.18.已知α是第三象限角,且f(α)=.(1)化简f(α);(2)若tan(π﹣α)=﹣2,求f(α)的值;(3)若α=﹣420°,求f(α)的值.考点:诱导公式的作用.专题:三角函数的求值.分析:(1)直接利用诱导公式化简函数f(α)为﹣cosα.(2)由tan(π﹣α)=﹣2,求得tanα=2,再利用同角三角函数的基本关系求出cosα的值即可求得f(α)=﹣cosα的值.(3)先利用诱导公式求得cosα=cos(﹣420°)=,即可求得f(α)=﹣cosα的值.解答:解:(1)f(α)===﹣cosα.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)∵tan(π﹣α)=﹣2,∴tanα=2.﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)∵α是第三象限角,∴,∴f(α)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(3)∵,∴f(α)=﹣cosα=.﹣﹣﹣﹣﹣﹣(12分)点评:本题主要考查同角三角函数的基本关系,诱导公式的应用,属于基础题.19.已知.(Ⅰ)化简f(α);(Ⅱ)若α是第三象限角,且,求f(α)的值.考点:诱导公式的作用;同角三角函数基本关系的运用.专题:计算题.分析:(Ⅰ)利用诱导公式对函数的解析式化简整理求得函数的解析式.(Ⅱ)利用诱导公式整理求得sinα的值,进而利用同角三角函数的基本关系求得cosα的值,代入函数的解析式求得答案.解答:解:(Ⅰ)==tanα(Ⅱ)=﹣sinα=,∴sinα=﹣∵α是第三象限角∴cosα=﹣=﹣∴f(α)=tanα==2点评:本题主要考查了诱导公式的化简求值,同角三角函数的基本关系的应用.解题的关键是熟练掌握“奇边偶不变,正负看象限”的原则.20.(1)已知,计算:(2)已知α为第二象限角,化简.考点:诱导公式的作用;同角三角函数间的基本关系.专题:计算题.分析:(1)将所求式子的分母1用sin2α+cos2α代替,然后分子分母同除以cos2α,(2)利用诱导公式及三角函数关系式即可将化简,并求得其值.解答:(1)解:∵,cosα≠0,∴====;(2)∵α为第二象限角,∴===﹣1.点评:本题考查三角函数的诱导公式及三角函数间的基本关系,关键是熟练掌握三角函数的诱导公式及三角函数间的基本关系并灵活应用,属于中档题.。