高中数学专题:三角函数的化简与求值
第9讲 三角函数的化简与求值

第九讲: 三角函数的化简与求值一、知识要点1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 二、方法点拨三角变换是运算化简过程中运用较多的变换, 也是历年高考命题的热点.提高三角变换能力, 要学会设置条件, 灵活运用三角公式, 掌握运算、化简的方法和技能.常用的数学思想方法技巧如下: 1. 角的变换: 在三角化简、求值、证明中, 表达式往往出现较多的相异角, 可根据角与角之间的和差、倍半、互补、互余的关系, 运用角的变换, 沟通条件与结论中的差异, 使问题获解.对角的变形如下:角的变换:β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β)2()2()(,2304560304515α-β-β+α=β-β+α=α=-=-=,)4()4()()(2α-π-α+π=β-α+β+α=α,)4(24α-π-π=α+π特别地, α+π4与α-π4为互余角, 它们之间可以互相转化, 在三角变形中使用频率高.2. 函数名称变换: 三角变形中, 常常需要变函数名称为同名函数. 如在三角函数中正余弦是基础, 通常化切、割为弦, 变异名为同名.3. 常数代换: 在三角函数运算、求值、证明中, 有时需要将常数转化为三角函数值, 例如常数“1”的代换变形有: α-α=α-α=α+α=222222cot csc tan sec cos sin 1.4. 幂的变换: 降幂是三角变换时常用方法, 对次数较高的三角函数式, 一般采用降幂处理的方法. 常用降幂公式有:1cos sin ,22cos 1cos ,22cos 1sin 2222=α+αα+=αα-=α 等, 三角变换时, 有时需要升幂, 如对无理式α+cos 1常用升幂化为有理式, 升幂公式与降幂公式是相对而言的.5. 公式变形式: 根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.三角公式是变换的依据, 应熟练掌握三角公式的直接应用,逆用以及变形式的应用.如:)tan tan 1)(tan(tan tan ,sin 22sin cos β⋅αβ±α=β±ααα=α 等. 三、典型例题讲解:考点一、三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向. 【训练1】 化简:(sin α+cos α-1)(sin α-cos α+1)sin 2α.考点二、三角函数式的求值【例1】已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.训练1】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值. 训练2】已知cos(α-6π)+sin α=354,则sin(α+67π)的值是( )训练3】已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________训练4】已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________考点三、三角函数的求角问题【例1】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练1】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.【训练2】已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.考点四、 三角函数的综合应用【例1】►设0<θ<2π,曲线x 2sin θ+y 2cos θ=1和x 2cos θ-y 2sin θ=1有4个不同的交点。
(完整版)三角函数化简求值证明技巧

第三讲一、三角函数的化简、计算、证明的恒等变形的应用技巧1、网络2、三角函数变换的方法总结(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。
【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。
练习:已知sin(α+β)=,cos(α-β)=,求的值。
2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。
【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。
练习已知,求的值【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=提示:sin[(α+β)-β]=Asin (α+β)(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。
这其中以“1”的变换为最常见且最灵活。
“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。
【例4】化简:(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。
这往往用到倍、半角公式。
考点15 三角函数式的化简与求值(答案)

,故选 B.
3.【2017
届广西玉林市、贵港市高中毕业班质量检测】若
cos
−
3sin
=
0
,则
tan
−
4
=
(
)
−1
1
A. 2
B.-2
C. 2
D.2
【答案】A
【解析】由 cos
− 3sin
=
0
tan
,知
=
1 3
,则
tan
− 4
=
tan −1 1+ tan
=
−
1 2
,故选 A
.
4.【山西省孝义市 2017 届高三下学期高考考前质量检测三(5 月)】已有角 的顶点与坐标原点重合,
+ cos2
sin ”;(3)化正弦、余弦为正切,即 cos
=
tan
;
tan = sin
(4)化正切为正弦、余弦,即
cos ;( 5 ) 正 弦 、 余 弦 和 ( 差 ) 与 积 的 互 化 , 即
(sin cos )2 =1 2sin cos .
tan = 3
1− sin 2 =
【变式 1】【例题中的条件不改变,所求三角函数式改变】若
【解析】
16 8 ,选 D.
【方法技巧归纳】二倍角公式的正用、逆用、变形用是公式的种主要应用手段,特别是二倍角的余弦 公式,其变形公式在求值与化简中有广泛的应用,在综合使用两角和与差、二倍角公式化简求值时,要注 意以下几点:(1)熟练掌握公式的正用、逆用和变形使用;(2)擅于拆角、配角;(3)注意二倍角的相对性; (4)注意角的范围;(5)熟悉常用的方法和技巧,如切化弦、异名化同名、异角化同角等.
三角函数化简求值的技巧

三角函数化简求值的技巧
一、三角函数的重要性质:
1、正弦函数sin x、余弦函数cos x、正切函数tanx和其逆函数的
关系:
sin x=1/cos x,cos x=1/sin x,tan x=1/cot x,cot x=1/tan x,cos x=1/csc x,csc x=1/cos x。
2、三角函数的基本性质:
sin2x+cos2x=1,sin2x=2sin(x/2)cos(x/2),cos2x=cos2(x/2)
-sin2(x/2),2sin xcos x=sin2x+cos2x=2sin2(x/2)=2cos2(x/2)。
3、三角函数的对称性:
sin(-x)=-sin x,cos(-x)=cos x,tan(-x)=-tan x,cot(-x)=-cot x,csc(-x)=-csc x。
二、用三角函数化简求值的常用方法:
1、用公式和定义:
用三角函数的基本公式来把表达式中的各个项拆分开明确每个项的意义,然后把各个项的值累加求值。
2、用对称性:
对变量进行绝对值化,然后利用三角函数的对称性变换变量或表达式,从而达到化简的目的。
3、用反函数求值:
把表达式中的三角函数换成其对应的反函数,然后利用反函数的性质进行化简,获得原函数的表达式。
四、利用三角函数化简求值的实例:
例1:求Sin(60°)
解:
1、用公式求值:
可以用公式sin 2x=2sin xcos x来求值。
2025版高考数学总复习第4章三角函数解三角形第3讲第2课时三角函数式的化简与求值课件

23πsin x
+
sin
π 3
- 2sin
π 3
-
3 cos
23-
3+
3×12cos x=0.
2π
3
cos
x = 12+1-
3×
3
2
sin
x+
解 法 二 : 原 式 = sin x+π3 - 3 cos π-x+π3 + 2sin x-π3 = 2sin x+π3+π3 + 2sin x-π3 = 2sin x+23π + 2sin x-π3 = 2sin π+x-π3 + 2sinx-π3=-2sin x-π3+2sinx-π3=0.
[误区警示] 本题极易求得两解,问题出在∠B 上,因为由 sin B=153, 可得两个 B 值,考虑 A 的因素,只有一个适合,因此 sin C 只有一个结果.
2.(2024·河北唐山一中质检)在△ABC中,若sin(A-B)=1+2cos(B +C)sin(A+C),则△ABC的形状一定是( D )
tan(α+5β)=( B )
A.151
B.121
C.121
D.151
[解析] 因为 tan(α+2β)=3, 所以 tan 2(α+2β)=1-2tatannα2+α+2β2β=1-6 9=-34, 所以 tan(α+5β)=tan[2(α+2β)-(α-β)] =1t+anta2nα2+α2+β2-βt·atannαα--ββ =1+--34-34×2 2=121.故选 B.
∴12sin
α+
3 2 cos
α=13,
∴cosα-π6=13,
∴sin2α+π6=sin2α-π6+2π =cos 2α-π6 =2cos2α-π6-1 =2×132-1=-79.
三角函数的化简与求值

1.三角恒等变换的两原则(1)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式。
(2)消除异差:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构式等方面的差异。
2.三角函数式的化简 (1)化简要求①三角函数名称尽量少;②次数尽量低;③能求值的尽量求值; ④尽量使分母不含三角函数;⑤使被开方数不含三角函数. (2)化简思路对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用,另外,还可以用切割化弦、变量代换、角度归一等方法 (3)化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂,和差化积,积化和差等。
3.三角恒等式的证明 (1)证明三角恒等式的方法观察等式两边的差异(角、函数、运算的差异),从解决某一差异入手(同时消除其他差异),确定从该等式的哪些证明(也可两边同时化简),当从解决差异方面不易入手时,可采用转换命题法或用分析法等。
(2)证明三角条件等式的方法首先观察条件与结论的差异,从解决这一差异入手,确定从结论开始.通过变换,将已知表达式代入得出结论,或通过变换已知条件得出结论,如果这两种方法都证不出来,可采用分析法;如果已知条件含参数,可采用消去参数法;如果已知条件是连比的式子,可采用换元法等。
1. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等),如 (1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____ (答:322);(2)已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值(答:490729); (3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______(答:43(1)55y x x =<<)(2)三角函数名互化(切化弦),如 (1)求值sin 50(13tan10)+(答:1);(2)已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值(答:18)(3)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。
高考数学难点突破_难点16__三角函数式的化简与求值
高考数学难点突破_难点16__三角函数式的化简与求值在高考数学中,三角函数式的化简与求值是一个很常见的难点。
在解决这一难点时,我们需要掌握一些基本的化简公式和常用的解题技巧。
首先,我们来回顾一下一些常见的三角函数化简公式:1.两角之和的三角函数公式:sin(A+B) = sinA·cosB + cosA·sinBcos(A+B) = cosA·cosB - sinA·sinBtan(A+B) = (tanA + tanB) / (1 - tanA·tanB)2.两角之差的三角函数公式:sin(A-B) = sinA·cosB - cosA·sinBcos(A-B) = cosA·cosB + sinA·sinBtan(A-B) = (tanA - tanB) / (1 + tanA·tanB)3.倍角的三角函数公式:sin2A = 2sinA·cosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan2A = (2tanA) / (1 - tan^2A)4.半角的三角函数公式:sin(A/2) = ±√[(1 - cosA) / 2]cos(A/2) = ±√[(1 + cosA) / 2]tan(A/2) = ±√[(1 - cosA) / (1 + cosA)](在这里需要根据A的范围来确定取正还是取负)掌握了这些基本的化简公式后,我们可以运用它们来解决一些常见的难点问题。
1.求三角函数值:高考中经常会出现需要求一些特定角度的三角函数值的问题。
我们可以通过套用基本的化简公式,将所给的角度化简到我们熟悉的角度(如30°,45°,60°等),然后代入公式求值即可。
例如,要求sin75° 的值,我们可以化简为sin(45°+30°),然后套用两角之和的公式,得到sin45°·cos30° + cos45°·sin30°。
高考数学二轮复习第1讲三角函数的化简与求值课件
.
5
5
答案 2 4
25
解析 两式平方相加得13-12sin αcos β-12cos αsin β= 3 7 , 则12sin(α+β)=13-3 7
25
25
= 2 8 8 ,sin(α+β)= 2 4 .
25
25
12/11/2021
x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=
例1 (2018高考数学模拟)如图,在直角坐标系xOy中,角α的顶点是原点,始边
与x轴正半轴重合,终边交单位圆于点A,且α∈
6
,.将2 角α的终边按逆时针
方向旋转 ,交单位圆于点B,记A(x1,y1),B(x2,y2). 3
12/11/2021
(1)若x1=
1 3
,求x2;
(2)分别过A,B作x轴的垂线,垂足依次为C,D,记△AOC的面积为S1,△BOD的面
1tan2αtan(αβ) 1 1
12/11/2021
【方法归纳】 解决三角函数的给值求角问题的关键是角的变换和三角公 式的选择,对于角的变换,若已知角与所求角之间有2倍的关系,则利用二倍角 公式求解,在此过程中,要注意同角三角函数的基本关系式sin2α+cos2α=1与tan α= s i n 的α 应用;若已知角与所求角之间是和或差的形式,则先用已知角和特
3
5
(1)求cos 2α的值;
(2)求tan(α-β)的值.
12/11/2021
解析 (1)因为tan α= s i n =α 4 ,所以sin α= 4
cosα 3
3
因为sin2α+cos2α=1,所以cos2α= 9 ,
例析三角函数求值与化简的三种常用方法
题过程简单明了。
作 者 单 位 :湖 北 省 巴 东 县 第 三 高 级 中 学
(责任编辑 郭正华)
16
三 、巧 用 “1”的 变 换 法
例3
已
知
1+tanx 1-tanx
=5+2
6,则
1c -os sin 2x2x=
。
解
:由
1+tanx 1-tanx
=tan(45°+x
),可
得
tan(45°+x)=5+2 6。
1c -os sin 2x2x=1+ sic no(s 90 (9 °0+°2 +x2x ))
m
=
3。 2
(3)原
方
程
可
化
为
2x2
-(3+1)x+
3 2=
0,解
得
x1
=
23,x2
=
1 2
,所
以
ìïïsinθ= í
3, 2或
îïïcosθ=
1 2
ìïïcosθ= í
3, 2又
îïïsinθ=
1 2
。
因
为
x∈
(0,2π),所
以θ=
π 3
或θ=
π。 6
评析:已 知 sinθ+cosθ,sinθ-cosθ, sinθcosθ 中的任 何 一 个 值,则 另 两 个 式 子 的 值均可求出。
知识篇·知识结构与拓展 高一使用 2020年4月
■张红梅
三角函数求值与化简的三种常用方法:
弦切互化法、和积转换法、巧用 “1”的 变 换 法。
下 面 举 例 分 析 ,供 大 家 学 习 与 参 考 。
三角函数中的求值与化简
三角函数中的求值与化简三角函数中公式较多,这些公式应用非常广泛;对这些公式的考查常以求值与化简的形式出现;这类问题难度虽然不大,但高考卷面上失分情况仍然常见,究其原因,就是对公式记得不熟。
熟记公式必须做到:一理解记忆,即根据公式的来龙去脉去记,对每个公式是怎样得到的,要做到心知肚明,如同角三角函数关系式与诱导公式可由三角函数的定义直接推出;两角和差的正、余弦公式、正切公式、倍角公式、半角公式、和差化积公式、积化和差公式、万能公式、辅助角公式可由两角和的余弦公式推出。
二公式的结构特点、公式的变形,公式的限制条件也必须牢记。
公式记熟了,化简与求值问题就会迎刃而解,下面举例说明。
例1.(97全国高考题)︒︒︒︒︒+︒sin8sin15cos7sin8cos157sin -的值为 分析:由cos15°sin8°、sin15°sin8°的结构特点容易联想到两角差的正、余弦公式,将7°写成15°-8°解:略。
例2.(96全国高考题)tam20°+tan40°+3tan20°tan40°的值是分析:从式子的结构特点容易联想到两角和的正切公式有:tam20°+tan40°=tam (20°+40°)(1-tan20°tan40°)=3-3tan20°tan40° 所以原式的值为3例3.(05全国高考卷Ⅲ)αα α+αcos2cos ·cos212sin 22等于( ) A .tan α B .tan2α C .1 D .21 分析:式子中分子有因式cos 2α,分母有因式1+cos2α,由此可联想到二倍角的余弦公式cos2α=2cos 2α-1,即1+cos2α=2 cos 2α便可得出结果选B 。
例4.(95年全国高考题)求sin 220°+cos 250°+sin20°cos50°的值分析:降次是三角变换中常用的方法,于是: 原式=21(1-cos40°)+21(1+cos100°)+21(sin70°-sin30°) =1+21(cos100°-cos40°)+sin70°-41=43-sin70°sin30°+21sin70°=43 由此式的结构特点易联想到余弦定理:在△ABC 中,由正、余弦定理易得:sin 2A =sin 2B +sin 2C -2 sinAsinBsinC ,于是:原式=sin 220°+sin 240°-2sin20°sin40°cos120°=sin 2120°=43 联想到sin 2θ+cos 2θ=1及两角和差的正弦公式,还可得到下面解法:设M =sin 220°+cos 250°+sin20°cos50°N =cos 220°+sin 250°+cos 20°sin 50°则M +N =2+sin70°M -N =-cos40°+cos100°+sin (-30°)=-2sin 70°sin 30°-21∴2M =23即M =43 例5.(04全国高考卷)已知α为第二象限角,用sin α=415,求:1cos2sin24sin α+α+)π(α+的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2+3,
则常数 a=________.
解析
1+2cos2x-1 f(x)= 2cos x +sin
x+a2sinx+π4
=cos x+sin x+a2sinx+π4
= 2sinx+4π+a2sinx+π4 =( 2+a2)sinx+4π. 依题意有 2+a2= 2+3, ∴a=± 3.
答案 ± 3
α
=2
2sin
α=-2
5
5 .
答案 A
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
4.已知f(x)=sin2
x+4π,若a=f(lg
5),b=f(lg
1 5
),则(
)
A.a+b=0
B.a-b=0
C.a+b=1
D.a-b=1
解析 a=f(lg 5)=sin2(lg 5+4π)
1-cos2lg
2 .
又∵cosπ4-β2= 33,-2π<β<0, ∴sinπ4-β2= 36,
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
∴cosα+2β=cosπ4+α-π4-β2 =cosπ4+αcosπ4-β2+sinπ4+αsinπ4-β2 =13× 33+232× 36=593. 答案 C
=-41+34+1=23.
点评 熟练运用诱导公式和基本关系式,并确定相应三角 函数值的符号是解题的关键.另外,切化弦是常用的规律 技巧.
变式训练2 (1)(四川)已知sin α+2cos α=0, 则2sin αcos α-cos2α的值是________. 解析 ∵sin α+2cos α=0, ∴sin α=-2cos α, ∴tan α=-2, 又∵2sin αcos α-cos2α=2sinsiαn2cαo+s αc-osc2αos2α
2θ+2cos2θ2)(sin
2θ-cos
θ 2)
=2cos θ2(sin2θ2-cos2θ2)
=-2cos
θ 2cos θ.
-2cos 故原式=
θ
2cos θ
θ =-cos
θ.
2cos 2
1+cos 20° (2)求值: 2sin 20° -sin
10°(tan15°-tan
5°).
解
原式=2×2s2icno1s021°0co°s
2tan α-1 = tan2α+1 ,
2×-2-1 ∴原式= -22+1 =-1. 答案 -1
(2)已知 cosπ6-θ=a (|a|≤1),则 cos56π+θ+sin23π-θ的值
是___0_____. 解析 cos56π+θ=cosπ-π6-θ =-cosπ6-θ=-a. sin23π-θ=sinπ2+6π-θ=cosπ6-θ=a,
10°-sin
cos 10°( sin
55°°-csoins
5° 5°)
=2csoisn
1100°°-sin
cos25°-sin25° 10°· sin 5°cos 5°
=2csoisn
1100°°-sin
cos 10°·1
10°
2sin 10°
=2csoisn 1100°°-2cos
cos 10°=
解析 原式=
sin 70°
2cos 30°·cos 20°+sin 30°·sin 20°-sin 20°
=
sin 70°
= c3ocsos202°0°= 3.
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
1.(陕西)“sin α=cos α”是“cos 2α=0”的( ) A
4tan =5tan
αα- +23=45× ×22- +23=163.
方法二 由tan α=2,得sin α=2cos α,代入得 4sin α-2cos α 4×2cos α-2cos α 5sin α+3cos α=5×2cos α+3cos α =163ccoossαα=163.
(2)3sin2α+3sin αcos α-2cos2α的值.
1.六组诱导公式分两大类,一类是同名变换,即“函数名 不变,符号看象限”;一类是异名变换,即“函数名称变, 符号看象限”. 2.诱导公式化简的基本原则:负化正,大化小,化到锐角 为最好!
例 2 (1)化简:tanπc-osα-coαs-2ππ-siαns-inπ--αα+ 32π;
解
方法一
-tan 原式=
变式训练1 (2015·福建)若sin α=-153,且α为第四象限角,
则tan α的值等于( D )
12 A. 5
B.-152
5 C.12
D.-152
解析 ∵sin α=-153,且 α 为第四象限角, ∴cos α=1123,
∴tan α=csoins αα=-152,故选 D.
题型二 利用诱导公式化简与求值
解 3sin2α+3sin αcos α-2cos2α
3sin2α+3sin αcos α-2cos2α
=
sin2α+cos2α
3tan2α+3tan α-2 = tan2α+1
=3×222+2+3×1 2-2=156.
点评 本题(1)(2)两小题的共同点:都是正弦、余弦的齐 次多项式.对于这样的多项式一定可以化成切函数,分式 可以分子分母同除“cos α”的最高次幂,整式可以看成分 母为“1”,然后用sin2α+cos2α代换“1”,变成分式后再 化简.
A.充分不必要条件 B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析 ∵sin α=cos α⇒cos 2α=cos2α-sin2α=0;
cos 2α=0⇔cos α=±sin α sin α=cos α,故选A.
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
2.已知 sin52π+α=15,那么 cos α 等于( C )
10°-2sin 2sin 10°
20°
cos 10°-2sin30°-10°
=
2sin 10°
cos =
10°-212cos 10°- 2sin 10°
23sin
10°
=
23ssinin1100°°=
3 2.
(3)设
1+cos 2x f(x)=2sinπ2-x+sin
x+a2sinx+π4的最大值为
A.-52
B.-15
1 C.5
2 D.5
解析 sin52π+α=cos α=15.
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
3.若 tanα+π4=12,且-π2<α<0,则2sicno2sα+α-siπ4n2α等于(
)
A.-2
5 5
35 B. 10
C.-3105
25 D. 5
点评 (1)二倍角公式是三角变换的主要公式,应熟记、巧 用,会变形应用. (2)重视三角函数的“三变”:“三变”是指“变角、变名、 变式”;变角:对角的分拆要尽可能化成同名、同角、特殊 角;变名:尽可能减少函数名称;变式:对式子变形一般要尽 可能有理化、整式化、降低次数等.在解决求值、化简、证 明问题时,一般是观察角度、函数名、所求(或所证明)问题 的整体形式中的差异,再选择适当的公式恒等变形.
∴cos56π+θ+sin23π-θ=0.
题型三 利用其他公式、代换等化简求值
两角和与差的三角函数的规律有三个方面:(1)变角,目的 是沟通题设条件与结论中所涉及的角,其手法通常是“配 凑”.(2)变名,通过变换函数名称达到减少函数种类的目 的,其手法通常有“切化弦”“升幂与降幂”等.(3)变式, 根据式子的结构特征进行变形,使其更贴近某个公式或某个 期 待 的 目 标 , 其 手 法 通 常 有 “ 常 值 代 换 ”“ 逆 用 变 用 公 式”“通分与约分”“分解与组合”“配方与平方”等.
变式训练3 (1)在△ABC中,已知三个内角A,B,C成等差
数列,则tan A2+tan
C2 +
3tan
A 2tan
C 的值为________. 2
解析 因为三个内角A,B,C成等差数列,
且A+B+C=π,
所以 A+C=23π,A+2 C=π3,tan
A+C 2=
3,
所以 tan
A2+tan
C2 +
解析 由 tanα+4π=t1a-n αta+n α1=12,
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
得 tan α=-13.
又-2π<α<0,所以
sin
α=-
10 10 .
2sin2α+sin 2α 2sin αsin α+cos α
故
cosα-π4
=
2 2 sin
α+cos
例3
1+sin (1)化简:
θ+cos θsin 2+2cos θ
2θ-cos
θ 2(0<θ<π);
解 由 θ∈(0,π),得 0<θ2<π2,
∴cos
θ 2>0.
因此 2+2cos θ=
4cos2θ2=2cos
θ 2.
又(1+sin θ+cos θ)(sin
θ2-cos
θ 2)
=(2sin
θ 2cos
α·cos[π+π-α]·sinπ+π2-α cosπ+α·[-sinπ+α]
-tan =
α·[-cosπ-α]·[-sinπ2-α] -cos α·sin α
-tan α·cos α·-cos α = -cos α·sin α
-tan α·cos α = sin α
=-csoins
α cos α·sin