三角函数化简求值专题复习
专题01 三角函数中的化简求值(解析版)

专题01 三角函数中的化简求值一、题型选讲题型一 灵活运用和与差的正弦、余弦和正切、二倍角等公式化简求值通过两角和与差的正弦、余弦和正切以及二倍角公式或者公式的变形进行化简求值。
在应用同角三角函数的关系或两角和与差的三角函数公式求值时,需要注意解题的规范性,一要注意角的范围对三角函数值的符号的影响;二要注意“展示”三角函数的公式.否则,就会因为不规范而导致失分.例1、(2018年江苏高考题)已知,αβ为锐角,4tan 3α=,cos()5αβ+=-.(1)求cos2α的值;(2)求tan()αβ-的值.【解析】分析:先根据同角三角函数关系得2cos α,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得tan 2α,再利用两角差的正切公式得结果.详解:解:(1(因为4tan 3α=(sin tan cos ααα=,所以4sin cos 3αα=( 因为22sin cos 1αα+=,所以29cos 25α=( 因此,27cos22cos 125αα=-=-( (2)因为,αβ为锐角,所以()0,παβ+∈(又因为()cos αβ+=()sin αβ+==因此()tan 2αβ+=-( 因为4tan 3α=,所以22tan 24tan21tan 7ααα==--( 因此,()()()()tan2tan 2tan tan 21+tan2tan 11ααβαβααβααβ-+⎡⎤-=-+==-⎣⎦+( 例2、(2019通州、海门、启东期末)设α∈⎝⎛⎭⎫0,π3,已知向量a =(6sin α,2),b =⎝⎛⎭⎫1,cos α-62,且a ⊥b .(1) 求tan ⎝⎛⎭⎫α+π6的值;(2) 求cos ⎝⎛⎭⎫2α+7π12的值.【解析】(1) 因为a =(6sin a ,2),b =⎝⎛⎭⎫1,cos α-62,且a ⊥b . 所以6sin a +2cos α=3,所以sin ⎝⎛⎭⎫α+π6=64.2分因为α∈⎝⎛⎭⎫0,π3,所以α+π6∈⎝⎛⎭⎫π6,π2,(4分)所以cos ⎝⎛⎭⎫α+π6=104,故sin ⎝⎛⎭⎫α+π6=1-cos 2⎝⎛⎭⎫α+π6=64所以tan ⎝⎛⎭⎫α+π6=155.(6分)(2) 由(1)得cos ⎝⎛⎭⎫2α+π3=2cos 2⎝⎛⎭⎫α+π6-1=2×⎝⎛⎭⎫1042-1=14.(8分)因为α∈⎝⎛⎭⎫0,π3,所以2α+π3∈⎝⎛⎭⎫π3,π,所以sin ⎝⎛⎭⎫2α+π3=154.(10分)所以cos ⎝⎛⎭⎫2α+7π12=cos ]=cos ⎝⎛⎭⎫2α+π3cos π4-sin ⎝⎛⎭⎫2a +π3sin π4(12分)=2-308.(14分) 题型二 探究角度之间的关系在三角函数的化简求值中,往往出现已知角与所求角不同,此时要观察两个角度之间的关系,寻求角度之间的特殊性,通过二倍角、互补、互与余等公式进行转化。
第9讲 三角函数的化简与求值

第九讲: 三角函数的化简与求值一、知识要点1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 二、方法点拨三角变换是运算化简过程中运用较多的变换, 也是历年高考命题的热点.提高三角变换能力, 要学会设置条件, 灵活运用三角公式, 掌握运算、化简的方法和技能.常用的数学思想方法技巧如下: 1. 角的变换: 在三角化简、求值、证明中, 表达式往往出现较多的相异角, 可根据角与角之间的和差、倍半、互补、互余的关系, 运用角的变换, 沟通条件与结论中的差异, 使问题获解.对角的变形如下:角的变换:β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β)2()2()(,2304560304515α-β-β+α=β-β+α=α=-=-=,)4()4()()(2α-π-α+π=β-α+β+α=α,)4(24α-π-π=α+π特别地, α+π4与α-π4为互余角, 它们之间可以互相转化, 在三角变形中使用频率高.2. 函数名称变换: 三角变形中, 常常需要变函数名称为同名函数. 如在三角函数中正余弦是基础, 通常化切、割为弦, 变异名为同名.3. 常数代换: 在三角函数运算、求值、证明中, 有时需要将常数转化为三角函数值, 例如常数“1”的代换变形有: α-α=α-α=α+α=222222cot csc tan sec cos sin 1.4. 幂的变换: 降幂是三角变换时常用方法, 对次数较高的三角函数式, 一般采用降幂处理的方法. 常用降幂公式有:1cos sin ,22cos 1cos ,22cos 1sin 2222=α+αα+=αα-=α 等, 三角变换时, 有时需要升幂, 如对无理式α+cos 1常用升幂化为有理式, 升幂公式与降幂公式是相对而言的.5. 公式变形式: 根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.三角公式是变换的依据, 应熟练掌握三角公式的直接应用,逆用以及变形式的应用.如:)tan tan 1)(tan(tan tan ,sin 22sin cos β⋅αβ±α=β±ααα=α 等. 三、典型例题讲解:考点一、三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向. 【训练1】 化简:(sin α+cos α-1)(sin α-cos α+1)sin 2α.考点二、三角函数式的求值【例1】已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.训练1】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值. 训练2】已知cos(α-6π)+sin α=354,则sin(α+67π)的值是( )训练3】已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________训练4】已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________考点三、三角函数的求角问题【例1】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练1】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.【训练2】已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.考点四、 三角函数的综合应用【例1】►设0<θ<2π,曲线x 2sin θ+y 2cos θ=1和x 2cos θ-y 2sin θ=1有4个不同的交点。
考点15 三角函数式的化简与求值(答案)

,故选 B.
3.【2017
届广西玉林市、贵港市高中毕业班质量检测】若
cos
−
3sin
=
0
,则
tan
−
4
=
(
)
−1
1
A. 2
B.-2
C. 2
D.2
【答案】A
【解析】由 cos
− 3sin
=
0
tan
,知
=
1 3
,则
tan
− 4
=
tan −1 1+ tan
=
−
1 2
,故选 A
.
4.【山西省孝义市 2017 届高三下学期高考考前质量检测三(5 月)】已有角 的顶点与坐标原点重合,
+ cos2
sin ”;(3)化正弦、余弦为正切,即 cos
=
tan
;
tan = sin
(4)化正切为正弦、余弦,即
cos ;( 5 ) 正 弦 、 余 弦 和 ( 差 ) 与 积 的 互 化 , 即
(sin cos )2 =1 2sin cos .
tan = 3
1− sin 2 =
【变式 1】【例题中的条件不改变,所求三角函数式改变】若
【解析】
16 8 ,选 D.
【方法技巧归纳】二倍角公式的正用、逆用、变形用是公式的种主要应用手段,特别是二倍角的余弦 公式,其变形公式在求值与化简中有广泛的应用,在综合使用两角和与差、二倍角公式化简求值时,要注 意以下几点:(1)熟练掌握公式的正用、逆用和变形使用;(2)擅于拆角、配角;(3)注意二倍角的相对性; (4)注意角的范围;(5)熟悉常用的方法和技巧,如切化弦、异名化同名、异角化同角等.
三角函数化简求值专题复习

三角函数化简求值专题复习基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.【例1】求值:︒+︒︒⋅︒+︒+︒80cot 40csc 10sin 20tan 10cos 20sin 2. 解:原式的分子︒︒︒+︒︒+︒=20cos 10sin 20sin 20cos 10cos 20sin 2 ︒︒+︒=20cos 10cos 20sin 2︒︒+︒=20cos 10cos 40sin 320cos 20cos 60sin 220cos 80sin 40sin =︒︒︒=︒︒+︒=, 原式的分母=︒︒+︒=︒︒+︒80sin 80cos 40cos 280sin 80cos 40sin 1 ()︒︒+︒+︒=80sin 80cos 40cos 40cos ︒︒︒+︒=80sin 20cos 60cos 240cos 310cos 10cos 30cos 280sin 20cos 40cos =︒︒︒=︒︒+︒=, 所以,原式=1.【变式】1、求值()︒+︒︒+︒+︒10cos 110tan 60tan 110cos 40cos 2 解:()()25cos 25cos 45cos 225cos 250cos 40cos 25cos 21060cos 240cos 25cos 210sin 2310cos 21240cos 25cos 210sin 310cos 40cos 2=︒︒︒=︒︒+︒=︒︒-︒+︒=︒⎪⎪⎭⎫ ⎝⎛︒+︒+︒=︒︒+︒+︒=·原式 【变式】2、求0020210sin 21)140cos 1140sin 3(⋅-。
数学高考总复习:三角函数的化简与求值经典例题

经典例题精析类型一:角的相关概念1.若在第三象限,则角在__________象限,在__________象限.思路点拨:要判断角所在象限,只须化成“k·360°+n°”或“2kπ+α”(k∈Z)的形式即可,其中0≤n<360或-180<n≤180, 0≤α<2π或-π<α≤π.为了凑出2π的整数倍,需要对整数进行分类,如k=2n, k=2n+1或者k=3n, k=3n+1, k=3n-1等等.方法一:①∵在第三象限,即, k∈Z∴, k∈Z当k=2n时,, n∈Z∴在第二象限,当k=2n+1时,, n∈Z∴在第四象限,∴可能在第二或第四象限.②∵,k∈Z,∴,k∈Z.当k=3n时,, k∈Z∴在第一象限.当k=3n+1时,, k∈Z.∴在第三象限.当k=3n-1时,, k∈Z.∴在第四象限.∴可能在第一、三、或四象限.方法二:由图知: 的终边落在二,四象限;的终边落在一,三,四象限。
总结升华:(1)确定角所在的象限是确定函数值符号的关键,故必须掌握由已知角的范围,求与有运算关系的角的范围.(2)确定“分角”所在象限的方法:若是第k (1、2、3、4)象限的角,利用单位圆判断,()是第几象限角的方法:把单位圆上每个象限的圆弧n等份,并从x正半轴开始,沿逆时针方向依次在每个区域标上1、2、3、4,再循环,直到填满为止,则有标号k的区域就是角()终边所在的范围。
如:k=2,如下图中标有号码2的区域就是终边所在位置.举一反三:【变式1】试确定下列角的终边分别在哪些象限?①;②;③.【答案】∵,,∴的终边在第一象限;的终边在第二象限;的终边在第四象限.【变式2】设,角5与角终边相同,求。
【答案】由条件有:,即:∵∴k=1时,;k=2时,;k=3时,.【变式3】若A={x|x=, k∈Z}, B={x|x=+, k∈Z}, 则A _____B。
【答案】由B中的x=+=,可视为的奇数倍所构成的集合。
三角函数式的化简求值经典练习及答案

[基础巩固]1.(多选)如果α是第二象限的角,下列各式不正确的是( )A .tan α=-sin αcos αB .cos α=-1-sin 2 αC .sin α=-1-cos 2 αD .tan α=cos αsin α解析 由商数关系可知A 、D 均不正确,当α为第二象限角时,cos α<0,sin α>0,故B 正确.答案 ACD2.已知sin α-cos α=-54,则sin α·cos α等于( ) A .74 B .-916C .-932D .932 解析 因为sin α-cos α=-54, 平方可得1-2sin αcos α=2516, 所以2sin αcos α=-916, 即sin αcos α=-932. 答案 C3.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43B .54C .-34D .45解析 sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1, 又tan θ=2,故原式=4+2-24+1=45. 答案 D4.若α是第三象限角且cos α=-33,则sin α=________,tan α=________.解析 ∵α是第三象限角且cos α=-33, ∴sin α=-1-cos 2α=-63, ∴tan α=sin αcos α= 2. 答案 -63 2 5.已知cos θ=13,则⎝⎛⎭⎫tan θ+1tan θ·sin θ的值为________. 解析 原式=⎝⎛⎭⎫sin θcos θ+cos θsin θ·sin θ =sin 2θ+cos 2θcos θ·sin θ·sin θ =1cos θ=3.答案 36.已知tan α=2,求下列代数式的值:(1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α. 解析 (1)原式=4tan α-25+3tan α=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. [能力提升]7.化简sin 2α+cos 4α+sin 2αcos 2α的结果是( )A .14B .12C .1D .32解析 原式=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1.答案 C8.已知cos α=-35,且tan α>0,则sin αcos 2α1-sin α=____________ . 解析 由cos α<0,tan α>0知α是第三象限角,且sin α=-45, 故原式=sin αcos 2α1-sin α=sin α(1-sin 2α)1-sin α=sin α(1+sin α)=⎝⎛⎭⎫-45·⎝⎛⎭⎫1-45=-425. 答案 -4259.已知关于x 的方程4x 2-2(m +1)x +m =0的两个根恰好是一个直角三角形的一个锐角的正弦、余弦,则实数m 的值为________.解析 由题意知Δ=4(m +1)2-16m ≥0,解得m ∈R .不妨设sin A =x 1,cos A =x 2,则x 1+x 2=12(m +1),x 1·x 2=14m , 即sin A +cos A =12(m +1),sin A cos A =14m , 所以1+2×14m =14(m +1)2, 解得m =3或m =- 3.当m =-3时,sin A cos A =-34<0,不合题意,舍去,故m = 3. 答案 3 10.已知sin θ,cos θ是关于x 的方程x 2-ax +a =0的两个根.求:(1)sin 3θ+cos 3θ;(2)tan θ+1tan θ. 解析 根据题意,方程判别式Δ≥0,即(-a )2-4a ≥0,所以a ≤0或a ≥4,且⎩⎪⎨⎪⎧sin θ+cos θ=a ,sin θcos θ=a . 因为(sin θ+cos θ)2=1+2sin θcos θ,即a 2-2a -1=0,所以a =1-2(1+2舍去).所以sin θ+cos θ=sin θcos θ=1- 2.(1)sin 3θ+cos 3θ=(sin θ+cos θ)(sin 2θ-sin θcos θ+cos 2θ)=(1-2)[1-(1-2)]=2-2.(2)tan θ+1tan θ=sin θcos θ+cos θsin θ=sin 2θ+cos 2θsin θcos θ=11-2=-2-1. [探索创新]11.设α是第三象限角,问是否存在实数m ,使得sin α,cos α是关于x 的方程8x 2+6mx +2m +1=0的两个根?若存在,求出实数m ;若不存在,请说明理由.解析 假设存在实数m 满足条件,由题设得,Δ=36m 2-32(2m +1)≥0,①∵sin α<0,cos α<0,∴sin α+cos α=-34m <0,② sin αcos α=2m +18>0.③ 又sin 2α+cos 2α=1,∴(sin α+cos α)2-2sin αcos α=1.把②③代入上式得 ⎝⎛⎭⎫-34m 2-2×2m +18=1, 即9m 2-8m -20=0,解得m 1=2,m 2=-109. ∵m 1=2不满足条件①,舍去;m 2=-109不满足条件③,舍去. 故满足题意的实数m 不存在.。
三角函数的化简求值经典练习及答案详解

[基础巩固]1.若tan α=3,tan β=43,则tan(α-β)等于( )A .3B .-3 C.13D .-13解析 tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13. 答案 C2.(多选)已知sin(α-β)cos α-cos(α-β)sin α=35,则cos ⎝⎛⎭⎫β+π4的可能值为( ) A .-7210B .-210 C.210D .7210解析 因为sin(α-β)cos α-cos(α-β)sin α=35,所以sin(α-β-a )=35⇒sin(-β)=35⇒sin β=-35,所以当β在第三象限时,有cos β=-1-sin 2β=-1-925=-45, 所以cos ⎝⎛⎭⎫β+π4=cos βcos π4-sin βsin π4=-45×22+35×22=-210; 当β在第四象限时,有cos β=1-sin 2β=1-925=45, 所以cos ⎝⎛⎭⎫β+π4=cos βcos π4-sin βsin π4=45×22+35×22=7210, 故选BD. 答案 BD3.函数y =sin ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x -π4的最小值为( ) A . 2 B .-2 C .- 2D . 3解析 因为y =sin ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x -π4 =sin 2x cos π4+cos 2x sin π4+sin 2x cos π4-cos 2x sin π4=2sin 2x ,所以所求函数的最小值为- 2. 答案 C4.函数f (x )=cos x -cos ⎝⎛⎭⎫x +π3的值域是________. 解析 f (x )=cos x -12cos x +32sin x=12cos x +32sin x =sin ⎝⎛⎭⎫x +π6∈[-1,1]. 答案 [-1,1]5.设tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14, 则tan ⎝⎛⎭⎫α+π4=________. 解析 tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =25-141+25×14=322.答案3226.已知π2<β<α<3π4,cos(α-β)=1213,sin(α+β)=-35,求sin 2α的值.解析 因为π2<β<α<3π4,所以0<α-β<π4,π<α+β<3π2.又cos(α-β)=1213,sin(α+β)=-35,所以sin(α-β)=1-cos 2(α-β)=1-⎝⎛⎭⎫12132=513, cos(α+β)=-1-sin 2(α+β)=- 1-⎝⎛⎭⎫-352=-45. 所以sin 2α=sin[(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β) =513×⎝⎛⎭⎫-45+1213×⎝⎛⎭⎫-35=-5665. [能力提升]7.函数f (x )=sin ⎝⎛⎭⎫x +π3+sin ⎝⎛⎭⎫x -π3,则f (x )的奇偶性为( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数解析 f (x )=sin ⎝⎛⎭⎫x +π3+sin ⎝⎛⎭⎫x -π3 =12sin x +32cos x +12sin x -32cos x =sin x . ∴f (x )为奇函数. 答案 A8.若8sin α+5cos β=6,8cos α+5sin β=10,则sin(α+β)=________.解析 8sin α+5cos β=6,8cos α+5sin β=10,两边分别平方相加可得89+80(sin αcos β+cos αsin β)=136,即sin(α+β)=4780.答案47809.函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为________. 解析 f (x )=sin x -⎝⎛⎭⎫32cos x -12sin x=32sin x -32cos x =3sin ⎝⎛⎭⎫x -π6, 故函数f (x )的值域为[-3,3]. 答案 [-3,3]10.如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆交于A ,B 两点,已知A ,B 的横坐标分别为210,255.(1)求tan(α+β)的值; (2)求α+2β的值. 解析 由条件得cos α=210,cos β=255. ∵α,β为锐角,∴sin α=1-cos 2α=7210,sin β=1-cos 2β=55. 因此tan α=7,tan β=12.(1)tan(α+β)=tan α+tan β1-tan α·tan β=7+121-7×12=-3.(2)∵tan(α+2β)=tan[(α+β)+β] =tan (α+β)+tan β1-tan (α+β)tan β=-3+121-(-3)×12=-1, 又∵α,β为锐角, ∴0<α+2β<3π2,∴α+2β=3π4.[探索创新]11.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3,求cos ⎝⎛⎭⎫α+3π2的值. 解析 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k =0,±1,±2,….由-π2≤φ<π2,得k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝⎛⎭⎫α2=3sin ⎝⎛⎭⎫2·α2-π6=34, 所以sin ⎝⎛⎭⎫α-π6=14. 由π6<α<2π3得0<α-π6<π2,所以cos ⎝⎛⎭⎫α-π6= 1-sin 2⎝⎛⎭⎫α-π6 =1-⎝⎛⎭⎫142=154. 因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π6+π6 =sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6 =14×32+154×12 =3+158.。
三角函数专项(有答案)

三角函数专项一、化简求值 1、若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则cos()2βα+=A.3B.3-C.9D.9-【答案】C 2、已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A ) 45- (B )35-(C )35(D )45【答案】B 3、设sin 1+=43πθ(),则sin 2θ=(A )79- (B )19-(C )19(D )79【答案】A4、函数sin()cos()26y x x ππ=+-的最大值为 。
【答案】24+5、已知1sin cos 2α=+α,且0,2π⎛⎫α∈ ⎪⎝⎭,则cos 2sin 4πα⎛⎫α- ⎪⎝⎭的值为__________【答案】2-6、已知a ∈(2π,π),5tan2α=【答案】43-7、已知,2)4tan(=+πx 则xx 2tan tan 的值为__________【答案】948、若tan α=3,则2sin 2cos aα的值等于 A .2B .3C .4D .6【答案】D二、三角函数图像 9、函数2sin 2x y x =-的图象大致是【答案】C10、已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f 的部分图像如下图,则=)24(πf .10、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的 部分图象如图所示,则f (0)= 【答案】2611、设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .9三、三角函数性质12、若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= A .3 B .2 C .32D .23【答案】C13、已知函数()cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为A .|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5{|,}66x k x k k Z ππππ+≤≤+∈D .5{|22,}66x k x k k Z ππππ+≤≤+∈【答案】B14、设函数()s i n ()c o s (f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则(A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减(C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增【答案】A15、已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭(B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭【答案】C四、正余弦定理16、若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足22a b 4c +-=(),且C=60°,则ab 的值为A .43B.8-C . 1D .23【答案】A17、如图,在△ABC 中,D 是边A C上的点,且,2,2AB C D AB BC BD ===,则sin C 的值为 A.3 B.6C 3D 6【答案】D18、在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是A .(0,6π]B .[ 6π,π)C .(0,3π]D .[ 3π,π)【答案】C【解析】由题意正弦定理22222222211cos 023b c aa b c bc b c a bc A A bcπ+-≤+-⇒+-≥⇒≥⇒≥⇒<≤【答案】C19、△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b(A ) (B ) (C (D【答案】D20、在相距2千米的A .B 两点处测量目标C ,若0075,60C AB C BA ∠=∠=,则A .C两点之间的距离是 千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数化简求值专题复习高考要求1、理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
2、 掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)3、 能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
热点分析1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强.2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至20XX 年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解.【例1】求值:︒+︒︒⋅︒+︒+︒80cot 40csc 10sin 20tan 10cos 20sin 2.解:原式的分子︒︒︒+︒︒+︒=20cos 10sin 20sin 20cos 10cos 20sin 2︒︒+︒=20cos 10cos 20sin 2︒︒+︒=20cos 10cos 40sin320cos 20cos 60sin 220cos 80sin 40sin =︒︒︒=︒︒+︒=,原式的分母=︒︒+︒=︒︒+︒80sin 80cos 40cos 280sin 80cos 40sin 1 ()︒︒+︒+︒=80sin 80cos 40cos 40cos ︒︒︒+︒=80sin 20cos 60cos 240cos310cos 10cos 30cos 280sin 20cos 40cos =︒︒︒=︒︒+︒=,所以,原式=1.【变式】1、求值()︒+︒︒+︒+︒10cos 110tan 60tan 110cos 40cos 2解:()()25cos 25cos 45cos 225cos 250cos 40cos 25cos 21060cos 240cos 25cos 210sin 2310cos 21240cos 25cos 210sin 310cos 40cos 2=︒︒︒=︒︒+︒=︒︒-︒+︒=︒⎪⎪⎭⎫ ⎝⎛︒+︒+︒=︒︒+︒+︒=·原式 【变式】2、求0020210sin 21)140cos 1140sin 3(⋅-。
分析:原式=202020210sin 21140cos 140sin 140sin 140cos 3⋅-16160sin 200sin 1680cos 80sin 200sin 810sin 2180sin 41200sin 80sin 410sin 21)40cos 40sin ()140sin 140cos 3)(140sin 140cos 3(00000020002000000=-=-=⋅⋅-=⋅-+-= 【例2】已知23523sin cos παπαα<<=-,且,求αααtan 1sin 22sin 2-+的值解:原式=ααααααsin cos cos sin 2cos 2sin 2-+=()αααααsin cos sin cos 2sin -+∵523αsin αcos =-,上式两边平方,得:2518α2sin 1=-∴2572sin =α;又∵23παπ<<∴0sin cos 0sin 0cos <+<<αααα,,∴()()ααααααcos sin 4sin cos sin cos 22+-=+()25322sin 2sin cos 2=+-=ααα ∴524sin cos -=+αα,∴原式523524257⎪⎪⎭⎫ ⎝⎛-⨯=7528-= 【变式】已知7sin()241025παα-==,求sin α及tan()3πα+. 【解析】:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得)sin (cos 57)sin )(cos sin (cos sin cos 2cos 25722ααααααααα+-=+-=-== 故51sin cos -=+αα ②由①和②式得53sin =α,5cos =α因此,43tan -=α,由两角和的正切公式11325483343344331433tan 313tan )3tan(-=+-=+-=-+=+ααπα 【例3】(最值辅助角)已知函数f (x )=2a sin 2x -23a sin x cos x +a +b -1,(a 、b 为常数,a <0),它的定义域为[0,2π],值域为[-3,1],试求a 、b 的值。
解:f (x )=2a sin 2x -23a sin x cos x +a +b -1=a (1-cos2x )-3a sin2x +a +b -1 =-2a sin 12)6π2(-+++b a x∵0≤x ≤π2 ∴π6≤2x +π6≤π67 ∴1)6π2sin(21≤≤+-x∵a <0 ∴a ≤-2a sin ()26x +π≤-2a∴3a +b -1≤-2a sin ()26x +π+2a +b -1≤b -1∵值域为[-3,1] ∴⎩⎨⎧-=-+=-31311b a b ∴⎪⎩⎪⎨⎧=-=234b a 【变式】已知00<α<β<900,且sin α,sin β是方程-+-020240cos x )40cos 2(x 21=0的两个实数根,求sin(β-5α)的值。
解:由韦达定理得sin α+sin β=2cos400,sin αsin β=cos 2400-21 ∴ sin β-sin α=)40cos 1(2sin sin 4)sin (sin )sin (sin 0222-=βα-β+α=α-β040sin 2= 又sin α+sin β=2cos400∴ ⎪⎪⎩⎪⎪⎨⎧=-=α=+=β0000005sin )40sin 240cos 2(21sin 85sin )40sin 240cos 2(21sin∵ 00<α<β< 90∴ ⎪⎩⎪⎨⎧=α=β00585 ∴ sin(β-5α)=sin600=23【例4】(最值二次型)已知 αβαβαπβπ2222sin 21sin sin 2sin 2sin 346-=-<≤-,试求,的最值。
解:∵4πβ6π<≤-∴-22sin 21<≤β,21sin 02<≤β ∴1sin 202<≤β ∵23222sin sin sin βαα=- ∴03212≤-<sin sin αα即⎪⎪⎩⎪⎪⎨⎧<<-≤≤≤⇒⎪⎩⎪⎨⎧<--≥-1sin 310sin 1sin 3201sin 2sin 30sin 2sin 322ααααααα或 ∴ 1αsin 320αsin 31<≤≤<-或y=41)21(sin sin 21)sin 2sin 3(21sin 21sin 22222--=--=-αααααβ 当sin α∈[32,1]时函数y 递增,∴当sina=23时 y min =92-; 当sin α∈(31-,0)时,函数y 递减,∴当sin α=0时,y min =21∴ 故当)sin 21(sin ,92)sin 21(sin 32sin 22min 22αβαβα--=-=时,无最大值【变式】设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.解:由y =2(cos x -2a )2-2242+-a a 及cos x ∈[-1,1]得:f (a )⎪⎪⎩⎪⎪⎨⎧≥-<<-----≤)2( 41)22( 122)2( 12a a a a aa ∵f (a )=21,∴1-4a =21⇒a =81∉[2,+∞) 故-22a -2a -1=21,解得:a =-1,此时,y =2(cos x +21)2+21,当cos x =1时,即x =2k π,k ∈Z ,y max =5.【例5】(角的变换)已知2π<β<α<4π3,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________. 解:∵2π<β<α<4π3,∴0<α-β<4π.π<α+β<4π3, ∴sin(α-β)=.54)βα(sin 1)βαcos(,135)βα(cos 122-=+--=+=-- ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=【变式】(1)已知8cos(2α+β)+5cos β=0,求tan(α+β)·tan α的值; (2)已知5cos 3sin cos sin 2-=θ-θθ+θ,求θ+θ2sin 42cos 3的值。
解:(1)从变换角的差异着手。
∵ 2α+β=(α+β)+α,β=(α+β)-α ∴ 8cos[(α+β)+α]+5cos[(α+β)-α]=0 展开得:13cos(α+β)cos α-3sin(α+β)sin α=0 同除以cos(α+β)cos α得:tan(α+β)tan α=313(1)以三角函数结构特点出发 ∵3tan 1tan 2cos 3sin cos sin 2-θ+θ=θ-θθ+θ ∴ 53tan 1tan 2-=-θ+θ ∴ tan θ=2 ∴ 57tan 1tan 8tan 33cos sin cos sin 8)sin (cos 32sin 42cos 3222222=θ+θ+θ-=θ+θθθ+θ-θ=θ+θ 【例6】已知奇函数f (x )的定义域为实数集,且f (x )在[0,)+∞上是增函数,当02πθ≤≤时,是否存在这样的实数m ,使2(42cos )(2sin 2)(0)f m m f f θθ--+>对所有的[0,]2πθ∈均成立?若存在,求出所有适合条件的实数m ;若不存在,说明理由。