6-三角函数的化简与求值(练习)

合集下载

高中数学三角函数的恒等变换及化简求值精选题

高中数学三角函数的恒等变换及化简求值精选题

三角函数的恒等变换及化简求值精选题一.选择题(共7小题) 1.若3ta n 4α=,则2c o s 2s in 2(αα+=)A .6425B .4825C .1D .16252.若3c o s ()45πα-=,则sin 2(α=)A .725B .15C .15-D .725-3.已知向量(sin ,2),(1,c o s )ab θθ=-=,且ab⊥,则2sin 2c o s θθ+的值为( )A .1B .2C .12D .34.若1ta n 3θ=,则c o s 2(θ=)A .45-B .15- C .15D .455.已知角α的终边经过点(2,1)P -,则sin c o s (sin c o s αααα-=+ )A .3B .13C .13-D .3- 6.已知函数()s in (2)6f x x π=-,若方程3()5f x =的解为1x ,212(0)x x x π<<<,则12sin ()(x x -=)A .45-B .35-C .3-D .3-7.已知1ta n 4ta n θθ+=,则2c o s ()(4πθ+=)A .12B .13C .14D .15二.填空题(共15小题)9.设当x θ=时,函数()s in o s f x x x=+取得最大值,则ta n ()4πθ+=.10.求值:s in 50(1n 10)︒+︒=.11.1s in 10c o s 10-=︒︒.12.已知s in 10c o s 102c o s 140m ︒+︒=︒,则m=.13.4c o s 50ta n 40︒-︒=.14.2c o s 10s in 20s in 70︒-︒=︒.15.已知1ta n 31ta n αα+=-,则2sin 2sin co s 1ααα-+=.16.若1s in ()43πα-=,则c o s ()4πα+=.17.若o s 2in 2c o s ()4θθπθ=+,则s in 2θ=.18.若ta n 3α=,则s in 2ta n ()4απα+的值为 .19.若ta n 3,(0,)2παα=∈,则c o s ()4πα-=.20.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为2s in 18m =︒,若24m n +=,si n 63=︒.21.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现0.618就是黄金分割,这是一个伟大的发现,这一数值也表示为2s in 18a=︒,若24a b +=,则2=.22.函数2()ta n 60s in 2inf x x x=︒+在[,]2ππ上的值域为 .三.解答题(共3小题) 23.设函数()s in ()s in ()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω; (Ⅱ)将函数()yf x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.24.已知α,β为锐角,4ta n 3α=,c o s ()5αβ+=-(1)求c o s 2α的值; (2)求tan ()αβ-的值.25.已知函数22()s inc o s in f x x x x =--co s ()x x R ∈.(Ⅰ)求2()3f π的值.(Ⅱ)求()f x 的最小正周期及单调递增区间.三角函数的恒等变换及化简求值精选题25道参考答案与试题解析一.选择题(共7小题) 1.若3ta n 4α=,则2c o s 2s in 2(αα+=)A .6425B .4825C .1D .1625【分析】将所求的关系式的分母“1”化为22(c o s sin )αα+,再将“弦”化“切”即可得到答案. 【解答】解:3ta n 4α=,22222314c o s 4s in c o s 14ta n 644c o s 2s in 29s in c o s ta n 125116ααααααααα+⨯++∴+====+++.故选:A .【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题. 2.若3c o s ()45πα-=,则sin 2(α=)A .725B .15C .15-D .725-【分析】法1︒:利用诱导公式化s in 2c o s (2)2παα=-,再利用二倍角的余弦可得答案.法︒:利用余弦二倍角公式将左边展开,可以得s in c o s αα+的值,再平方,即得s in2α的值【解答】解:法31:c o s ()45πα︒-=,297s in 2c o s (2)c o s 2()2c o s ()1212442525πππαααα∴=-=-=--=⨯-=-,法32:c o s ()in c o s )425πααα︒-=+=,∴19(1s in 2)225α+=,97s in 2212525α∴=⨯-=-,故选:D .【点评】本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题.3.已知向量(sin ,2),(1,c o s )ab θθ=-=,且ab⊥,则2sin 2c o s θθ+的值为( )A .1B .2C .12D .3【分析】由题意可得a b ⋅=,即解得ta n 2θ=,再由222222s in c o s c o s 2ta n 1s in 2c o s c o s s in 1ta n θθθθθθθθθ+++==++,运算求得结果.【解答】解:由题意可得sin 2co s 0ab θθ⋅=-=,即ta n 2θ=.222222s in c o s c o s 2ta n 1s in 2c o s 1c o s s in 1ta n θθθθθθθθθ++∴+===++,故选:A .【点评】本题主要考查两个向量数量积公式的应用,两个向量垂直的性质;同角三角函数的基本关系的应用,属于基础题. 4.若1ta n 3θ=,则c o s 2(θ=)A .45-B .15- C .15D .45【分析】原式利用二倍角的余弦函数公式变形,再利用同角三角函数间的基本关系化简,将ta n θ的值代入计算即可求出值.【解答】解:1ta n 3θ=,22224c o s 22c o s 11111519ta n θθθ∴=-=-=-=++.故选:D .【点评】此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.5.已知角α的终边经过点(2,1)P -,则sin c o s (sin c o s αααα-=+ )A .3B .13C .13-D .3-【分析】先根据已知条件得到ta n α,再化简s in c o s s in c o s αααα-+代入即可得到结果.【解答】解:因为角α的终边经过点(2,1)P -,所以1ta n 2α=-,则11s in c o s ta n 1231s in c o s ta n 112αααααα----===-++-+,故选:D .【点评】本题考查三角函数的化简求值,着重考查同角三角函数的基本关系式,考查任意角的三角函数的定义,属于中档题. 6.已知函数()s in (2)6f x x π=-,若方程3()5f x =的解为1x ,212(0)x x x π<<<,则12sin ()(x x -=)A .45- B .35-C.3-D.3-【分析】由已知可得2123x x π=-,结合12x x <求出1x 的范围,再由12112s i n ()s i n (2)c o s (2)36x xx x ππ-=-=--求解即可. 【解答】解:因为0x π<<,∴112(,)666x πππ-∈-,又因为方程3()5f x =的解为1x ,212(0)x x x π<<<,∴1223x x π+=,∴2123x x π=-,∴12112s in ()s in (2)c o s (2)36x x x x ππ-=-=--,因为12212,3x x x x π<=-,103x π∴<<,∴12(,)662x πππ-∈-,∴由113()s in (2)65f x x π=-=,得14c o s (2)65x π-=,∴124s in ()5x x -=-,故选:A .【点评】本题考查了三角函数的恒等变换及化简求值和三角函数的图象与性质,属中档题. 7.已知1ta n 4ta n θθ+=,则2c o s ()(4πθ+=)A .12B .13C .14D .15【分析】由已知求得s in c o s θθ的值,再由二倍角的余弦及诱导公式求解2c o s ()4πθ+的值.【解答】解:由1ta n 4ta n θθ+=,得s in c o s 4c o s s in θθθθ+=,即224s in c o s s in c o s θθθθ+=,1s in c o s 4θθ∴=,∴21c o s (2)1s in 22c o s ()422πθπθθ++-+==11212s in c o s 14224θθ-⨯-===.故选:C .【点评】本题考查三角函数的化简求值,考查了同角三角函数基本关系式及诱导公式的应用,是基础题.二.填空题(共15小题) 9.设当xθ=时,函数()s in o s f x x x=+取得最大值,则ta n ()4πθ+=2+【分析】()f x 解析式提取,利用两角和与差的正弦公式化为一个角的正弦函数,由x θ=时函数()f x 取得最大值,得到θ的取值,后代入正切公式中计算求值.【解答】解:()sin o s 2sin ()3f x x x x π=+=+;当xθ=时,函数()f x 取得最大值2,32k k zππθπ∴+=+∈;26k πθπ∴=+,kz∈;∴1ta n ()ta n (2)ta n ()2464463k πππππθπ++=++=+==+故答案为:2+.【点评】本题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,熟练掌握公式是解本题的关键.10.求值:s in 50(1n 10)︒+︒=1 .【分析】先把原式中切转化成弦,利用两角和公式和整理后,运用诱导公式和二倍角公式化简整理求得答案.【解答】解:原式2s in 40s in 80c o s 10s in 50c o s 401c o s 10c o s 10c o s 10c o s 10︒︒︒=︒⋅=︒===︒︒︒︒故答案为:1【点评】本题主要考查了三角函数的恒等变换及其化简求值,以及两角和公式,诱导公式和二倍角公式的化简求值.考查了学生对三角函数基础知识的综合运用. 11.1s in 10c o s 10-=︒︒4 .【分析】s in 10c o s 10得结果.【解答】解:12(c o s 10in 10)1221s in 10c o s 10s in 10c o s 10s in 202︒-︒-==︒︒︒︒︒4s in 20420S in ==故答案为:4【点评】本题主要基础知识的考查,考查了在三角函数的化简与求值中,综合运用二倍角正弦公式、两角和的正弦公式,要求考生熟练运用公式对三角函数化简. 12.已知s in 10c o s 102c o s 140m ︒+︒=︒,则m=【分析】由题意可得2c o s 140s in 10c o s 10m ︒-︒=︒,再利用三角恒等变换求得它的值. 【解答】解:由题意可得2c o s 140s in 102c o s 40s in 102c o s (3010)s in 10c o s 10c o s 10c o s 10m ︒-︒-︒-︒-︒+︒-︒===︒︒︒2c o s 10s in 10s in 102c o s 10-︒+︒-︒==︒故答案为:【点评】本题主要考查三角恒等变换,属于中档题. 13.4c o s 50ta n 40︒-︒=【分析】表达式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果. 【解答】解:4c o s 50ta n 404s in 40ta n 40︒-︒=︒-︒4s in 40c o s 40s in 40c o s 40︒︒-︒=︒2s in 80s in (3010)c o s 40︒-︒+︒=︒12c o s 10c o s 10in 1022c o s 40︒-︒-︒=︒3c o s 10in 1022c o s 40︒-︒=︒==.【点评】本题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键. 14.2c o s 10s in 20s in 70︒-︒=︒【分析】利用两角和差的余弦公式,进行化简即可.【解答】解:原式12o s 20s in 20)s in 202c o s (3020)s in 2022c o s 20c o s 20︒+︒-︒︒-︒-︒==︒︒o s 20s in 20s in 20o s 20c o s 20c o s 20︒+︒-︒︒===︒︒【点评】本题主要考查三角函数值的化简,利用两角和差的余弦公式是解决本题的关键. 15.已知1ta n 31ta n αα+=-,则2sin 2sin co s 1ααα-+=25.【分析】由1ta n 31ta n αα+=-,我们可计算出ta n α的值,由于2sin α2c o s +α1=,所以将所求的代收式变形为222222s in c o s s in s in c o s s in c o s ααααααα-+++,然后化弦为切,代入求值.【解答】解:1ta n 31ta n αα+=-,1ta n 2α∴=.22222222222112()212s in c o s 2ta n 1222s in 2s in c o s 1115()12s in s in c o s ta n ta n s in c o s ta n αααααααααααααα⨯-⨯+-++-++∴-+====+++. 故答案是:25.【点评】本题考查的知识点是三角函数的恒等变换及化简求值,同角三角函数间的基本关系,解题的关键是将角的弦化切,属于中档题. 16.若1s in ()43πα-=,则c o s ()4πα+=13.【分析】由已知利用诱导公式化简所求即可得解. 【解答】解:1sin ()43πα-=,∴1c o s ()s in (())s in ()42443a ππππαα+=--=-=.故答案为:13.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题. 17.若o s 2in 2c o s ()4θθπθ=+,则s in 2θ=23-.【分析】由已知利用三角函数恒等变换的应用可得:2(c o s s in )in 2θθθ+=,平方后整理可得:23sin 24sin 240θθ--=,进而解得s in 2θ的值. 【解答】解:o s 22c o s()4θθπθ=+,∴2(c o s s in )in 22θθθ=+=,∴平方可得:24(1sin 2)3sin 2θθ+=,整理可得:23sin 24sin 240θθ--=,∴解得:2s in 23θ=-,或2(舍去).故答案为:23-.【点评】本题主要考查了三角函数恒等变换的应用,考查了计算能力和转化思想,属于中档题. 18.若ta n 3α=,则s in 2ta n ()4απα+的值为310-.【分析】直接利用三角函数关系式的变换和倍角公式的应用求出结果.【解答】解:由于ta n 3α=,所以22ta n 3s in 21ta n 5ααα==+,1ta n 4ta n ()241ta n 2πααα++===---所以3s in 235210ta n ()4απα==--+.故答案为:310-【点评】本题考查的知识要点:三角函数关系式的恒等变换,倍角公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 19.若ta n 3,(0,)2παα=∈,则c o s ()4πα-=5.【分析】由已知结合同角三角函数基本关系式求解s in α、c o s α的值,然后展开两角差的余弦求解.【解答】解:由ta n 3α=,得s in 3c o s αα=,即s in 3c o s αα=.又22sin c o s 1αα+=,且(0,)2πα∈,解得:s in 10α=,c o s 10α=.∴c o s ()c o s c o s s in s in4441021025πππααα-=+=+=.故答案为:5.【点评】本题考查三角函数的化简求值,考查了同角三角函数基本关系式及两角差的余弦,是基础题.20.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为2s in 18m=︒,若24m n +=,则s i n 63m +=︒【分析】根据三角函数同角三角函数关系表示n ,利用辅助角公式结合两角和差的正弦公式进行化简即可. 【解答】解:2s in 18m =︒,∴由24m n +=,得222444sin 184co s 18nm =-=-︒=︒,则2s in 182c o s 18in (4518)in 63s in 63s in 63s in 63s in 63m +︒+︒︒+︒︒====︒︒︒︒故答案为:【点评】本题主要考查三角函数值的化简和求解,利用辅助角公式以及两角和差的正弦公式进行化简是解决本题的关键.21.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现0.618就是黄金分割,这是一个伟大的发现,这一数值也表示为2s in 18a=︒,若24a b +=,则2=12-.【分析】由已知利用同角三角函数基本关系式可求24co s 18b =︒,然后利用降幂公式,诱导公式,二倍角的正弦函数公式化简得答案. 【解答】解:2s in 18a =︒,若24a b +=,2222444sin 184(1sin 18)4c o s 18b a∴=-=-︒=-︒=︒,∴22c o s 54sin 3614sin 18c o s 182sin 362-︒-︒====-︒︒︒,故答案为:12-.【点评】本题主要考查了同角三角函数基本关系式,降幂公式,诱导公式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.22.函数2()ta n 60s in 2inf x x x=︒+在[,]2ππ上的值域为.【分析】由已知利用三角函数恒等变换的应用可求()in (2)4f x x π=-+[,]2x ππ∈,可得:32[44x ππ-∈,7]4π,进而利用正弦函数的性质即可得解.【解答】解:2()tan 60sin 22f x x x=︒+1c o s 2in 22xx -=+2o s 2x x=+-in (2)4x π=-+又[,]2x ππ∈,可得:32[44xππ-∈,7]4π,s in (2)[14x π∴-∈-,2,可得()in (2)4f x x π=-+-,.故答案为:.【点评】本题主要考查了三角函数恒等变换的应用及正弦函数的性质,考查了转化思想和函数思想,属于基础题. 三.解答题(共3小题) 23.设函数()s in ()s in ()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω; (Ⅱ)将函数()yf x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数()f x 为正弦型函数,根据()06f π=求出ω的值;(Ⅱ)写出()f x 解析式,利用平移法则写出()g x 的解析式,求出[4x π∈-,3]4π时()g x 的最小值.【解答】解:(Ⅰ)函数()s in ()s in ()62f x x x ππωω=-+-s in c o sc o s s ins in ()662x x x πππωωω=---3in c o s 22x xωω=-in ()3x πω=-,又()in ()0663f πππω=-=,∴63k ππωπ-=,k Z∈,解得62k ω=+,又03ω<<,2ω∴=;(Ⅱ)由(Ⅰ)知,()in (2)3f x x π=-,将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数in ()3y x π=-的图象;再将得到的图象向左平移4π个单位,得到in ()43yx ππ=+-的图象,∴函数()in ()12yg x x π==-;当[4x π∈-,3]4π时,[123xππ-∈-,2]3π,s in ()[122x π∴-∈-,1],∴当4xπ=-时,()g x取得最小值是322-=-.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题. 24.已知α,β为锐角,4ta n 3α=,c o s ()5αβ+=-(1)求c o s 2α的值; (2)求tan ()αβ-的值.【分析】(1)由已知结合平方关系求得s in α,c o s α的值,再由倍角公式得c o s 2α的值; (2)由(1)求得t a n 2α,再由c o s ()5αβ+=-求得t a n (αβ+,利用tan ()tan [2()]αβααβ-=-+,展开两角差的正切求解.【解答】解:(1)由22431s in c o s s in c o s ααααα⎧=⎪⎪+=⎨⎪⎪⎩为锐角,解得4s in 53c o s 5αα⎧=⎪⎪⎨⎪=⎪⎩,227c o s 225c o s s in ααα∴=-=-;(2)由(1)得,24s in 22s in c o s 25ααα==,则s in 224ta n 2c o s 27ααα==-.α,(0,)2πβ∈,(0,)αβπ∴+∈,s in ()5αβ∴+==.则s in ()ta n ()2c o s ()αβαβαβ++==-+.ta n 2ta n ()2ta n ()ta n [2()]1ta n 2ta n ()11ααβαβααβααβ-+∴-=-+==-++.【点评】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,是中档题. 25.已知函数22()s inc o s in f x x x x =--co s ()x x R ∈.(Ⅰ)求2()3f π的值.(Ⅱ)求()f x 的最小正周期及单调递增区间.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:2()3f π的值.(Ⅱ)根据正弦型函数的图象和性质,可得()f x 的最小正周期及单调递增区间【解答】解:函数22()s inc o s in f x x x x =--7c o s in 2c o s 22s in (2)6x x x x π=-=+(Ⅰ)2275()2s in (2)2s in 23362f ππππ=⨯+==,(Ⅱ)2ω=,故Tπ=,即()f x 的最小正周期为π,由72[262xk πππ+∈-+,2]2k ππ+,k Z∈得:5[6x k ππ∈-+,]3k ππ-+,kZ∈,故()f x 的单调递增区间为5[6k ππ-+,]3k ππ-+或写成[6k ππ+,2]3k ππ+,kZ∈.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档。

三角函数化简题

三角函数化简题

日期:2009年 月 日星期,能正确地运用三角公式进行三角函数式的化简与恒等式的证明.用.1常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等;2化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2、三角函数的求值类型有三类:1给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;2给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;3给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角;3、三角等式的证明:1三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;2三角条件等式的证题,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明;.三角函数的求值: ,化非特殊角为特殊角; 2.正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值; 3.一些常规技巧:“1”的代换、切割化弦、和积互化、异角化同角等. 1.三角函数式的化简: 三角函数式的化简常用方法是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角的三角函数互化. 2.三角恒等式的证明: 三角恒等式包括有条件的恒等式和无条件的恒等式.①无条件的等式证明的基本方法是化繁为简、左右归一、变更命题等,使等式两端的“异”化为“同”;②有条件的等式常1、已知θ是第三象限角,且4459sin cos θθ+=,那么2sin θ等于 AA 、3B 、3-C 、23D 、23-2、函数222y sin x x =--+的最小正周期 BA 、2πB 、πC 、3πD 、4π3、tan 70cos10(3tan 201)-等于 DA 、1B 、2C 、-1D 、-24、已知46sin (4)4m m m αα-=≠-,则实数m 的取值范围是__-1,73___;5、设10,sin cos 2απαα<<+=,则cos2α=__4-___;例1.已知3sin 5m m θ-=+,42cos 5m m θ-=+2πθπ<<,则tan θ= C ()A 423m m -- ()B 342m m -±- ()C 512- ()D 34-或512-略解:由22342()()155m m m m --+=++得8m =或0m =舍,∴5sin 13θ=,∴5tan 12θ=-.例2.已知1cos(75)3α+=,α是第三象限角,求cos(15)sin(15)αα-+-的值.解:∵α是第三象限角,∴36025575360345k k α⋅+<+<⋅+k Z ∈,∵1cos(75)3α+=,∴75α+是第四象限角,∴sin(75)α+==,∴原式221cos(15)sin(15)sin(75)cos(75)3αααα+=---=+-+=-. 例3.已知2sin sin 1θθ+=,求243cos cos 2sin 1θθθ+-+的值.解:由题意,22sin 1sin cos θθθ=-=,∴原式223sin sin 2sin 1sin 1cos 1sin sin 22θθθθθθθ=+-+=+-+=-+=.例4.已知8cos(2)5cos 0αββ++=,求tan()tan αβα+⋅的值. 解:∵2()αβαβα+=++,()βαβα=+-, ∴8cos[()]5cos[()]0a αβααβ++++-=,得13cos()cos 3sin()sin αβααβα+=+,若cos()cos 0αβα+≠,则13tan()tan 3αβα+⋅=,若cos()cos 0αβα+=,tan()tan αβα+⋅无意义.说明:角的和、差、倍、半具有相对性,如()()βαβαβαα=+-=-+,2()()ααβαβ=++-,2()αβαβα+=++等,解题过程中应充分利用这种变形.例5.已知关于x 的方程221)0x x m -+=的两根为sin ,cos ,(0,2)θθθπ∈,求:1sin cos1cot 1tan θθθθ+--的值;2m 的值;3方程的两根及此时θ的值. 解:1由根与系数的关系,得sin cos sincos 2m θθθθ⎧+=⎪⎪⎨⎪⋅=⎪⎩, ∴原式2222sin cos sin cos sin cos sin cos cos sin sin cos θθθθθθθθθθθθ-=+==+=---.2由①平方得:12sincos θθ+⋅=sin cos θθ⋅=即2m =,故m =.3当221)0x x -=,解得1212x x ==, ① ②∴sin 21cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩或1sin 2cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,∵(0,2)x π∈,∴3πθ=或6π.例1.化简:23tan123sin12(4cos 122)--; 2(cot tan )(1tan tan )222αααα-+⋅;(1sin cos )(sin cos ))θθθθθπ++-<<. 解:1原式213sin12cos12)3sin123cos12222sin12cos12(2cos 121)sin 24cos24--==- sin 482==-2原式1cos 1cos sin 1cos ()(1)sin sin cos sin αααααααα+--=-+⋅2cos 1cos 1(1)2cot (11)2csc sin coscos ααααααα-=+=+-=.3原式2(2cos 2cos sin )(sin cos )θθθθθ+-=2cos (cos sin )(sin cos )θθθθθ+-=222cos (sin cos )cos (cos )22222|cos ||cos |22θθθθθθθ--== ∵0θπ<<,∴022θπ<<,∴|cos |cos 22θθ=,∴原式cos θ=-.例3.证明:1222(3cos 4)tan cot 1cos 4x x x x ++=-;2sin(2)sin 2cos()sin sin A B B A B A A+-+=.证:1左边22442222222222sin cos sin cos (sin cos )2sin cos 1cos sin sin cos sin 24x x x x x x x xx x x x x ++-=+==22222111sin 21sin 284sin 244cos 222111cos 41cos 4sin 2(1cos 4)48x xx x x x x x ---+====--- 42(1cos 4)2(3cos 4)1cos 41cos 4x x x x+++===--右边,∴得证.说明:由等式两边的差异知:若选择“从左证到右”,必定要“切化弦”;若“从右证到左”,必定要用倍角公式.2左边sin[()]2cos()sin sin A B B A B A A ++-+=sin()cos cos()sin sin A B A A B AA+-+=sin[()]sin sin sin A B A B A A+-===右边,∴得证.1.若cos130a =,则tan 50=D()A()B± ()C()D 2.(1tan 20)(1tan 21)(1tan 24)(1tan 25)++++=B()A 2 ()B 4 ()C 8()D 163.化简:42212cos 2cos 2.2tan()sin ()44x x x x ππ-+-+ 答案:1cos 22x 4.设3177cos(),45124x x πππ+=<<,求2sin 22sin 1tan x x x +-的值;答案:2875- 6.已知11sin()cos [sin(2)cos ],022αβααβββπ+-+-=<<,求β的值;答案:2π7.05北京卷已知tan 2α=2,求I tan()4πα+的值;II 6sin cos 3sin 2cos αααα+-的值.解:I ∵ tan2α=2, ∴ 22tan2242tan 1431tan 2ααα⨯===---; 所以tan tantan 14tan()41tan 1tan tan 4παπααπαα+++==--=41134713-+=-+; II 由I, tan α=-34, 所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2αα+-=46()173463()23-+=--.8.05全国卷已知函数2()2sin sin 2,[0,2].f x x x x =+∈π求使()f x 为正值的x 的集合. 解:∵()1cos 2sin 2f x x x =-+………………………………………………2分1)4x π=-…………………………………………………4分()01)04f x x π∴>⇔->sin(2)4x π⇔->…………6分 5222444k x k πππππ⇔-+<-<+…………………………8分 34k x k πππ⇔<<+…………………………………………10分 又[0,2].x π∈ ∴37(0,)(,)44x πππ∈⋃………………………12分9.05浙江卷已知函数fx =-3sin 2x +sin x cos x .Ⅰ 求f 256π的值; Ⅱ 设α∈0,π,f 2α=41-2,求sin α的值.解:Ⅰ25125sin,cos626ππ==225252525()sin cos 06666f ππππ=+=Ⅱ 1()2sin 2222f x x x =-+11()cos sin 222242f ααα∴=+-=-011sin 4sin 162=-α-α 解得8531sin ±=α 0sin ),0(>α∴π∈α 8531sin +=∴a 1.1sin 4cos 41sin 4cos 4αααα++=+-B()A cot α ()B cot 2α()C tan α()D tan 2a2.已知()f x =当53(,)42ππα∈时,式子(sin 2)(sin 2)f f αα--可化简为 D()A 2sin α ()B 2cos α- ()C 2sin α- ()D 2cos α 3.222cos 12tan()sin ()44αππαα-=-+ 1 .§三角函数的化简、求值与证明 日期:2009年 月 日星期 一、选择题1、已知1sin()43πα-=,则cos()4πα+的值等于 D A、3 B、3- C 、13 D 、13-2、已知tan α、tan β是方程240x ++=的两根,且(,)22ππαβ∈-、,则αβ+等于BA 、3π B 、23π- C 、3π或23π- D 、3π-或23π3、化简23cos (1sin )[2tan()]422cos ()42x xx x ππ+---为 BA 、sin xB 、cos xC 、tan xD 、cot x4、全国卷Ⅲ22sin 2cos 1cos 2cos 2⋅=+ααααB A tan α B tan 2αC 1 D125、山东卷函数⎪⎩⎪⎨⎧≥<<-π=-0,01),sin()(12x e x x x f x ,若2)()1(=+a f f ,则a 的所有可能值为 BA1 B 22,1-C 22-D 22,1二、填空题6、全国卷Ⅱ设a 为第四象限的角,若513sin 3sin =a a ,则tan 2a =_____43-_________. 7、北京卷已知tan 2α=2,则tanα的值为-34,tan ()4πα+的值为 -718、已知tan()34πθ+=,则2sin 22cos θθ-的值为___45-____;9、已知A 、B 为锐角,且满足tan tan tan tan 1A B A B =++,则cos()A B +=_2-_. 三、解答题 10、求证:21tan 1sin 2.12sin 1tan 22αααα++=--11、已知2sin 22sin ()1tan 42k ααππαα+=<<+,试用k 表示sin cos αα-的值;12、求值:23)csc12.4cos 122--答案:-13、已知tan tan αβ=,求(2cos 2)(2cos 2)αβ--的值;答案:3备用题参考资料。

数学分类汇编(12)三角函数的化简与求值(含答案)

数学分类汇编(12)三角函数的化简与求值(含答案)

(山东省德州市2019届高三期末联考数学(理科)试题)8.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为,大正方形的面积为,直角三角形中较小的锐角为,则()A. B. C. D.【答案】D【解析】【分析】由图形可知三角形的直角边长度差为a,面积为6,列方程组求出直角边得出sinθ,代入所求即可得出答案.【详解】由题意可知小正方形的边长为a,大正方形边长为5a,直角三角形的面积为6,设直角三角形的直角边分别为x,y且x<y,则由对称性可得y=x+a,∴直角三角形的面积为S xy=6,联立方程组可得x=3a,y=4a,∴sinθ,tanθ=.∴===,故选:D.【点睛】本题考查了解直角三角形,三角恒等变换,属于基础题.(山东省潍坊市2019届高三上学期期末测试数学(理科)试题)3.若,则()A. B. C. D.【答案】C【解析】【分析】本道题化简式子,计算出,结合,即可.【详解】,得到,所以,故选C.【点睛】本道题考查了二倍角公式,难度较小.(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)14.已知,则_______【答案】【解析】原式化为,,所以,,填。

(江西省新余市2019届高三上学期期末考试数学(理)试题)15.已知,则______.【答案】【解析】【分析】根据同角的三角函数的关系和二倍角公式即可求出.【详解】解:,,,,,故答案为:.【点睛】本题考查同角的三角函数关系式和二倍角公式的应用,属于基础题.(湖南省长沙市2019届上学期高三统一检测理科数学试题)15.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边过点,则__________.【答案】【解析】【分析】结合终边过点坐标,计算出,结合二倍角公式和余弦两角和公式,即可。

【详解】,所以【点睛】本道题考查了二倍角公式与余弦的两角和公式,难度中等。

三角函数的化简求值(含答案)

三角函数的化简求值(含答案)

三角函数的化简求值一、单选题(共10道,每道10分)1.化简的结果是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:形如asinx+bcosx的化简2.化简的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:形如asinx+bcosx的化简3.下列选项中,不是化简的结果的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:形如asinx+bcosx的化简4.化简的结果的是( )A.,其中B.,其中C.,其中D.,其中答案:B解题思路:试题难度:三颗星知识点:形如asinx+bcosx的化简5.函数()的值域为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:形如asinx+bcosx的化简6.函数()的值域为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:形如asinx+bcosx的化简7.已知函数,若为偶函数,则的一个值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:形如asinx+bcosx的化简8.函数()的值域为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:形如asinx+bcosx的化简9.函数()的值域为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:形如asinx+bcosx的化简10.函数()的值域是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:形如asinx+bcosx的化简。

三角函数式的化简求值训练

三角函数式的化简求值训练

)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β. 2.二倍角的正弦、余弦、正切公式.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)T 2α:tan 2α=2tan α1-tan 2α. 3.有关公式的逆用、变形等.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin èæøöα±π4. =α+β2-α-β2;α-β2=èæøöα+β2-èæøöα2+β.原则: 用已知表示待求用已知表示待求 (2) 化简技巧:切化弦、“1”的代换等.的代换等. 6 三个变化三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:变名:通过变换函数名称达到减少函数种类的目的,通过变换函数名称达到减少函数种类的目的,通过变换函数名称达到减少函数种类的目的,其手法通常有其手法通常有“切化弦”、“升幂与降幂”等.等.(3)等.等.二 典型题目1 三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan èæøöπ4-x sin 2èæøöπ4+x. 【训练1】 化简 (sin cos 1)(sin cos 1)sin 2a a a a a+--+:. 1三角三角函数式函数式的化简求值训练 一.重要公式与方法技巧:1 两角和与差的两角和与差的正弦正弦、余弦、正切公式、余弦、正切公式(1)C (α-β):cos(α-β4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2c os(α-φ),其中φ可由a ,b 的值唯一确定.的值唯一确定. 5两个技巧两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与分解与组合组合”、“配方与配方与平方平方”<π2<α<π,且cos èæøöα-β2=-19,sin èæøöα2-β=23,求cos(α+β)的值.的值.【训练2】 已知α,β∈èæøö0,π2,sin α=45,tan(α-β)=-13,求cos β的值.的值.三 三角函数的求角问题三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β. 【训练3】 已知α,β∈èæøö-π2+33x +4=0的两个根,求α+β的值.的值.四 三角函数的综合应用三角函数的综合应用【例4】►已知函数f (x )=2cos 2x +sin 2x .(1)求f èæø-π62二 三角三角函数式函数式的求值的求值【例2】►已知0<β,π2,且tan α,tan β是方程x 2öπ3的值;(2)求f (x )的最大值和最小值.和最小值.【训练4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;的最小正周期;(2)求f (x )在区间ëéûù,π2上的最大值和最小值.上的最大值和最小值.一、给值求值一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的求另外一些角的三角函数值三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式把所求角用含已知角的式子表示子表示,求解时要注意角的范围的讨论.角的范围的讨论.3【示例】►已知tan èæøöx +π4=2,则tan =12,tan β,π2. (1)求sin θ和cos θ的值;的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.的值.【课后巩固】1.81cos sin =×a a ,且4p <a <2p,则a a sin cos -的值为:的值为:A 、23B 、23-C 、43D 、43-2.已知a a aa a cos 3sin 2cos sin ,2tan +--=则的值是的值是A 、-1 B 、1 C 、-3 D 、3 3.已知=-=+-=-)sin(,21sin cos ,43cos sin a b b a b a 则A 、3219B 、3219-C 、0 D 、1916-4.已知 5.已知3sin(),45x p -=则sin 2x 的值为的值为 ( )A.1925 B.1625 C.1425 D.7256.已知1sin cos 5q q -=,则sin 2q 的值是的值是A 、45B 、45-C 、2425D 、-24257.已知54)cos(-=-b a 54)cos(=+b a ),2(p p b a Î-)2,23(p p b a Î+则cos2a =( ) xtan 2x 的值为________.二、给值求角二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式把所求角用含已知角的式子表示子表示,由所得的函数值结合该函数的单调由所得的函数值结合该函数的单调区间区间求得角.求得角.【示例】►已知tan(α-β)=-17,且α,β∈(0,π),求2α-β的值.的值. ▲三角恒等变换与▲三角恒等变换与向量向量的综合问题的综合问题 两角和与差的两角和与差的正弦正弦、余弦、正切公式作为解题工具,是每年余弦、正切公式作为解题工具,是每年高考高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.高考的一个新考查方向.【示例】► 已知向量a =(sin θ,-2)与b =(1,cos θ)互相互相垂直垂直,其中θ∈èæøö0q tam 和)4(q p-tam 是方程02=++q px x 的两根,则p 、q 间的关系是:间的关系是: A 、01=+-q p B 、01=++q p C 、01=-+q p D 、01=--q p4A 、257-B 、257C 、1-D 、1 8.22cos 75cos 15cos75cos15++ 的值等于(的值等于( ) A 、62 B 、32 C 、54D 、1+349.已知tan(α+β)=52,tan(β-4p )=41,那么tan(α+4p )的值是的值是A .1813 B .223 C .2213 D .18310.若,(0,)2pa b Î,3cos()22ba -=,1sin()22a b -=-,则cos()a b +的值等于 (A )32-(B )12- (C )12(D )32 11、已知tan 2a =,求2212sin cos cos sin a a a a +-12.求tan200+tan400+3tan200tan400的值. 13.已知3110,tan 4tan 3pa p a a<<+=-(Ⅰ)求tan a的值;(Ⅱ)求225sin 8sin cos 11cos 822222sin 2a a a a p a ++-æö-ç÷èø 14.已知40,sin 25pa a <<=(Ⅰ)求22sin sin 2cos cos 2a a a a++的值;(Ⅱ)求5tan()4pa -的值。

高中数学专题:三角函数的化简与求值

高中数学专题:三角函数的化简与求值

2+3,
则常数 a=________.
解析
1+2cos2x-1 f(x)= 2cos x +sin
x+a2sinx+π4
=cos x+sin x+a2sinx+π4
= 2sinx+4π+a2sinx+π4 =( 2+a2)sinx+4π. 依题意有 2+a2= 2+3, ∴a=± 3.
答案 ± 3
α
=2
2sin
α=-2
5
5 .
答案 A
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
4.已知f(x)=sin2
x+4π,若a=f(lg
5),b=f(lg
1 5
),则(
)
A.a+b=0
B.a-b=0
C.a+b=1
D.a-b=1
解析 a=f(lg 5)=sin2(lg 5+4π)
1-cos2lg
2 .
又∵cosπ4-β2= 33,-2π<β<0, ∴sinπ4-β2= 36,
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
∴cosα+2β=cosπ4+α-π4-β2 =cosπ4+αcosπ4-β2+sinπ4+αsinπ4-β2 =13× 33+232× 36=593. 答案 C
=-41+34+1=23.
点评 熟练运用诱导公式和基本关系式,并确定相应三角 函数值的符号是解题的关键.另外,切化弦是常用的规律 技巧.
变式训练2 (1)(四川)已知sin α+2cos α=0, 则2sin αcos α-cos2α的值是________. 解析 ∵sin α+2cos α=0, ∴sin α=-2cos α, ∴tan α=-2, 又∵2sin αcos α-cos2α=2sinsiαn2cαo+s αc-osc2αos2α

考点15 三角函数式的化简与求值(答案)

考点15 三角函数式的化简与求值(答案)

,故选 B.
3.【2017
届广西玉林市、贵港市高中毕业班质量检测】若
cos

3sin
=
0
,则
tan

4
=


−1
1
A. 2
B.-2
C. 2
D.2
【答案】A
【解析】由 cos
− 3sin
=
0
tan
,知
=
1 3
,则
tan
− 4
=
tan −1 1+ tan
=

1 2
,故选 A

4.【山西省孝义市 2017 届高三下学期高考考前质量检测三(5 月)】已有角 的顶点与坐标原点重合,
+ cos2
sin ”;(3)化正弦、余弦为正切,即 cos
=
tan

tan = sin
(4)化正切为正弦、余弦,即
cos ;( 5 ) 正 弦 、 余 弦 和 ( 差 ) 与 积 的 互 化 , 即
(sin cos )2 =1 2sin cos .
tan = 3
1− sin 2 =
【变式 1】【例题中的条件不改变,所求三角函数式改变】若
【解析】
16 8 ,选 D.
【方法技巧归纳】二倍角公式的正用、逆用、变形用是公式的种主要应用手段,特别是二倍角的余弦 公式,其变形公式在求值与化简中有广泛的应用,在综合使用两角和与差、二倍角公式化简求值时,要注 意以下几点:(1)熟练掌握公式的正用、逆用和变形使用;(2)擅于拆角、配角;(3)注意二倍角的相对性; (4)注意角的范围;(5)熟悉常用的方法和技巧,如切化弦、异名化同名、异角化同角等.

三角函数化简求值典型例题

三角函数化简求值典型例题

三角函数化简求值典型例题三角函数,哎呀,这可真是个既神秘又有趣的世界!我们在生活中,常常能看到三角函数的身影,像是在建筑、导航,甚至是音乐中,都有它的身影。

你有没有想过,三角函数其实就像一个调皮的小孩,时不时就会给你带来一些意想不到的挑战。

今天,我们就来聊聊这些三角函数的化简与求值,带你一起深挖这个“秘密花园”。

咱们得了解一下三角函数的基本概念。

最常见的,可能就是正弦、余弦和正切了。

别看它们名字听起来复杂,其实它们就是个“角”的游戏。

就像在游乐园里,正弦和余弦这对好朋友总是一起玩耍。

你想象一下,正弦就像是一个在过山车上尖叫的小孩,余弦则是那个在旁边冷静地观察的朋友。

他们的关系其实很微妙,正弦的最高点和余弦的最低点,总是能碰到一起,真是有趣得很!我们来说说这些三角函数的化简。

化简就像是把一个复杂的拼图变得简单明了。

比如说,咱们有一个表达式,像是sin²(x) + cos²(x),这看起来是不是有点复杂?但它有个神秘的特性,就是总能化简成1。

这就好比你在忙碌的一天中,突然发现原来生活中的小确幸其实一直都在。

每次看到这个化简,我都忍不住想笑,真是简单又快乐!再看看这个正切函数,tanj = sinj/cosj。

这个家伙有点特别,常常让人捉摸不透。

有时候它显得那么高深莫测,但只要你理解了正弦和余弦的关系,正切就乖乖听话了。

比如说,当你求一个角的正切值时,记得去找它的对边和邻边,这样你就能轻松地求出结果。

这种感觉,就像是揭开了一个谜底,瞬间明亮了许多。

不过,三角函数不仅仅是计算,它背后有个更深层次的故事。

比如,当我们在计算某个角的值时,其实是在寻找这个角在生活中的意义。

它就像一个指引,让我们能在复杂的世界中找到方向。

记得有一次,我在爬山的时候,忽然想到三角函数,心里有种说不出的亲切感。

仿佛每一步的攀登,都与这些函数息息相关。

山的高度、斜率,甚至每一个呼吸,都与三角函数有着千丝万缕的联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 6


值为1,求常数a的值.
【解析】f(x)=sin(x+ )+sin(x- )+cos x+a
6 6


= 3 sin x+cos x+a=2sin(x+ )+a.
6

由a+2=1,得a=-1.
1.三角函数的求值类型有三类 (1)给角求值:一般所给出的角都是非特殊角,要观察所给角 与特殊角之间的关系,利用三角变换消去非特殊角,转化为求 特殊角的三角函数值问题;
3 6 3 3
(2)化简
2 2 tan α tan 2α + 3 (sin α-cos α). tan 2α tan α
【分析】此三角函数式出现两类函数,利用两角和与差公式 统一函数成为化简的主要目标. 【解析】(1)sin(3x+ )cos(x- )+cos(3x+ )cos(x+ )
3 6 3 3
4 2 4

3
由sin(β- )= ,知cos(β- )=- , 4 13 4 13
cos(α+ )=cos [(α+β)-(β- )]
4 4

12

5


=cos(α+β)cos(β- )+sin(α+β)sin(β- )
4 4


= ×(- )+(- )× =- .
4 5
5 13
3 5
(2)给值求值:给出某些角的三角函数式的值,求另外一些角
的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α +β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意
角的范围的讨论; (3)给值求角:实质上转化为“给值求值”问题,由题给的所 求角的函数值结合所求角的范围及函数的单调性求得角. 2.三角式的化简 (1)三角式的化简思路是根据三角式的特征,通过三角恒等变
【分析】从给定的条件可知锐角α、β的三角 函数值,为了求α+2β的值,需要转化为三角函数
,关键是取哪一类的三角函数,取正弦函数可能
会出现多值,因此取余弦或正切均可.
【解析】由已知条件及三角函数的定义可知, cos
2 α= ,cos 10 2 5 β = . 5
2
因为α为锐角,故sin α>0,从而sin α= 1 cos α = 同理可得sin
3 6 3 11 解得x=kπ- 或x=kπ+ ,而x为钝角,所以x= . 4 12
1 2



5 6
12

【点评】此题自然要求学生具有化简与变换思想,而且要对
三角公式的基本结构比较熟悉,逆用公式是基本的思维,合一 变换在化简中也起到非常重要作用.
变式训练4 已知函数f(x)=sin(x+ )+sin(x- )+cos x+a的最大
换,化繁为简;
(2)三角条件式的化简思路是通过观察,发现已知条件和待化
简三角式之间的关系,采用代入法、消参法进行化简; (3)三角函数式化简的常用方法:①直接应用公式进行降次、 消项;②切化弦,异名化同名,异角化同角;③三角公式的逆用 等; (4)三角函数式化简的要求:①能求出值的应求出值;②使三
4 4
2 4

6 4

sin(α β ) 2sin α cos β (2)化简 . 2sin α sin β cos( α β)
【解析】(1) sin( -x)+ cos( -x)
4 4
2 4

6 4

= [ sin( -x)+ cos( -x)]
4 4
2 1 2 2 2 2 2 2
2 2
2
2
+ 3 (sin α-cos α) α- 3 (cos 2α
2
=2sin αcos =sin 2α-
α-sin α)
2
cos 3
=2sin(2α- ). 3 【点评】三角函数公式的结构特点是引导三角变换的导火

线,“统一思想”是一个基本变换准则,否则三角变换过程就
会乱.
变式训练1 (1)化简 sin( -x)+ cos( -x);
cos(α+ )的值. 【分析】观察给定条件中角之间的联系,发现α+ =(α+β)-(β4

),但利用加法公式时,还需确定另两个三角函数式的符号与
4
数值.
【解析】∵α,β∈( ,π),α+β∈( ,2π), 由sin(α+β)=- ,知cos(α+β)= ,
3 5 4 5
3 4
3 2
∵β- ∈( , ),
cos α sin β sin α cos β =
sin( β α ) = =tan(β-α) cos( β α ) .
sin α sin β cos α cos β
题型2 有条件的三角函数式的求值
例2

4
3 3 12 已知α,β∈( ,π),sin(α+β)=- ,sin(β- )= ,求 5 4 13 4
角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角
函数;⑤尽量使被开方数不含三角函数.
例 (12分)已知函数f(x)=cos x+sin xcos x(x∈R).
3 (1)求f( )的值; (2)求f(x)的单调递增区间. 8 1 cos 2 x 1 1 1 【解析】f(x)= + sin 2x = sin 2x+ cos 2 2 2 2
(sin α-cos α)
2 2
2
2
=
2 tan α 1 tan 2 α 2 tan α tan α 2 1 tan α tan α
+
3 (sin
α-cos α)
2tan 2 α = 3 + 3 tan α tan α
2 tan α = 2 1 tan α
(sin α-cos α)




=sin(3x+ )sin [ +(x- )]+cos(3x+ )cos(x+ )
3 2 6 3 3





=sin(3x+ )sin(x+ )+cos(3x+ )cos(x+ )
3 3 3 3




=cos 2x.
tan α tan 2α (2) tan 2α tan α
+ 3

3 2

= [cos sin( -x)+sin cos( -x)]3 4 3 4 Nhomakorabea


= sin( -x).
7 12
sin(α β ) 2sin α cos β (2)
2sin α sin β cos(α β )
sin α cos β cos α sin β 2sin α cos β = 2sin α sin β cos α cos β sin α sin β
公式变形:①1+cos 2α=2cos α,1-cos 2α=2sin α.(升幂公式)
②cos α=
2
1 cos 2α 2 ,sin α= 2
1 cos 2α 2 .
(降幂公式)
三、半角公式 sin =±
θ cos =± 2
θ 2
1 cos θ , 2
1 cos θ , 2
2

)
2m 1 m 2 (C) 1 2m 2
m ,tan 2 5 1 m2
1 m
.
1 m . (B)2m
2
.
(D)1-m.
【解析】cos =
5
1 m
2
= ,tan
5
1 m2 = = 2 m 2 1 tan 1 5 1 m2
2 tan

5
a 2 sin( b2 α+φ)(其中cos
φ=
a
2
a b
2
,sin φ=
b
2
a b
). 2
二、二倍角公式 sin 2α=2sin αcos α;
cos 2α=cos α-sin α=1-2sin α=2cos α-1;
tan 2α=
2
2
2
2
2 tan α 1 tan 2 α
.
2 2
小关系是
.

【解析】∵△ABC为锐角三角形,∴A+B> , 2 ∴cos(A+B)<0, 即cos A· cos B-sin A· sin B<0,
∴cos A· cos B<sin A· sin B,即y<x. 【答案】y<x
题型1 三角函数式的化简
例1 (1)化简sin(3x+ )cos(x- )+cos(3x+ )cos(x+ );
2
m
=
2m 1 m 2 1 2m 2
.
【答案】C
2.cos x· sin(x-1)-sin x· cos(1-x)等于 (
(A)-sin 1. (B)sin 1. (C)-cos 1.
)
(D)cos 1.
【解析】cos x· sin(x-1)-sin x· cos(1-x)=-cos x· sin(1-x)-sin x· cos (1-x)=-sin 1. 【答案】A 3.在锐角△ABC中,设x=sin A· sin B,y=cos A· cos B,则x,y的大
相关文档
最新文档