高考数学三角函数的化简与求值
第9讲 三角函数的化简与求值

第九讲: 三角函数的化简与求值一、知识要点1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 二、方法点拨三角变换是运算化简过程中运用较多的变换, 也是历年高考命题的热点.提高三角变换能力, 要学会设置条件, 灵活运用三角公式, 掌握运算、化简的方法和技能.常用的数学思想方法技巧如下: 1. 角的变换: 在三角化简、求值、证明中, 表达式往往出现较多的相异角, 可根据角与角之间的和差、倍半、互补、互余的关系, 运用角的变换, 沟通条件与结论中的差异, 使问题获解.对角的变形如下:角的变换:β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β)2()2()(,2304560304515α-β-β+α=β-β+α=α=-=-=,)4()4()()(2α-π-α+π=β-α+β+α=α,)4(24α-π-π=α+π特别地, α+π4与α-π4为互余角, 它们之间可以互相转化, 在三角变形中使用频率高.2. 函数名称变换: 三角变形中, 常常需要变函数名称为同名函数. 如在三角函数中正余弦是基础, 通常化切、割为弦, 变异名为同名.3. 常数代换: 在三角函数运算、求值、证明中, 有时需要将常数转化为三角函数值, 例如常数“1”的代换变形有: α-α=α-α=α+α=222222cot csc tan sec cos sin 1.4. 幂的变换: 降幂是三角变换时常用方法, 对次数较高的三角函数式, 一般采用降幂处理的方法. 常用降幂公式有:1cos sin ,22cos 1cos ,22cos 1sin 2222=α+αα+=αα-=α 等, 三角变换时, 有时需要升幂, 如对无理式α+cos 1常用升幂化为有理式, 升幂公式与降幂公式是相对而言的.5. 公式变形式: 根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.三角公式是变换的依据, 应熟练掌握三角公式的直接应用,逆用以及变形式的应用.如:)tan tan 1)(tan(tan tan ,sin 22sin cos β⋅αβ±α=β±ααα=α 等. 三、典型例题讲解:考点一、三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向. 【训练1】 化简:(sin α+cos α-1)(sin α-cos α+1)sin 2α.考点二、三角函数式的求值【例1】已知0<β<π2<α<π,且cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.训练1】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值. 训练2】已知cos(α-6π)+sin α=354,则sin(α+67π)的值是( )训练3】已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________训练4】已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________考点三、三角函数的求角问题【例1】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练1】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.【训练2】已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.考点四、 三角函数的综合应用【例1】►设0<θ<2π,曲线x 2sin θ+y 2cos θ=1和x 2cos θ-y 2sin θ=1有4个不同的交点。
高中数学专题:三角函数的化简与求值

2+3,
则常数 a=________.
解析
1+2cos2x-1 f(x)= 2cos x +sin
x+a2sinx+π4
=cos x+sin x+a2sinx+π4
= 2sinx+4π+a2sinx+π4 =( 2+a2)sinx+4π. 依题意有 2+a2= 2+3, ∴a=± 3.
答案 ± 3
α
=2
2sin
α=-2
5
5 .
答案 A
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
4.已知f(x)=sin2
x+4π,若a=f(lg
5),b=f(lg
1 5
),则(
)
A.a+b=0
B.a-b=0
C.a+b=1
D.a-b=1
解析 a=f(lg 5)=sin2(lg 5+4π)
1-cos2lg
2 .
又∵cosπ4-β2= 33,-2π<β<0, ∴sinπ4-β2= 36,
高考题型精练 1 2 3 4 5 6 7 8 9 10 11 12
∴cosα+2β=cosπ4+α-π4-β2 =cosπ4+αcosπ4-β2+sinπ4+αsinπ4-β2 =13× 33+232× 36=593. 答案 C
=-41+34+1=23.
点评 熟练运用诱导公式和基本关系式,并确定相应三角 函数值的符号是解题的关键.另外,切化弦是常用的规律 技巧.
变式训练2 (1)(四川)已知sin α+2cos α=0, 则2sin αcos α-cos2α的值是________. 解析 ∵sin α+2cos α=0, ∴sin α=-2cos α, ∴tan α=-2, 又∵2sin αcos α-cos2α=2sinsiαn2cαo+s αc-osc2αos2α
三角函数求值与化简的三种常用方法

. .
化
成
鼻
參
# 參 麝 參
蘑
罄I 张
菌子 璇
_
3 ^ (
Q si
n
—
c o s ^
) 1 2' =
—
2 s i nQ
?
4 9
7
.
co
s
^
=
s
i
n
〇
—
co
s 夕
=
。
Z b b
评 析 由 + 求 出 :
si n 夕
co s 夕
^ n s i
?
co s 6 是 解 题 的 突 破 口 。
,
s i n夕 co s0
0
,
s i n夕
0
,
倒 化 简 + + 5
/
1
s in 2
/ n 2 I s —
i
0
解 易 知 > :
si n l
c o s 1 。
故 + + / l
s i n 2
/ I
—sΒιβλιοθήκη in 2 =
/ + + ( s i n1
c o s l
)
2
/(
o n c s i
种 常 用 方 法 是 : 弦 切 互 化 法 , 和 积 转
换法
和
巧用“
” 1
的
变
换法
。
下 面 举 例
分 析 , 供 大 家 学 习 与 参考 。 一 、 弦 切 互 化 法
例 已 知 + 1
t a n ( 2 0 1 9 兀
? 2
)=
,
(完整版)三角函数化简求值证明技巧

第三讲一、三角函数的化简、计算、证明的恒等变形的应用技巧1、网络2、三角函数变换的方法总结(1)变换函数名对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。
【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。
练习:已知sin(α+β)=,cos(α-β)=,求的值。
2)变换角的形式对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。
【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。
练习已知,求的值【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α+β)=提示:sin[(α+β)-β]=Asin (α+β)(3)以式代值利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。
这其中以“1”的变换为最常见且最灵活。
“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。
【例4】化简:(4)和积互化积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。
这往往用到倍、半角公式。
高考题集三角函数,化简求值通用步骤.doc

高考题集三角函数,化简求值通用步骤求解三角函数的性质通常情况下需利用三角函恒等变换公式将函数的解析式转化为y=Asin(wx+φ)+B的形式,然后根据基本三角函数y=sinx的性质结合整体代换的思想求解,这点大家还是很熟悉了,下面一起来看下
解三角函数化简步骤:诱导公式(π,2π,,,)→和差角公式(π/6,π/4,π/6)→正弦二倍角逆用公式(sinxcosx,)→降幂公式(sin²x,cos²x)→辅助角公式(asinx+bcosx)→y=Asin(wx+φ)+B
在化简过程中这个步骤非常好用,括号里的就是题目条件中会给到的常见的数学公式符号特征,只要按照相应公式展开即可,快速又简便
题中sin(x-π/6),就是特征,按正弦差角公式展开,由于π/6的正余弦值知晓,所以就化简一层了,接着乘法张开,就发现降幂公式使用以后,就化成同角正余弦了,最后直接用辅助角公式即可化成y=Asin(wx+φ)+B,然后根据基本三角函数y=sinx的性质结合整体代换的思想求解。
方法还是非常独特的思路,利用和差角公式,凑出y+z,y-z,再加减消元,y即求出,只是这个方法考试的时候还是需要慎用,因为一不小心算不出来,找不到关系,就意味着要重新计算,耽误时间,心里压力又加大,老生常谈的话就是用你最拿手的办法,解你自己的题,不管别人如何解,走
自己的路让别人说去吧。
方法3就是凑角,恒等变换求结果
三角函数这部分的知识,化简恒等变换就是重点,是求性质的前提,所以把化简步骤记忆掌握就尤其重要了,解题往往是在前往通法的道路上,找到适合此题的又独特解法,方法是死的,人是活的,脑子是活的,你想怎么用,想先用哪个都随你心,加油哦。
考点15 三角函数式的化简与求值(答案)

,故选 B.
3.【2017
届广西玉林市、贵港市高中毕业班质量检测】若
cos
−
3sin
=
0
,则
tan
−
4
=
(
)
−1
1
A. 2
B.-2
C. 2
D.2
【答案】A
【解析】由 cos
− 3sin
=
0
tan
,知
=
1 3
,则
tan
− 4
=
tan −1 1+ tan
=
−
1 2
,故选 A
.
4.【山西省孝义市 2017 届高三下学期高考考前质量检测三(5 月)】已有角 的顶点与坐标原点重合,
+ cos2
sin ”;(3)化正弦、余弦为正切,即 cos
=
tan
;
tan = sin
(4)化正切为正弦、余弦,即
cos ;( 5 ) 正 弦 、 余 弦 和 ( 差 ) 与 积 的 互 化 , 即
(sin cos )2 =1 2sin cos .
tan = 3
1− sin 2 =
【变式 1】【例题中的条件不改变,所求三角函数式改变】若
【解析】
16 8 ,选 D.
【方法技巧归纳】二倍角公式的正用、逆用、变形用是公式的种主要应用手段,特别是二倍角的余弦 公式,其变形公式在求值与化简中有广泛的应用,在综合使用两角和与差、二倍角公式化简求值时,要注 意以下几点:(1)熟练掌握公式的正用、逆用和变形使用;(2)擅于拆角、配角;(3)注意二倍角的相对性; (4)注意角的范围;(5)熟悉常用的方法和技巧,如切化弦、异名化同名、异角化同角等.
三角函数的化简详解

三角函数的化简1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
一、化简 【例1】求值:︒+︒︒⋅︒+︒+︒80cot 40csc 10sin 20tan 10cos 20sin 2.【变式】1、求值()︒+︒︒+︒+︒10cos 110tan 60tan 110cos 40cos 2【变式】2、求0020210sin 21)140cos 1140sin 3(⋅-。
【例2】(三兄弟)已知23523sin cos παπαα<<=-,且,求αααtan 1sin 22sin 2-+的值【变式】(05天津)已知727sin(),cos 241025παα-==,求sin α及tan()3πα+.【例3】(最值辅助角)已知函数f (x )=2a sin 2x -23a sin x cos x +a +b -1,(a 、b 为常数,a <0),它的定义域为[0,2π],值域为[-3,1],试求a 、b 的值。
三角函数中的化简求值模型

三角函数中的化简求值模型【问题背景】三角函数的化简求值几乎是高考的必考内容之一,化简三角函数式是为了更清楚地显示式中所含量之间的关系,以便于某种要求的应用.一般从函数名、角、运算三方面进行差异分析,遵循化繁为简、清除差异的原则,常用的方法技巧有:切割化弦,降幂,用三角公式转化出现特殊角,异角化同角,异名化同名,高次化低次等.【解决方法】【典例1】(2024高三下·全国·专题练习)已知角α,β的顶点均为坐标原点,始边均与x 轴的非负半轴重合,终边分别过点()1,2A ,()2,1B -,则tan 2αβ+=.【答案】3-【分析】利用三角函数的定义求得tan 2α=,1tan 2β=-,可求得()tan αβ+,再利用二倍角的正切公式解得tan2αβ+,进而确定2αβ+的范围,求得tan2αβ+的值.【套用模型】第一步:因为角α,β的终边分别过点()1,2A ,()2,1B -,所以tan 2α=,1tan 2β=-,(提示:若角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边过点()(),0x y x ≠,则tan y xα=),第二步:因此()tan tan 3tan 1tan tan 4αβαβαβ++==-,又()22tan32tan 41tan 2αβαβαβ++==+-,所以tan32αβ+=-或1tan23αβ+=.第三步:因为角α的终边过点()1,2A ,因此112,242k k ππαππ⎛⎫∈++⎪⎝⎭,1k ∈Z ,因为角β的终边()2,1B -,因此2232,24k k πβπππ⎛⎫∈++ ⎪⎝⎭,2k ∈Z ,所以3,224k k αβππππ+⎛⎫∈++ ⎪⎝⎭,k ∈Z ,所以tan 32αβ+=-.【典例2】(2024·山西晋城·二模)已知tan 2tan αβ=,1sin()4αβ+=,则)in(s βα-=.【答案】112-【分析】由tan 2tan αβ=切化弦可得sin cos 2cos sin αβαβ=,结合两角和差公式分析求解.【套用模型】第一步:因为tan 2tan αβ=,即sin 2sin cos cos αβαβ=,可得sin cos 2cos sin αβαβ=,第二步:又因为()1sin sin cos cos sin 3cos sin 4αβαβαβαβ+=+==,可得1cos sin 12αβ=,第三步:所以()sin cos sin sin cos cos sin 112βααβαβαβ-=-=-=-.故答案为:112-.【典例3】(2024·全国·模拟预测)在ABC 中,tan A ,tan B 是方程2670x x -+=的两个根,则C 的值是.【答案】4π/45︒【分析】根据根与系数的关系及两角和的正切公式求得()tan A B +,再利用诱导公式求解.【套用模型】第一步:由题意,tan tan 6A B +=,tan tan 7A B ⋅=,第二步:所以tan tan 6tan ()11tan tan 17A B A B A B ++===--⋅-,第三步:在ABC 中,()()tan tan πtan 1C A B A B =-+=-+=⎡⎤⎣⎦,由0πC <<,可知π4C =.故答案为:π4(2024·全国·二模)1.已知6cos tan 7sin ααα=-,则cos2α=.(2024·云南昆明·一模)2.已知cos α=π0,2α⎛⎫∈ ⎪⎝⎭,则tan 2α=.(2024·宁夏银川·一模)3.已知3cos si 2n x x +=,则sin 2πcos 4xx =⎛⎫- ⎪⎝⎭.(2024·青海·模拟预测)4.若3π4αβ+=,tan 2α=,则tan β=.(2024·山东·二模)5.在平面直角坐标系中,角α的始边与x轴非负半轴重合,终边经过点()2,则πsin 3α⎛⎫+=⎪⎝⎭.(2024·内蒙古呼伦贝尔·二模)6.已知tan α,tan β是方程2530x x +-=的两个根,则()()22cos sin αβαβ+=-.(2024·广西·二模)7.已知2sin sin2αα=,则πtan 4α⎛⎫+=⎪⎝⎭.(2024·全国·模拟预测)8.已知点()()()cos ,sin A βαβα--与点5π5πcos ,sin 1212B ββ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于原点对称,则sin cos αα+=.(2024·全国·模拟预测)9.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若2222024a b c +=,则2tan tan tan (tan tan )A BC A B =+.(2024·陕西安康·模拟预测)10.若()2tan 2024π3α-=,则2sin cos 2cos cos2αααα-=.(2024·山西朔州·一模)11.若πtan 26α⎛⎫-= ⎪⎝⎭,则2ππ1tan cos 362αα⎛⎫⎛⎫-+--=⎪ ⎪⎝⎭⎝⎭.(2024·全国·模拟预测)12.在平面直角坐标系中,若角π3α-的顶点为原点,始边为x 轴非负半轴,终边经过点()3,4P --,则πtan 23α⎛⎫+=⎪⎝⎭.(2024·陕西安康·模拟预测)13.已知π,,π2αβ⎛⎫∈ ⎪⎝⎭,且πsin2sin 21cos21sin αβαβ⎛⎫+ ⎪⎝⎭-=+,则tan tan21tan tan 2βαβα+=-.(2024·河北沧州·模拟预测)14.已知1cos sin 63παα⎛⎫--= ⎪⎝⎭,则πcos 23α⎛⎫+=⎪⎝⎭.(2024·上海嘉定·二模)15.已知()22sin cos f x x x =+,π0,2x ⎛⎫∈ ⎪⎝⎭,则函数()y f x =的最小值为.(2024·吉林长春·模拟预测)16.已知tan 3,2sin cos 1tan 2ααββ==,则()2tan αβ+=.(2024·全国·模拟预测)17.已知锐角三角形ABC 的内角,,A B C 的对边分别为,,a b c ,若sin 2A =则a b 的取值范围是.(2024·全国·模拟预测)18.已知,αβ为锐角,满足()1sin sin ,cos 69αβαβ+=+=-,则sin2αβ+=,()cos αβ-=.(2024·全国·模拟预测)19.已知πtan ,74x x ⎛⎫+= ⎪⎝⎭为第二象限角,则10πsin 21x ⎛⎫+=⎪⎝⎭.(2024·上海·一模)20.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.三角函数中的化简求值模型解析:1.725##0.28【分析】切化弦,然后整理可得sin α,再利用倍角公式计算即可.【详解】6cos sin tan 7sin cos ααααα==-,得()()226co 7sin s 61n s s n i i αααα==--,解得3sin 5α=或sin 2α=-(舍)所以2237cos212sin 12525αα⎛⎫=-=-⨯= ⎪⎝⎭.故答案为:725.2.-【分析】根据同角三角函数关系式求出sin α,tan α,再利用二倍角正切公式求解.【详解】由cos απ0,2α⎛⎫∈ ⎪⎝⎭,sin 3α∴,sin tan cos ααα∴==,22tan tan 21tan 1ααα∴==---.故答案为:-3.73-【分析】由倍角公式和差角公式、平方关系求解即可.【详解】sin 2πcos 4x x =⎛⎫- ⎪⎝⎭2273133⎡⎤⎛+-⎢⎥=-=- ⎢⎥⎝⎭⎣⎦,故答案为:73-..4.3【分析】由已知条件可得3π4βα=-,根据两角和的正切公式化简即可求解.【详解】因为3π4αβ+=,所以3π4βα=-,所以3πtan tan 3π4tan tan 3π41tan tan 4αβαα⎛⎫- ⎪⎛⎫⎝⎭=-= ⎪⎛⎫⎝⎭+⋅ ⎪⎝⎭,又因为tan 2α=,3πtan 14⎛⎫=- ⎪⎝⎭,所以上式可化为:12tan 312β--==-.故答案为:35.14-##【分析】先利用角α的终边所经过的点求出sin ,cos αα,再求πsin 3α⎛⎫+ ⎪⎝⎭.【详解】因为角α的始边与x轴非负半轴重合,终边经过点()2,所以sin 7α=,cos 7α==-;πππsin sin cos cos sin 33314ααα⎛⎫+=+=- ⎪⎝⎭.故答案为:6.1637【分析】利用韦达定理可得tan tan 5αβ+=-,tan tan 3αβ=-,再利用两角和差公式和三角函数的商数关系求解即可.【详解】因为tan α,tan β是方程2530x x +-=的两个根,所以tan tan 5αβ+=-,tan tan 3αβ=-,则cos cos 0αβ≠,所以()()2222cos cos cos sin sin 1tan tan sin sin cos cos sin tan tan αβαβαβαβαβαβαβαβ+⎛⎫⎛⎫--=== ⎪ ⎪---⎝⎭⎝⎭()2161637tan tan 4tan tan αβαβ=+-.故答案为:16377.1或3-【分析】由已知可得sin 0α=或sin 2cos αα=,从而可求出πtan 4α⎛⎫+ ⎪⎝⎭的值.【详解】由2sin sin2αα=可得2sin 2sin cos ααα=,所以sin 0α=或sin 2cos αα=,即tan 0α=或tan 2α=,当tan 0α=时,πtan 1tan 141tan ααα+⎛⎫+== ⎪-⎝⎭当tan 2α=时,πtan 1tan 341tan ααα+⎛⎫+==- ⎪-⎝⎭,故答案为:1或3-.8.22【分析】根据题意,列出方程组,求得7π2π,Z 12k k αββ-=+-∈,得到7π2π,Z 12k k α=+∈,结合πsin cos 4ααα⎛⎫+=+ ⎪⎝⎭,即可求解.【详解】因为点()()()cos ,sin A βαβα--与点5π5πcos ,sin 1212B ββ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于原点对称,所以()()5πcos cos 125πsin sin 12βαββαβ⎧⎛⎫-=-+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=-+ ⎪⎪⎝⎭⎩,即()()5πcos cos π125πsin sin π12αββαββ⎧⎡⎤⎛⎫-=-+⎪ ⎪⎢⎥⎝⎭⎪⎣⎦⎨⎡⎤⎛⎫⎪-=-+ ⎪⎢⎥⎪⎝⎭⎣⎦⎩,所以7π2π,Z 12k k αββ-=+-∈,解得7π2π,Z 12k k α=+∈,所以π7ππ5π2sin cos 412462ααα⎛⎫⎛⎫+=+=+== ⎪ ⎪⎝⎭⎝⎭.故答案为:22.9.2023【分析】将已知条件切化弦,然后结合两角和的正弦公式、正余弦定理,将等量关系转化为2a ,2b ,2c 间的关系,则问题可解.【详解】2tan tan 2211cos cos tan (tan tan )tan tan tan tan sin sin A BB AC A B C C B A B A ==+⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2sin sin 2sin sin 2sin sin tan (sin cos cos sin )tan sin()tan sin A B A B A B C A B A B C A B C C ===++222sin sin cos 2cos sin A B C ab CC c ==,由余弦定理有:222222cos ab C a b c c c +-=,又2222024a b c +=,所以原式22220242023c c c -==.故答案为:202310.3215-【分析】利用诱导公式求出tan α,再由二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得.【详解】因为()2tan 2024π3α-=,所以2tan 3α=-,所以2sin cos 2cos cos 2αααα-222sin cos 2cos cos sin ααααα=--2tan 121tan αα=--221323215213-=-=-⎛⎫-- ⎪⎝⎭.故答案为:3215-11.8310-+【分析】根据同角三角函数关系求出2π1cos 65α⎛⎫-= ⎪⎝⎭,利用正切差角公式得到πtan 3α⎛⎫- ⎪⎝⎭,从而求出答案.【详解】由题意得ππsin 2cos 66αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又22ππsin cos 166αα⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得2π1cos 65α⎛⎫-= ⎪⎝⎭,ππtan tan 2πππtan tan 8666ππ31tan tan 666αααα⎛⎫-- ⎪⎡⎤⎛⎫⎛⎫⎝⎭-=--==- ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+- ⎪⎝⎭2ππ111tan cos 8362283510αα⎛⎫⎛⎫-+--=-++-=-+ ⎪ ⎪⎝⎭⎝⎭故答案为:8310-+12.247-【分析】先利用三角函数的定义得到πtan 3α⎛⎫- ⎪⎝⎭,再利用倍角公式和诱导公式进行转化求得πtan 23α⎛⎫+ ⎪⎝⎭.【详解】由三角函数的定义,得π4tan 33α⎛⎫-= ⎪⎝⎭,所以πππtan 2tan 2πtan2333ααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π82tan 243316π711tan 93αα⎛⎫- ⎪⎝⎭===-⎛⎫--- ⎪⎝⎭.故答案为:247-13.1【分析】利用二倍角公式,同角关系,两角和与差的正切公式变形求解.【详解】由πsin2sin 21cos21sin αβαβ⎛⎫+ ⎪⎝⎭-=+得1cos2cos sin 21sin αβαβ-=+,22222cos sin 2sin 222sin cos cos sin 2sin cos 2222ββαββββαα-=++,所以cossinsin 22cos cos sin 22ββαββα-=+,即π1tantantan π242tan tan()π421tan 1tan tan242βββαββ--==-++,又π,,π2αβ⎛⎫∈ ⎪⎝⎭,所以ππ42βα=-+,即5π24βα+=,所以tan tan5π2tan()tan 1241tan tan 2βαβαβα+=+==-.故答案为:1.14.79-【分析】根据题意,由余弦的和差角公式展开可得π1 cos 63α⎛⎫+= ⎪⎝⎭,再由二倍角公式,即可得到结果.【详解】因为π1cos sin 63αα⎛⎫--= ⎪⎝⎭,整理得ππ1cos cos sin sin sin 663ααα+-=,11sin 23αα-=,所以π1cos 63α⎛⎫+= ⎪⎝⎭,所以2ππ17cos 22cos 1213699αα⎛⎫⎛⎫+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故答案为:79-15.【分析】令πsin cos )4t x x x =+=+,可求t 的范围,利用同角的基本关系对已知函数化简计算,结合函数的单调性即可求解.【详解】由题意知,222(sin cos )()sin cos sin cos x x f x x x x x+=+=,令πsin cos 4t x x x =+=+,由π02x <<,得ππ3π444x <+<,所以2πsin()124x <+≤,则1t <≤由sin cos t x x =+,得22(sin cos )12sin cos t x x x x =+=+,所以21sin cos 2t x x -=,则原函数可化为22244()1112ttg t t t t t ===---,又函数1,y t y t ==-在上单调递增,所以1y t t =-在上单调递增,故当t 时,1y t t =-取得最大值22,此时()g t取得最小值故答案为:16.2511##3211【分析】根据同角三角函数关系,结合已知条件求得cos sin αβ,以及()sin αβ+,()2sin αβ+,()2cos αβ+,再求结果即可.【详解】由tan 3tan 2αβ=可得:sin cos 3cos sin 2αβαβ=,又2sin cos 1αβ=,即1sin cos 2αβ=,则1cos sin 3αβ=,故()115sin sin cos cos sin 236αβαβαβ+=+=+=,()225sin 36αβ+=,则()()2211cos 1sin 36αβαβ+=-+=,故()()()22225sin 2536tan 11cos 1136αβαβαβ++===+.故答案为:2511.17.【分析】由二倍角公式可得cos 2c bA b-=,利用正弦定理边化角,结合和差公式整理可得()sin sin B A B =-,可得2A B =,根据三角形ABC 为锐角三角形求出角B 的范围,然后利用正弦定理和二倍角公式可得2cos aB b=,可得范围.【详解】因为sin2A 23sin 24A b c b -=,所以2cos 12sin 22A c b A b -=-=,由正弦定理得sin sin cos 2sin C B A B -=,即2sin cos sin sin B A C B =-,所以()2sin cos sin sin B A A B B =+-,所以sin cos cos sin sin A B A B B -=,即()sin sin B A B =-,所以B A B =-或πB A B +-=(舍去),因为三角形ABC 为锐角三角形,所以π20,2A B ⎛⎫=∈ ⎪⎝⎭,又π3,π2A B B ⎛⎫+=∈ ⎪⎝⎭,解得64ππ,B ⎛⎫∈ ⎪⎝⎭,所以cos 22B ⎛⎫∈ ⎪ ⎪⎝⎭.因为sin sin22cos sin sin a A B B b B B ===,所以a b 的取值范围为.故答案为:18.14##0.25【分析】由,2222αβαβαβαβαβ+-+-=+=-,利用两角和与差的正弦公式和余弦的二倍角公式,求出sin 2αβ+;再用余弦的二倍角公式求出()cos αβ-.【详解】因为,2222αβαβαβαβαβ+-+-=+=-,所以sin sin sin 22αβαβαβ+-⎛⎫+=++ ⎪⎝⎭sin 2sin cos 2222αβαβαβαβ+-+-⎛⎫-=⋅ ⎪⎝⎭,又sin sin αβ+=sin cos 2212αβαβ+-=,因为,αβ为锐角,所以2αβ+为锐角,又()21cos 12sin 29αβαβ++=-=-,所以sin 2αβ+=又52sin cos 2212αβαβ+-=,所以cos 2αβ-=,所以()2101cos 2cos 1212164αβαβ--=-=⨯-=.故答案为:3;14.19【分析】由π2tan 74x ⎛⎫+= ⎪⎝⎭及同角三角函数的基本关系可求得ππsin ,cos 77x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,再根据10πππ2173x x ⎛⎫+=++ ⎪⎝⎭并结合两角和的正弦公式即可得解.【详解】 π2tan 74x ⎛⎫+= ⎪⎝⎭,π2πsin cos 747x x ⎛⎫⎛⎫∴+=-+ ⎪ ⎪⎝⎭⎝⎭,2222ππππsin cos cos 7777x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+++=-+++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦29πcos 187x ⎛⎫=+= ⎪⎝⎭,x 为第二象限角,∴πcos 7x ⎛⎫+= ⎪⎝⎭,π1sin 73x ⎛⎫∴+= ⎪⎝⎭,10πππππππsin sin sin cos cos sin 21737373x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+=++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1122312632326-=⨯-=.20.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan 3A =>=,又函数tan y x =在π(0,2上单调递增,则π3A >,此时3πABC A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B C B C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(第 二 轮)专 题 训 练第九讲: 三角函数的化简与求值学校 学号 班级 姓名知能目标1. 掌握同角的三角函数的基本关系式: 掌握正弦,余弦的诱导公式;掌握两角和与两角 差的正弦,余弦,正切公式;掌握二倍角的在正弦,余弦,正切公式.2. 能正确运用三角公式,进行简单三角函数式的化简,求值和恒等式证明.综合脉络三角变换是运算化简过程中运用较多的变换, 也是历年高考命题的热点. 提高三 角变换能力, 要学会设置条件, 灵活运用三角公式, 掌握运算、化简的方法和技能. 常 用的数学思想方法技巧如下:1. 角的变换: 在三角化简、求值、证明中, 表达式往往出现较多的相异角, 可根据角与角之 间的和差、倍半、互补、互余的关系, 运用角的变换, 沟通条件与结论中的差异, 使问题 获解.对角的变形如下:)2()2()(,2304560304515α-β-β+α=β-β+α=α=-=-=,)4()4()()(2α-π-α+π=β-α+β+α=α,)4(24α-π-π=α+π特别地, α+π4与α-π4为互余角, 它们之间可以互相转化, 在三角变形中使用频率高.2. 函数名称变换: 三角变形中, 常常需要变函数名称为同名函数. 如在三角函数中正余弦是基础, 通常化切、割为弦, 变异名为同名.3. 常数代换: 在三角函数运算、求值、证明中, 有时需要将常数转化为三角函数值, 例如常 数“1”的代换变形有: α-α=α-α=α+α=222222cot csc tan sec cos sin 1.4. 幂的变换: 降幂是三角变换时常用方法, 对次数较高的三角函数式, 一般采用降幂处理的方法. 常用降幂公式有: 1cos sin ,22cos 1cos ,22cos 1sin 2222=α+αα+=αα-=α 等, 三角变换时, 有时需要升幂, 如对无理式α+cos 1常用升幂化为有理式, 升幂公式与降幂公式是相对而言的.5. 公式变形式: 三角公式是变换的依据, 应熟练掌握三角公式的直接应用, 逆用以及变形式 的应用. 如: )tan tan 1)(tan(tan tan ,sin 22sin cos β⋅αβ±α=β±ααα=α 等.(一) 典型例题讲解:例1. (1)当2x 0π<<时,函数x 2sin x sin 8x 2cos 1)x (f 2++=的最小值为 ( )A. 2B. 32C. 4D. 34(2) 已知=α=αcos ,32tan 则 .例2. 已知22tan =α, 求: (1) )4tan(π+α的值; (2)α-αα+αcos 2sin 3cos sin 6的值.例3. 已知A 、B 、C 的坐标分别为A )0,3( , B )3,0( , C )sin ,(cos αα , )23,2(ππ∈α. (1) 若|AC ||BC | =, 求角α的值; (2) 若1C B AC -=⋅, 求α+α+αtan 12sin sin 22的值.例4. 已知,0x 2<<π-51x cos x sin =+. (1) 求x cos x sin -的值; (2) 求xcot x tan 2x cos 2x cos 2x sin 22x sin 322++-的值.(二) 专题测试与练习: 一. 选择题1. =-15cot 15tan ( ) A. 2 B. 32+C. 4D. 32-2. 若,x 2sin )x (tan f = 则)1(f -的值为 ( ) A. 2sin - B. 1- C. 21D. 13. 已知=π-β=π+α=β+α)4tan(,223)4tan(,52)tan(那么 ( ) A. 51 B. 1813 C. 41 D. 22134. 若βα,均是锐角,且)cos(sin 2β-α=α, α与β的关系是 ( ) A. β>α B. β<α C. β=α D. 2π>β+α 5. 化简:22sin cos 1010)1cos 10170---= .A. 0B. 1-C. 1±D. 16. 已知,1027)4sin(=π-α且432π<α<π, 求)42tan(π+α的值. A. 3217 B. 1731C. 1731-D. 3117-二. 填空题 7. 若,31)6sin(=α-π 则=α+π)232cos( .8. 设α为第四象限的角, 若513sin 3sin =αα, 则=α2tan ___________.9. 已知α、β均为锐角, 且),sin()cos(β-α=β+α 则=αtan .10. 若71cos =α, )2,0(π∈α, 则=π+α)3cos(________ __.三. 解答题11. 已知α为第二象限的角, 53sin =α, β为第一象限的角, 135cos =β, 求)2tan(β-α的值.12. 化简:.)4(sin )4tan(21cos 222α+π⋅α-π-α .13. 已知向量)sin ,(cos θθ= m , 和),2,(),cos ,sin 2(ππ∈θθθ-= n且.528||=+ n m 求)82cos(π+θ的值.三角函数的化简与求值解答(一) 典型例题例1. 解:1. (1) D ; (2) -54. 例2. 解:(1) ∵22tan =α, ∴ 3441222tan 12tan2tan 2-=-⨯=α-α=α; 所以71341134tan 11tan 2tan tan 14tantan )4tan(=++-=α-+α=πα-π+α=π+α. (2) 由(1)34tan -=α, 所以672)34(31)34(62tan 31tan 6cos 2sin 3cos sin 6=--+-=-α+α=α-αα+α 例3. 解:(1)∵|AC ||BC | =, ∴点C 在x y =上, 则α=αcos sin .),23,2(ππ∈α .45π=α∴(2) ),sin ,3(cos AC α-α=),3sin ,(cos B C -αα=,1)3(sin sin )3(cos cos -=-αα+-αα∴ 则32cos sin =α+α 原式=.95cos sin 2-=αα例4. 解:(1) 25241251x cos x sin 251x cos x sin -=-=⇒=+, 254925241)x cos x (sin 2=+=- ,又0x cos x sin 0x 2<-⇒<<π- , 57x cos x sin -=-∴.(2) 原式125108)2512(59x cos x sin )]x sin x (cos 2[xcos x sin 1xsin 12xsin 22-=-⨯=+-=-+=.(二) 专题测试与练习 一.二. 填空题7. 97-; 8. 43-; 9. 1 ; 10. 1411-.三. 解答题11. 解:α是第二象限角,7242tan 43tan 54cos 53sin -=α⇒-=α⇒-=α⇒=α, β是第一象限角,253204)2tan(512tan 135cos =β-α⇒=β⇒=β12. 解:原式=12cos 2cos )4cos()4sin(22cos )]4(2[sin )4tan(22cos 2=αα=α-πα-πα=α-π-πα-πα13. 解法一:)sin cos ,2sin (cos θ+θ+θ-θ=+ n m22)sin (cos )2sin (cos θ+θ++θ-θ=+ n m )sin (cos 224θ-θ+= )4cos(44π+θ+=)4cos(12π+θ+=由已知528||=+ n m ,得257)4cos(=π+θ 又1)82(cos 2)4cos(2-π+θ=π+θ所以2516)82(cos 2=π+θ0)82cos(898285,2<π+θ∴π<π+θ<π∴π<θ<π 54)82cos(-=π+θ∴解法二:n m n m n n m m n m n m ⋅++=+⋅+=+=+22)(22222]cos sin )sin 2([cos 2)cos )sin 2(()sin cos (2222222θθ+θ-θ+θ+θ-+θ+θ=)82(cos 8)]4cos(1[4)sin (cos 2242π+θ=π+θ+=θ-θ+=由已知528||=+ n m ,得54|)82cos(|=π+θ0)82cos(898285,2<π+θ∴π<π+θ<π∴π<θ<π54)82cos(-=π+θ∴。