空间向量及其运算

合集下载

空间向量及其运算

空间向量及其运算

(3|a|+2|c|)(|a|-|c|)=0,∴|a|-|c|=0,即|a|=|c|.
即当==1时,A1C⊥平面C1BD.
【分析点评】
向量是解决立体几何问题的重要工具,利用向量可解决线面平行、线面垂 直、三点共线、四点共面,以及距离和成角等问题,而利用向量解决立体 几何问题关键在于适当选取基底,将几何问题转化为向量问题. 本题第二问用向量法解决是非常好的选择,大大简化了推理和运算过程. 这样就很好地解决:“会做的题目花费时间过多”这一矛盾,考试过程中 方法的选择就显的尤为重要.
解法二:(1)证明:取
由已知|a|=|b|,且〈a,b〉=〈b,c〉=〈c,a〉=60°,
BD=CD-CB=a-b,C1C·B=c·(a-b)=c·a-c·b
=|c||a|-|c||b|=0,
,∴C1C⊥BD.
(2)若A1C⊥平面C1BD,则A1C⊥C1D,CA1=a+b+c,C1D=a-c.
∴CA1·C1D=0,即(a+b+c)·(a-c)=0.整理得:3a2-|a||c|-2c2=0,
点击此处进入 作业手册
(3)空间的两个向量可用 同一平面内 的两条有向线段来表示.
2.空间向量的运算
定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算,如
下:
=a+b;

3.运算律:(1)加法交换律:a+)数乘分配律:λ(a+b)= λa+λb .
4.共线向量定理:空间任意两个向量a、 b(b≠0), a∥b的充要条件是存在实 数λ,使 a =λb .
5.共面向量定理:如果两个向量a,b不共线,p与向量a,b共面的充要条件 是存在实数x,y使 p=xa+yb .
6.空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量

空间向量及其运算(经典)

空间向量及其运算(经典)

§8.5 空间向量及其运算1.空间向量的有关概念名称 概念 表示 零向量 模为0的向量 0 单位向量 长度(模)为1的向量 相等向量 方向相同且模相等的向量 a =b相反向量 方向相反且模相等的向量 a 的相反向量为-a共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 推论 如图所示,点P 在l 上的充要条件是 OP →=OA →+t a①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP →= OA →+tAB →或OP →=(1-t )OA →+tOB →.(2)共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM →+yOA →+zOB →,其中x +y +z =__1__. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及应用 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × )(3)对于非零向量b ,由a ·b =b ·c ,则a =c . ( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0. ( √ ) (6)|a |-|b |=|a +b |是a 、b 共线的充要条件.( × )2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的 交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →,则x ,y 的值分别为( )A.x =1,y =1B.x =1,y =12C.x =12,y =12D.x =12,y =1答案 C解析 如图,AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(AB →+AD →).4.同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是_______________________. 答案 ⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23 解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23,或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23.5.如图,在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点, E 为AD 的中点,则OE →=________(用a ,b ,c 表示). 答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c .题型一 空间向量的线性运算例1 三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →. 思维启迪 利用空间向量的加减法和数乘运算表示即可. 解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O →-12AB →-12AD →=________;(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________. 答案 (1)A 1A →(2)12AB →+12AD →+AA 1→解析 (1)A 1O →-12AB →-12AD →=A 1O →-12AC →=A 1O →-AO →=A 1A →. (2)OC 1→=OC →+CC 1→ =12AB →+12AD →+AA 1→. 题型二 共线定理、共面定理的应用例2 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、 DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).思维启迪 对于(1)只要证出向量EG →=EF →+EH →即可;对于(2)只要证出BD →与EH →共线即可;对于(3),易知四边形EFGH 为平行四边形,则点M 为线段EG 与FH 的中点,于是向量OM →可由向量OG →和OE →表示,再将OG →与OE →分别用向量OC →,OD →和向量OA →,OB →表示. 证明 (1)连接BG , 则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →, 由共面向量定理的推论知: E 、F 、G 、H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形. 所以EG ,FH 交于一点M 且被M 平分.故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →) =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明点共线的方法证明点共线的问题可转化为证明向量共线的问题,如证明A ,B ,C 三点共线,即证明AB →,AC →共线,亦即证明AB →=λAC →(λ≠0). (2)证明点共面的方法证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC (x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.如图,正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 上的点,F 是AC 上的点,且A 1E =2EB ,CF =2AF ,则EF 与平面A 1B 1CD 的位置关系为________. 答案 平行解析 取AB →=a ,AD →=b ,AA 1→=c 为基底,易得EF →=-13(a -b +c ),而DB 1→=a -b +c ,即EF →∥DB 1→,故EF ∥DB 1, 且EF ⊄平面A 1B 1CD ,DB 1⊂平面A 1B 1CD , 所以EF ∥平面A 1B 1CD . 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形AB -CD 的各边和对角线的长都等于 a ,点M 、N 分别是AB 、CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.思维启迪 两条直线的垂直关系可以转化为两个向量的垂直关系;利用|a |2=a ·a 可以求线段长;利用cos θ=a ·b |a ||b |可求两条直线所成的角.(1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →.即MN ⊥AB .同理可证MN ⊥CD . (2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14[a 2+a 2+a 2+2(a 22-a 22-a 22)] =14×2a 2=a 22. ∴|MN →|=22a .∴MN 的长为22a .(3)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)当题目条件有垂直关系时,常转化为数量积为零进行应用;(2)当异面直线所成的角为α时,常利用它们所在的向量转化为向量的夹角θ来进行计算.应该注意的是α∈(0,π2],θ∈[0,π],所以cos α=|cos θ|=|a ·b ||a ||b |;(3)立体几何中求线段的长度可以通过解三角形,也可依据|a |=a 2转化为向量求解.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求向量a 与向量b 的夹角的余弦值; (2)若k a +b 与k a -2b 互相垂直,求实数k 的值. 解 (1)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2, |b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. (2)方法一 ∵k a +b =(k -1,k,2). k a -2b =(k +2,k ,-4), 且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0, ∴k =2或k =-52,∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.方法二 由(1)知|a |=2,|b |=5,a ·b =-1, ∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2 =2k 2+k -10=0, 得k =2或k =-52.“两向量同向”意义不清致误典例:(5分)已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.易错分析 将a ,b 同向和a ∥b 混淆,没有搞清a ∥b 的意义:a ·b 方向相同或相反. 解析 由题意知a ∥b ,所以x 1=x 2+y -22=y 3,即⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ② 把①代入②得x 2+x -2=0,(x +2)(x -1)=0, 解得x =-2,或x =1当x =-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧x =-2y =-6时,b =(-2,-4,-6)=-2a , 两向量a ,b 反向,不符合题意,所以舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1y =3. 答案 1,3温馨提醒 (1)两向量平行和两向量同向不是等价的,同向是平行的一种情况.两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件;(2)若两向量a ,b 满足a =λb (b ≠0)且λ>0则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例.方法与技巧1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题. 失误与防范1.向量的数量积满足交换律、分配律,但不满足结合律,即a·b =b·a ,a ·(b +c )=a·b +a·c 成立,(a·b )·c =a·(b·c )不一定成立.2.求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.A 组 专项基础训练 (时间:40分钟)一、选择题1.空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A.垂直B.平行C.异面D.相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), ∴AB →=-3CD →,∴AB →与CD →共线,又AB →与CD →没有公共点. ∴AB ∥CD .2.已知O ,A ,B ,C 为空间四个点,又OA →,OB →,OC →为空间的一个基底,则 ( ) A.O ,A ,B ,C 四点不共线 B.O ,A ,B ,C 四点共面,但不共线 C.O ,A ,B ,C 四点中任意三点不共线 D.O ,A ,B ,C 四点不共面 答案 D解析 OA →,OB →,OC →为空间的一个基底,所以OA →,OB →,OC →不共面,但A ,B ,C 三种情况都有可能使OA →,OB →,OC →共面.3.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A.2,12B.-13,12C.-3,2D.2,2答案 A解析 由题意知:⎩⎪⎨⎪⎧ λ+16=22λ,2μ-1=0,解得⎩⎪⎨⎪⎧ λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12.4.空间四点A (2,3,6)、B (4,3,2)、C (0,0,1)、D (2,0,2)的位置关系是( ) A.共线B.共面C.不共面D.无法确定 答案 C解析 ∵AB →=(2,0,-4),AC →=(-2,-3,-5),AD →=(0,-3,-4).假设四点共面,由共面向量定理得,存在实数x ,y ,使AD →=xAB →+yAC →,即⎩⎪⎨⎪⎧ 2x -2y =0, ①-3y =-3, ②-4x -5y =-4, ③由①②得x =y =1,代入③式不成立,矛盾.∴假设不成立,故四点不共面.5.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( ) A.0 B.12 C.32 D.22 答案 A解析 设OA →=a ,OB →=b ,OC →=c ,则|b |=|c |,〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b , ∴OA →·BC →=a ·(c -b )=a ·c -a ·b=|a ||c |cos π3-|a ||b |cos π3=0, ∴OA →⊥BC →,∴cos 〈OA →,BC →〉=0.二、填空题6.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.答案 60°解析 由题意得,(2a +b )·c =0+10-20=-10.即2a ·c +b ·c =-10,又∵a ·c =4,∴b ·c =-18,∴cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12, ∴〈b ,c 〉=120°,∴两直线的夹角为60°.7.已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为________.答案 355解析 b -a =(1+t,2t -1,0),∴|b -a |=(1+t )2+(2t -1)2= 5⎝⎛⎭⎫t -152+95,∴当t =15时,|b -a |取得最小值355.8.如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于________.答案 12解析 因为PC →=P A →+AB →+BC →,所以PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos 60°=144.所以|PC →|=12.三、解答题9.已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)?解 (1)∵a =(1,-3,2),b =(-2,1,1),∴2a +b =(0,-5,5),∴|2a +b |=02+(-5)2+52=5 2.(2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),∴⎩⎪⎨⎪⎧ x =λ-3y =-λ-1z =-2λ+4,∴E(λ-3,-λ-1,-2λ+4),∴OE →=(λ-3,-λ-1,-2λ+4).又∵b =(-2,1,1),OE →⊥b ,∴OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0,∴λ=95,∴E (-65,-145,25), ∴在直线AB 上存在点E (-65,-145,25),使OE →⊥b . 10.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值.解 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12. (1)|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6, ∴|AC 1→|=6,即AC 1的长为 6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b)=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66. ∴AC 与BD 1夹角的余弦值为66. B 组 专项能力提升(时间:30分钟)1.若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( ) A.c ∥dB.c ⊥dC.c 不平行于d ,c 也不垂直于dD.以上三种情况均有可能答案 B解析 由题意得,c 垂直于由a ,b 确定的平面.∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .2.以下命题中,正确的命题个数为 ( ) ①若a ,b 共线,则a 与b 所在直线平行;②若{a ,b ,c }为空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ③若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;④对空间任意一点O 和不共线三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P 、A 、B 、C 四点共面.A.1B.2C.3D.4答案 B解析 由共线向量知a 与b 所在直线可能重合知①错;若a +b ,b +c ,c +a 共面,则存在实数x ,y ,使a +b =x (b +c )+y (c +a )=y a +x b +(x +y )c , ∵a ,b ,c 不共面,∴y =1,x =1,x +y =0,∴x ,y 无解,∴{a +b ,b +c ,c +a }能构成空间的一个基底,∴②正确;由向量相等的定义知③正确;由共面向量定理的推论知,当x +y +z =1时,P ,A ,B ,C 四点共面,∴④不正确.故选B.3.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.答案 25解析 以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直角坐标系,则A (1,0,0),A 1(1,0,1),B 1(1,1,1),B (1,1,0),C (0,1,0),∴M (1,12,1),N (1,1,12), ∴AM →=(0,12,1), CN →=(1,0,12), ∴cos 〈AM →,CN →〉=AM →·CN →|AM →|·|CN →|=12(12)2+12× 12+(12)2=25.4.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标.解 (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2),∴cos 〈AB →,AC →〉=AB →·AC→|AB →||AC →|=-2+3+614×14=714=12.∴sin 〈AB →,AC →〉=32,∴以AB →,AC →为边的平行四边形的面积为S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3-2x -y +3z =0x -3y +2z =0,解得⎩⎪⎨⎪⎧ x =1y =1z =1或⎩⎪⎨⎪⎧x =-1y =-1z =-1,∴向量a 的坐标为(1,1,1)或(-1,-1,-1).5.直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |,且a·b =b·c =c·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角的余弦值为1010.。

3.1 空间向量及其运算

3.1 空间向量及其运算

3.1 空间向量及其运算1.空间向量的概念空间向量的概念包括空间向量、相等向量、零向量、向量的长度(模)、共线向量等. 2.空间向量的加法、减法和数乘运算平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算.加法运算对于有限个向量求和,交换相加向量的顺序其和不变.三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.加法和数乘运算满足运算律: ①交换律,即a +b =b +a ;②结合律,即(a ()()+=+a +b c a b+c ;③分配律,即()λμλμ+a =a +a 及()λλλ=+a +b a b (其中λμ,均为实数). 3.空间向量的基本定理(1)共线向量定理:对空间向量,a b (0)≠,b a b ∥的充要条件是存在实数λ,使λa =b .(2)共面向量定理:如果空间向量,a b 不共线,则向量c 与向量a,b 共面的充要条件是,存在惟一的一对实数x y ,,使c =x y a +b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组x ,y ,z ,使x y z p =a +b+c .其中{},,a b c 是空间的一个基底,a ,b ,c 都叫做基向量,该定理可简述为:空间任一向量p 都可以用一个基底{},,a b c 惟一线性表示(线性组合).4.两个向量的数量积两个向量的数量积是cos <>,a b =a b a b ,数量积有如下性质: ①cos <> ,a e =a a e (e 为单位向量);②0⇔ a b a b =⊥;③2a a =a ;④ ab a b ≤. 数量积运算满足运算律:①交换律,即 a b =b a ;②与数乘的结合律,即()()λλ a b =a b ;③分配律,即() a +b c =a c +b c .5.空间直角坐标系若一个基底的三个基向量是互相垂直的单位向量,叫单位正交基底,用{},,i j k 表示;在空间选定一点O 和一个单位正交基底{},,i j k ,可建立一个空间直角坐标系O xyz -,作空间直角坐标系O xyz -时,一般使∠xOy =135°(或45°),∠yOz =90°;在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系(立体几何中建立的均为右手系). 6.空间直角坐标系中的坐标运算给定空间直角坐标系O -xyz 和向量a ,存在惟一的有序实数组使123a a a a =i +j +k ,则123()a a a ,,叫作向量a 在空间的坐标,记作123()a a a ,,a =.对空间任一点A ,存在惟一的OA x y z =i +j +k ,点A的坐标,记作()A x y z x y z ,,,,,分别叫A的横坐标、纵坐标、竖坐标.7.空间向量的直角坐标运算律(1)若123123()()a a a b b b ,,,,,a =b =,则a +b 112233()a b a b a b =+++,,,-a b 112233()a b a b a b =---,,,123()a a a λλλλ=,,a ,112233()a b a b a b ,,a b =,112233()a b a b a b λλλλ⇔===∈R ,,a b ∥,1122330a b a b a b ⇔++=a b ⊥.(2)若111222()()A x y z B x y z ,,,,,,则212121()AB x x y y z z =---,,.即一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.8.直线的方向向量与向量方程(1)位置向量:已知向量a ,在空间固定一个基点O ,作向量OA =a ,则点A 在空间的位置被a 所惟一确定,a 称为位置向量.(2)方向向量与向量方程:给定一个定点A和一个向量a ,再任给一个实数t ,以A为起点作向量AP t =a ,则此向量方程称为动点P 对应直线l 的参数方程,向量a 称为直线l 的方向向量.当堂训练一、选择题(每小题6分,共36分)1.如图,在底面为平行四边形的四棱柱ABCD -A 1B 1C 1D 1中,M 是AC 与BD的交点,若AB=a ,11A D =b ,1A A =c ,则下列向量中与1B M 相等的向量是( )(A)-12a +12b +c (B)12a +12b +c(C)12a -12b +c (D)-12a -12b +c 2.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则sin〈CM ,1D N〉的值为( )(A)19 (B)49 5 (C)29 5 (D)233.有以下命题:①如果向量a ,b 与任何向量不能构成空间向量的一个基底,那么a ,b 的关系是不共线;②O ,A ,B ,C 为空间四点,且向量OA ,OB ,OC不构成空间的一个基底,那么点O ,A ,B ,C 一定共面;③已知向量a ,b ,c 是空间的一个基底,则向量a +b ,a -b ,c 也是空间的一个基底.其中正确的命题是( )(A)①② (B)①③ (C)②③ (D)①②③4.设A 、B 、C 、D 是空间不共面的四个点,且满足AB ²AC =0,AD ²AC =0,AD ²AB=0,则△BCD 的形状是( ) (A)钝角三角形 (B)直角三角形 (C)锐角三角形 (D)无法确定5.已知ABCD 为四面体,O 为△BCD 内一点(如图),则AO =13(AB +AC+AD)是O 为△BCD 重心的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分又不必要条件6.正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在1AC 上且AM =121MC,N 为B 1B 的中点,则|MN |为( ) (A)216 (B)66 (C)156 (D)153二、填空题(每小题6分,共18分)7.若空间三点A(1,5,-2),B(2,4,1),C(p,3,q +2)共线,则p +q = .8.已知O 是空间中任意一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA =2x BO +3y CO +4z DO,则2x +3y +4z = .9.空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值等于 .三、解答题(每小题15分,共30分)10.已知a =(1,-3,2),b =(-2,1,1),点A(-3,-1,4),B(-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE⊥b ?(O 为原点)11.如图,直三棱柱ABC -A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1,A 1A 的中点.(1)求BN的模;(2)求cos 〈1BA ,1CB〉的值;(3)求证:A 1B ⊥C 1M.【探究创新】(16分)在棱长为1的正四面体OABC 中,若P 是底面ABC 上的一点,求|OP|的最小值. 同步提升一、选择题1.下列命题正确的有( )(1)若|a |=|b |,则a =b ;(2)若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 是平行四边形的充要条件; (3)若a =b ,b =c ,则a =c ;(4)向量a ,b 相等的充要条件是⎩⎪⎨⎪⎧|a |=|b |,a ∥b ;(5)|a |=|b |是向量a =b 的必要不充分条件; (6)AB →=CD →的充要条件是A 与C 重合,B 与D 重合. A .1个 B .2个 C .3个D .4个2.设A ,B ,C 是空间任意三点,下列结论错误的是( ) A.AB →+BC →=AC → B.AB →+BC →+CA →=0 C.AB →-AC →=CB → D.AB →=-BA →3.已知空间向量AB →,BC →,CD →,AD →,则下列结论正确的是( ) A.AB →=BC →+CD → B.AB →-DC →+BC →=AD → C.AD →=AB →+BC →+DC → D.BC →=BD →-DC →4.已知空间四边形ABCD ,连接AC ,BD ,则AB →+BC →+CD →为( )A .AD →B .BD →C .AC →D .05.点D 是空间四边形OABC 的边BC 的中点,OA →=a ,OB →=b ,OC →=c ,则AD →为( )A.12(a +b )-cB.12(c +a )-bC.12(b +c )-a D .a +12(b +c ) 6.已知P 是正六边形ABCDEF 外一点,O 为ABCDEF 的中心,则PA →+PB →+PC →+PD →+PE →+PF → 等于( )A.PO → B .3PO → C .6PO →D .07.设a 表示向东3 m ,b 表示向北4 m ,c 表示向上5 m ,则( )A .a -b +c 表示向东3 m ,向南4 m ,向上5 mB .a +b -c 表示向东3 m ,向北4 m ,向上5 mC .2a -b +c 表示向东3 m ,向南4 m ,向上5 mD .2(a +b +c )表示向东6 m ,向北8 m ,向上5 m8.空间四边形ABCD 中,若E 、F 、G 、H 分别为AB 、BC 、CD 、DA 边上的中点,则下列各式中成立的是( )A.EB →+BF →+EH →+GH →=0B.EB →+FC →+EH →+GE →=0 C.EF →+FG →+EH →+GH →=0 D.EF →-FB →+CG →+GH →=09、平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 和BD 的交点,若11B A =a ,11D A =b ,A A 1 =c ,则下列式子中与M B 1相等的是1A.-21a + 21b +cB.21a + 21b +c C. 21a - 21b +cD.- 21a - 21b +c10.在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算的结果为向量1AC 的共有( ) (1)1CC )BC AB (++ (2)C D )D A AA (1111++ (3)111C B )BB AB (++ (4)11111C B )B A AA (++ A .1个 B .2个 C .3个 D .4个11.已知点G是正方形ABCD 的中心,P 是正方形ABCD 所在平面外的一点,则A 1PD PC PB PA +++等于( )A .4PGB .3PGC .2PGD .PG12.在空间四边形OABC 中, OA →+AB →-CB →等于( )A .OA →B .AB →C . OC →D .AC →二、填空题1、在空间直角坐标系中,点M 的坐标是(4,5,6),则点M 关于y 轴的对称点在坐标平面xOz 上的射影的坐标为_______.2、已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =3、已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则∆ABC 的形状是 .4、如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的是①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.选做:已知在四面体ABCD 中,= a ,= b ,PC = c ,G ∈平面ABC . 若G 为△ABC 的重心,试证明31=PG (a +b +c );ABCDGP三、解答题1.已知A(3,2,1)、B(1,0,4),求: (1)线段AB 的中点坐标和长度;(2)到A 、B 两点距离相等的点P(x,y,z)的坐标满足的条件.2. 已知''''ABCD A B C D -是平行六面体.(1)化简'1223AA BC AB ++,并在图形中标出其结果;(2)设M 是底面A B C D 的中心,N 是侧面''BCC B 的对角线'BC 上的点,且':3:1BN NC =,设'MN AB AD AA αβγ=++,试求,,αβγ之值。

空间向量及其运算

空间向量及其运算

空间向量及其运算1. 空间向量的有关概念(1)空间向量:在空间中,具有大小和方向的量叫做空间向量. (2)相等向量:方向相同且模相等的向量.(3)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量. (4)共面向量:平行于同一个平面的向量. 2. 共线向量、共面向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .推论 如图所示,点P 在l 上的充要条件是OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP →=OA →+tAB →或OP →=(1-t )OA →+tOB →.(2)共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM →+yOA →+zOB →,其中x +y +z =__1__. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底. 3. 空间向量的数量积及运算律(1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ;③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用(1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.1. 已知向量a =(4,-2,-4),b =(6,-3,2),则(a +b )·(a -b )的值为________. 2. 下列命题:3. 同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是____________________.4. 如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD→=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c5. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别在A 1D 、AC 上,且A 1E =23A 1D ,AF =13AC ,则( )A .EF 至多与A 1D 、AC 之一垂直B .EF 与A 1D 、AC 都垂直 C .EF 与BD 1相交 D .EF 与BD 1异面题型一 空间向量的线性运算例1 三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC的重心,用基向量OA →,OB →,OC →表示MG →,OG →.如图所示,ABCD -A 1B 1C 1D 1中,ABCD 是平行四边形.若AE →=12EC →,A 1F →=2FD →,若AB →=b ,AD →=c ,AA 1→=a ,试用a ,b ,c表示EF →.题型二 共线定理、共面定理的应用例2 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).如图,在三棱柱ABC —A 1B 1C 1中,D 为BC 边上的中点,求证:A 1B ∥平面AC 1D .题型三 空间向量数量积的应用例3 已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标.如图所示,平行六面体ABCD —A 1B 1C 1D 1中,以顶点A 为端点的三条棱长都为1,且两两夹角为60°. (1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 已知O ,A ,B ,C 为空间四个点,又OA →,OB →,OC →为空间的一个基底,则( )A .O ,A ,B ,C 四点不共线 B .O ,A ,B ,C 四点共面,但不共线 C .O ,A ,B ,C 四点中任意三点不共线D .O ,A ,B ,C 四点不共面2. 已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12B .-13,12C .-3,2D .2,23. 如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP →,AE →〉=33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为( )A .(1,1,1) B.⎝⎛⎭⎫1,1,12 C.⎝⎛⎭⎫1,1,32D .(1,1,2)4. 如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于( )A .6 2B .6C .12D .144答案 C二、填空题(每小题5分,共15分)5. 在四面体O —ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=______________(用a ,b ,c 表示).6. 若向量a =(1,λ,2),b =(2,-1,2)且a 与b 的夹角的余弦值为89,则λ=________.7. 在空间直角坐标系中,以点A (4,1,9)、B (10,-1,6)、C (x,4,3)为顶点的△ABC 是以BC 为斜边的等腰直角三角形,则实数x 的值为________.三、解答题(共22分)8. (10分)如图,已知M 、N 分别为四面体ABCD 的面BCD 与面ACD的重心,且G 为AM 上一点,且GM ∶GA =1∶3.求证:B 、G 、N 三 点共线.9. (12分)已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分) 1. 有下列命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P ,M ,A 、B 共面; ④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是( )A .1B .2C .3D .42. 正方体ABCD —A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( )A.216aB.66aC.156aD.153a3. 如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( )A .0 B.12 C.32D.22 二、填空题(每小题5分,共15分)4. 已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,则〈a ,b 〉=________.答案 60°5. 如图所示,已知二面角α—l —β的平面角为θ ⎝⎛⎭⎫θ∈⎝⎛⎭⎫0,π2,AB ⊥BC ,BC ⊥CD ,AB 在平面β内,BC 在l 上,CD 在平面α内,若AB =BC =CD =1,则AD 的长为________.6. 已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为________. 三、解答题7. (13分)直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点. (1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.。

空间向量及其运算

空间向量及其运算
6. 两个向量的数量积: (1)定义 : 已知空间两向量 a, b, 则 a ·b =| a |·b |cos< a, b > ,叫做向 | 量 a,b 的数量积. 其中| a | · cos< a, b >叫做 a 在 b方向上的投影,且 b |a|· cos< a, b > = a · |b|
|a|· cos< a, b > ·b |b| (2)性质:
叫做 a 在 b方向上的正射影。简称射影。
① a · = e · =|a| · e a cos< a, e > . ②若非零向量 a, b,则 ab a · = 0 . b ③ | a |2 = a ·a = a 2 . ④对于非零向量 a, b, 有cos< a, b > = (3)向量的数量积满足交换律、分配律: ① ( a ) ·b = ( a, b ) . ②交换律: a · = b · . b a a· b | a |·b | |
知识归纳
1.空间向量的有关概念: (1)向量:在空间具有大小和方向的量叫做向量.并且仍用有 向线段表示空间向量. (2)相等向量:长度相等且方向相同的向量叫做相等的向量. (3)零向量:长度为零的向量叫做零向量,记作 0 . (4)单位向量:长度为1个单位长度的向量叫做单位向量。 (5)相反向量:长度相等且方向相反的向量叫做相反向量。 (6)平行向量:方向相同或相反的向量叫做平行向量,或叫 共线向量。记作 a∥b .
或对空间任一点O,有OP=OM+x MA+y MB.
注: 可以证明,在平面MAB内,点P对应的实数对(x,y)是唯一 的.上式叫做平面MAB的向量表示式. 又可知: 满足上面两个关系式的点P都在平面MAB内;反之, 平面MAB内任一点P都满足这个关系式.这个充要条件常用于 证明四点共面.

选修第三章空间向量及其运算知识点

选修第三章空间向量及其运算知识点

空间向量及其运算知识点1. 空间向量的有关概念1空间向量:在空间中,具有大小和方向的量叫做空间向量.2单位向量:模为1的向量称为单位向量3相等向量:方向相同且模相等的向量.4共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量.5共面向量:平行于同一个平面的向量.2.空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量112231n n n OA OA A A A A A A ⋯-=++++.运算律:①加法交换律:a +b =b +a ②加法结合律:a +b +c =a +b +c ③数乘分配律:λa +b =λa +λb.3.共线向量、共面向量定理和空间向量基本定理1共线向量定理对空间任意两个向量a ,bb ≠0,a ∥b 的充要条件是存在实数λ,使得a =λb . AB 上的充要条件是:存在实数λ,使得AP AB λ= ①或对空间任意一点O,有OP OA AB λ=+ ②或对空间任意一点O ,有OP xOA yOB =+其中x +y =1 ③推论③推导过程:()(1)OP OA AB OA AO OB OA OB λλλλ=+=++=-+2共面向量定理如果两个向量a ,b 不共线,那么p 与a ,b 共面的充要条件是存在唯一有序实数对x,y 使p =xa +ybABC 内的充要条件是存在唯一有序实数对x,y 使AP xAB yAC =+, 或对空间任意一点O ,有OP OA xAB yAC =++或对空间任意一点O ,有OP xOA yOB zOC =++,其中x +y +z =1推论③推导过程:(1)OP OA xAB yAC x y OA xOB yOC =++=--++3空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c基底:把{a ,b ,c }叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4. 空间向量的数量积及运算律1数量积及相关概念①两向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作错误!=a ,错误!=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=错误!,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积:已知空间两个非零向量a ,b ,向量a ,b 的数量积记作a·b ,且a·b =|a||b |cos 〈a ,b 〉.2空间向量数量积的运算律: ①结合律:λa ·b =λa·b ; ②交换律:a·b =b·a ; ③分配律:a·b +c =a·b +a·c .5. 空间向量的坐标表示及应用设a =a 1,a 2,a 3,b =b 1,b 2,b 31数量积的坐标运算:a·b =a 1b 1+a 2b 2+a 3b 3.2共线与垂直的坐标表示:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 λ∈R ,a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0a ,b 均为非零向量.3模、夹角和距离公式:|a |=错误!=错误!,cos 〈a ,b 〉=错误!=错误! .设Aa 1,b 1,c 1,Ba 2,b 2,c 2,则d AB =|错误!|=错误!.6. 用空间向量解决几何问题的一般步骤:1适当的选取基底{a ,b ,c };2用a ,b ,c 表示相关向量;3通过运算完成证明或计算问题.题型一 空间向量的线性运算用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量的和与差的形式,进而寻找这些向量与基向量的关系.例1:三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量错误!,错误!,错误!表示错误!,错误!.解析:错误!=错误!+错误!=错误!错误!+错误!错误!=错误!错误!+错误!错误!-错误!=错误!错误!+错误!错误!错误!+错误!-错误!=-错误!错误!+错误!错误!+错误!错误!.错误!=错误!+错误!=错误!错误!-错误!错误!+错误!错误!+错误!错误!=错误!错误!+错误!错误!+错误!错误!.例2:如图所示,ABCD -A 1B 1C 1D 1中,ABCD 是平行四边形.若错误!=错误!错误!,错误!=2错误!,且1=x +y +z EF AB AD AA ,试求x 、y 、z 的值..解 连接AF ,错误!=错误!+错误!. ∵错误!=-错误!错误!=-错误!错误!+错误!错误!=错误!+错误!=错误!-错误!=错误!-错误!错误!=错误!-错误!错误!+错误!=12133AD A A -∴错误!=错误!+错误!=1111333AD AA AB +-题型二 共线定理应用向量共线问题:充分利用空间向量运算法则,用空间中的向量表示a 与b ,化简得出a =λb ,从而得出a ∥b ,即a 与b 共线.点共线问题:证明点共线问题可转化为证明向量共线问题,如证明A 、B 、C 三点共线,即证明错误!与错误!共线. 例3:如图所示,四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断错误!与错误!是否共线∵111111()()222222CE CB BEMN MC CB BN AC CB BA BE AC BA CB BE CB BE =+=++=+++=+++=+ ∴错误!=2错误!,∴错误!∥错误!,即错误!与错误!共线.例4:如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且错误!=2ED 1,F 在对角线A 1C 上,且错误!=错误!错误!.求证:E ,F ,B 三点共线.证明: 设错误!=a ,错误!=b ,错误!=c .∴错误!=2错误!=错误!错误!=错误!b ,错误!=错误!错误!=错误!错误!=错误!错误!-错误!=错误!错误!+错误!-错误!=错误!a +错误!b -错误!c∴E 错误!=错误!-错误!=错误!a -错误!b -错误!c =错误!错误!, 错误!=错误!+错误!+错误!=-错误!b -c +a =a -错误!b -c ,∴错误!=错误!错误!.所以E ,F ,B 三点共线.题型三 共面定理应用点共面问题:证明点共面问题可转化为证明向量共面问题,如要证明P 、A 、B 、C 四点共面,只要能证明错误!=x 错误!+y 错误!,或对空间任一点O,有错误!=错误!+x 错误!+y 错误!或错误!=x 错误!+y 错误!+z 错误!x +y +z =1即可例5:已知A 、B 、C 三点不共线,对于平面ABC 外一点O ,若错误!=错误! 错误!+错误!错误!+错误!错误!,则点P 是否与A 、B 、C 一定共面 试说明理由.解析:∵212212212 (+)(+)(+)=+++553553553OP OA OB OC OP PA OP PB OP PC OP PA PB PC =++=++ ∴错误!=错误!错误!+错误!错误!,故A 、B 、C 、P 四点共面.例6:如图所示,已知P 是平行四边形ABCD 所在平面外一点,连结PA 、PB 、PC 、PD,点E 、F 、G 、H 分别为△PAB 、△PBC 、△PCD 、△PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长PE、PF、PG、PH交对边于M、N、Q、R.∵ E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点顺次连结M、N、Q、R,所得四边形为平行四边形,且有错误!=错误!错误!,错误!=错误!错误!,错误!=错误!错误!,错误!=错误!错误!.∴错误!=错误!-错误!=错误!错误!-错误!错误!=错误!错误!=错误!错误!+错误!=错误!错误!-错误!+错误!错误!-错误!=错误!错误!错误!-错误!错误!+错误!错误!错误!-错误!错误!=错误!+错误!. ∴由共面向量定理得E、F、G、H四点共面.例7:正方体ABCD-A1B1C1D1中,E,F分别是BB1和A1D1的中点,求证向量错误!,错误!,错误!是共面向量.证明:如图所示,错误!=错误!+错误!+错误!=错误!错误!-错误!+错误!错误!=错误!错误!+错误!-错误!=错误!错误!-错误!.由向量共面的充要条件知错误!,错误!,错误!是共面向量.题型四空间向量数量积的应用例8:①如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长都为1,且两两夹角为60°.1求AC1的长;2求BD1与AC夹角的余弦值.解析:1记错误!=a,错误!=b,错误!=c,则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,∴a·b=b·c=c·a=错误!.|错误!|2=a+b+c2=a2+b2+c2+2a·b+b·c+c·a=1+1+1+2×错误!=6,∴|错误!|=错误!,即AC1的长为错误!.2错误!=b+c-a,错误!=a+b,∴|错误!|=错误!,|错误!|=错误!,错误!·错误!=b+c-a·a+b=b2-a2+a·c+b·c=1.∴cos〈错误!,错误!〉=错误!=错误!.∴AC与BD1夹角的余弦值为错误!.②已知空间四边形ABCD的每条边和对角线的长都等于a,点E、F分别是BC、AD的中点,则错误!·错误!的值为A.a2 a2 a2 a2解析:设错误!=a,错误!=b,错误!=c,则|a|=|b|=|c|=a,且a,b,c三向量两两夹角为60°.错误!=错误!a+b,错误!=错误!c,∴错误!·错误!=错误!a+b·错误!c=错误!a·c+b·c=错误!a2cos60°+a2cos60°=错误!a2.题型五空间向量坐标运算例9:如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈错误!,错误!〉=错误!,若以DA,DC,DP 所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为A.1,1,1 D.1,1,2设PD=a a>0,则A2,0,0,B2,2,0,P0,0,a,E错误!,∴错误!=0,0,a,错误!=错误!,cos〈错误!,错误!〉=错误!,∴错误!=a错误!·错误!,∴a=2.∴E的坐标为1,1,1.例10:已知a=2,-1,3,b=-1,4,-2,c=7,5,λ.若a,b,c三向量共面,则实数λ=________________解析:由题意得c=t a+μb=2t-μ,-t+4μ,3t-2μ,∴错误!∴错误!例11:已知△ABC的顶点A1,1,1,B2,2,2,C3,2,4,试求△ABC的面积错误!=1,1,1,错误!=2,1,3,|错误!|=错误!,|错误!|=错误!,错误!·错误!=2+1+3=6,∴cos A=cos〈错误!,错误!〉=错误!=错误!.∴sin A=错误!=错误!.∴S△ABC=错误!|错误!|·|错误!|·sin A=错误!×错误!×错误!×错误!=错误!.例12:已知a=λ+1,0,2,b=6,2μ-1,2λ,若a∥b,则λ与μ的值可以是A.2,错误!B.-错误!,错误!C.-3,2 D.2,2解析由题意知:错误!解得错误!或错误!例13:已知空间中三点A-2,0,2,B-1,1,2,C-3,0,4,设a=错误!,b=错误!.,若ka+b与ka-2b互相垂直,求实数k 的值.方法一∵k a+b=k-1,k,2.k a-2b=k+2,k,-4,且k a+b与k a-2b互相垂直,∴k-1,k,2·k+2,k,-4=k-1k+2+k2-8=0,∴k=2或-错误!,方法二由2知|a|=错误!,|b|=错误!,a·b=-1,∴k a+b·k a-2b=k2a2-k a·b-2b2=2k2+k-10=0,得k=2或-错误!.例14:已知空间三点A0,2,3,B-2,1,6,C1,-1,5.1求以错误!,错误!为边的平行四边形的面积;2若|a|=错误!,且a分别与错误!,错误!垂直,求向量a的坐标.解1cos〈错误!,错误!〉=错误!=错误!=错误!=错误!.∴sin〈错误!,错误!〉=错误!,∴以错误!,错误!为边的平行四边形的面积为S=2×错误!|错误!|·|错误!|·sin〈错误!,错误!〉=14×错误!=7错误!.(2)设a=x,y,z,由题意得错误!,解得错误!或错误!,例15:如图所示,在正方体ABCD—A1B1C1D1中,E、F分别在A1D、AC上,且A1E=错误!A1D,AF=错误!AC,则A.EF至多与A1D、AC之一垂直B.EF与A1D、AC都垂直C.EF与BD1相交D.EF与BD1异面解析:设AB=1,以D为原点,DA所在直线为x轴,DC所在直线为y轴,DD1所在直线为z轴建立空间直角坐标系,则A11,0,1,D0,0,0,A1,0,0,C0,1,0,E错误!,F错误!,B1,1,0,D10,0,1,错误!=-1,0,-1,错误!=-1,1,0,错误!=错误!,错误!=-1,-1,1,错误!=-错误!错误!,错误!·错误!=错误!·错误!=0,从而EF∥BD1,EF⊥A1D,EF⊥AC.例16:已知O0,0,0,A1,2,3,B2,1,2,P1,1,2,点Q在直线OP上运动,当错误!·错误!取最小值时,点Q的坐标是__________.解析:设错误!=λ错误!=λ,λ,2λ,则错误!=1-λ,2-λ,3-2λ,错误!=2-λ,1-λ,2-2λ.∴错误!·错误!=1-λ2-λ+2-λ1-λ+3-2λ2-2λ=6λ2-16λ+10=6λ-错误!2-错误!.∴当λ=错误!时,错误!·错误!取最小值为-错误!.此时,错误!=错误!,错误!,错误!,综合练习一、选择题1、下列命题:其中不正确...的所有命题的序号为__________.①若A、B、C、D是空间任意四点,则有错误!+错误!+错误!+错误!=0;②|a|-|b|=|a+b|是a、b共线的充要条件;③若a、b共线,则a与b所在直线平行;④对空间任意一点O与不共线的三点A、B、C,若错误!=x错误!+y错误!+z错误!x、y、z∈R,则P、A、B、C四点共面.⑤设命题p:a,b,c是三个非零向量;命题q:{a,b,c}为空间的一个基底,则命题p是命题q的充要条件解析:选②③④⑤,①中四点恰好围成一封闭图形,正确;②中当a、b同向时,应有|a|+|b|=|a+b|;③中a、b 所在直线可能重合;④中需满足x+y+z=1,才有P、A、B、C四点共面;⑤只有不共面的三个非零向量才能作为空间的一个基底,应改为必要不充分条件2、有下列命题:其中真命题的个数是①若p=x a+y b,则p与a,b共面;②若p与a,b共面,则p=x a+y b;③若错误!=x错误!+y错误!,则P,M,A、B共面;④若P,M,A,B共面,则错误!=x错误!+y错误!.A.1 B.2 C.3 D.4解析其中①③为真命题.②中,若a,b共线,则p≠x a+y b;3、已知A1,0,0,B0,-1,1,错误!+λ错误!与错误!的夹角为120°,则λ的值为A.±错误!错误!C.-错误!D.±错误!解析:错误!+λ错误!=1,-λ,λ,cos120°=错误!=-错误!,得λ=±错误!.经检验λ=错误!不合题意,舍去,∴λ=-错误!.4、如图所示,已知P A⊥平面ABC,∠ABC=120°,P A=AB=BC=6,则PC等于A.6错误!B.6 C.12 D.144解析错误!2=错误!+错误!+错误!2=错误!2+错误!2+错误!2+2错误!·错误!=36+36+36+2×36cos 60°=144∴|错误!|=12证明设错误!=a,错误!=b,错误!=c,则错误!=错误!+错误!=错误!+错误!错误!=-a+错误!a+b+c=-错误!a+错误!b+错误!c,错误!=错误!+错误!=错误!+错误!错误!+错误!=-a+错误!b+错误!c=错误!错误!. ∴错误!∥错误!,即B、G、N三点共线.5、正方体ABCD—A1B1C1D1的棱长为a,点M在AC1上且错误!=错误!错误!,N为B1B的中点,则|错误!|为a a a a解析以D为原点建立如图所示的空间直角坐标系Dxyz,则Aa,0,0,C10,a,a,N错误!.设Mx,y,z.∵点M在AC1上且错误!=错误!错误!,∴x-a,y,z=错误!-x,a-y,a-z∴x=错误!a,y=错误!,z=错误!.∴M错误!,∴|错误!|=错误!=错误!a.6、如图所示,已知空间四边形OABC,OB=OC,且∠AOB=∠AOC=错误!,则cos〈错误!,错误!〉的值为A.0解析设错误!=a,错误!=b,错误!=c,由已知条件〈a,b〉=〈a,c〉=错误!,且|b|=|c|,错误!·错误!=a·c-b=a·c-a·b=错误!|a||c|-错误!|a||b|=0,∴cos〈错误!,错误!〉=0.7、如图所示,在平行六面体ABCD—A1B1C1D1中,M为A1C1与B1D1的交点.若错误!=a,错误!=b,错误!=c,则下列向量中与错误!相等的向量是A.-错误!a+错误!b+c 错误!a+错误!b+c C.-错误!a-错误!b+c 错误!a-错误! b+c解析错误!=错误!+错误!=错误!+错误!错误!-错误!=c+错误!b-a=-错误!a+错误!b +c.8、平行六面体ABCD-A1B1C1D1中,向量错误!,错误!,错误!两两的夹角均为60°,且|错误!|=1,|错误!|=2,|错误!|=3,则|错误!|等于A.5 B.6 C.4 D.8设错误!=a,错误!=b,错误!=c,则错误!=a+b+c,错误!2=a2+b2+c2+2a·b+2b·c+2c·a=25,|错误!|=5.9、在下列条件中,使M与A、B、C一定共面的是=3错误!-2错误!-错误!B.错误!+错误!+错误!+错误!=0 C.错误!+错误!+错误!=0 D.错误!=错误!错误!-错误!+错误!错误!解析:C中错误!=-错误!-错误!.故M、A、B、C四点共面.二、填空题10、同时垂直于a=2,2,1和b=4,5,3的单位向量是____________________.解析设与a=2,2,1和b=4,5,3同时垂直b单位向量是c=p,q,r,则错误!解得错误!或错误!所求向量为错误!或错误!.11.若向量a=1,λ,2,b=2,-1,2且a与b的夹角的余弦值为错误!,则λ=________.解析由已知得错误!=错误!=错误!,∴8错误!=36-λ,解得λ=-2或λ=错误!.12.在空间直角坐标系中,以点A4,1,9、B10,-1,6、Cx,4,3为顶点的△ABC是以BC为斜边的等腰直角三角形,则实数x的值为________.解析由题意知错误!·错误!=0,|错误!|=|错误!|,可解得x=2.13.已知a+3b与7a-5b垂直,且a-4b与7a-2b垂直,则〈a,b〉=________.解析由条件知a+3b·7a-5b=7|a|2+16a·b-15|b|2=0,及a-4b·7a-2b=7|a|2+8|b|2-30a·b=0.两式相减,得46a·b=23|b|2,∴a·b=错误!|b|2.代入上面两个式子中的任意一个,即可得到|a|=|b|.∴cos〈a,b〉=错误!=错误!=错误!.∴〈a,b〉=60°.14. 如图所示,已知二面角α—l—β的平面角为θ错误!,AB⊥BC,BC⊥CD,AB在平面β内,BC在l上,CD在平面α内,若AB=BC=CD=1,则AD的长为________.解析:错误!2=错误!+错误!+错误!2=错误!2+错误!2+错误!2+2错误!·错误!+2错误!·错误!+2错误!·错误!=1+1+1+2cosπ-θ=3-2cos θ.15.已知a=1-t,1-t,t,b=2,t,t,则|b-a|的最小值为________.解析b-a=1+t,2t-1,0,∴|b-a|=错误!=错误!,∴当t=错误!时,|b-a|取得最小值错误!.三、解答题16、如图所示,在各个面都是平行四边形的四棱柱ABCD—A1B1C1D1中,P是CA1的中点,M是CD1的中点,N是C1D1的中点,点Q在CA1上,且CQ∶QA1=4∶1,设错误!=a,错误!=b,错误!=c,用基底{a,b,c}表示以下向量:1错误!;2错误!;3错误!;4错误!.1错误!=错误!错误!+错误!=错误!错误!+错误!+错误!=错误!a+b+c.2错误!=错误!错误!+错误!=错误!错误!+2错误!+错误!=错误!a+2b+c.3错误!=错误!错误!+错误!=错误!错误!+错误!+错误!+错误!+错误!=错误!错误!+2错误!+2错误!=错误!a+2b+2c=错误!a+b+c.4错误!=错误!+错误!=错误!+错误!错误!-错误!=错误!错误!+错误!错误!=错误!错误!+错误!错误!+错误!错误!=错误!a+错误!b+错误!c17、如图,已知M、N分别为四面体ABCD的面BCD与面ACD的重心,且G为AM上一点,且GM∶GA=1∶3.求证:B、G、N三点共线.18.13分直三棱柱ABC—A′B′C′中,AC=BC=AA′,∠ACB=90°,D、E分别为AB、BB′的中点.1求证:CE⊥A′D;2求异面直线CE与AC′所成角的余弦值.1证明:设错误!=a,错误!=b,错误!=c,根据题意,|a|=|b|=|c|且a·b=b·c=c·a=0.∴错误!=b+错误!c,错误!=-c+错误!b-错误!a.∴错误!·错误!=-错误!c2+错误!b2=0,∴错误!⊥错误!,即CE⊥A′D.2错误!=-a+c,∴|错误!|=错误!|a|,|错误!|=错误!|a|.错误!·错误!=-a+c·错误!=错误!c2=错误!|a|2, ∴cos〈错误!,错误!〉=错误!=错误!.即异面直线CE与AC′所成角的余弦值为错误!.。

空间向量及其运算(共22张PPT)

空间向量及其运算(共22张PPT)
向量场的点乘
两个向量场进行点乘运算,得到一个标量场,其 每个标量是原来两个向量场的对应向量的点乘结 果。
向量场的几何意义
向量场表示了空间中某一点受到的力或速度等物理量的分布情况,可以通 过图形表示出来。
向量场的方向表示了该点受到的力的方向或速度的方向,向量的大小表示 了力的大小或速度的大小。
通过观察图形可以直观地了解向量场的分布情况,从而更好地理解物理现 象和问题。
向量的模
向量的模定义为从起点到终点距离的 长度,记作|a|。
向量的模具有以下性质:|a + b| ≤ |a| + |b|,|a - b| ≤ |a| + |b|,|λa| = |λ||a| (λ为实数)。
向量的加法
向量的加法定义为同起点同终点的向量相加,即a + b = b + a(交换律),(λ + μ)a = λa + μa(结合律)。
向量场具有方向性和大小,表 示了空间中某一点受到的力或 速度等物理量的分布情况。
向量场的运算律
1 2 3
向量场的加法
将两个向量场叠加,得到一个新的向量场,其每 个向量是原来两个向量场的对应向量的和。
向量场的数乘
将一个标量与一个向量场中的每个向量相乘,得 到一个新的向量场,其每个向量是原来向量场的 对应向量与该标量的乘积。
向量在其他领域的应用
经济学
在经济学中,例如在市场分析和供需关系中,可以使用向量来表示不同因素之间的关系,通过向量的运算来分析 这些因素之间的关系。
生物学
在生物学中,例如在生态学和生物力学中,可以使用向量来描述生物体的运动、方向和力的作用,通过向量的运 算来分析这些力的作用和影响。
THANKS

(教案)空间向量及其运算

(教案)空间向量及其运算

(教案)空间向量及其运算空间向量及其运算【基础知识必备】⼀、必记知识精选1.空间向量的定义(1)向量:在空间中具有⼤⼩和⽅向的量叫作向量,同向且等长的有向线段表⽰同⼀向量或相等向量.(2)向量的表⽰有三种形式:a ,AB ,有向线段.2.空间向量的加法、减法及数乘运算.(1)空间向量的加法.满⾜三⾓形法则和平⾏四边形法则,可简记为:⾸尾相连,由⾸到尾.求空间若⼲个向量之和时,可通过平移将它们转化为⾸尾相接的向量.⾸尾相接的若⼲个向量若构成⼀个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0.(2)空间向量的减法.减法满⾜三⾓形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向⼀定”,另外要注意-=的逆应⽤.(3)空间向量的数量积.注意其结果仍为⼀向量.3.共线向量与共⾯向量的定义.(1)如果表⽰空间向量的有向线段在直线互相平⾏或重合,那么这些向量叫做共线向量或平⾏向量.对于空间任意两个向量a ,b(b≠0),a∥b ?a=λb,若A 、B、P 三点共线,则对空间任意⼀点O ,存在实数t ,使得OP =(1-t )OA +t OB ,当t=21时,P 是线段A B的中点,则中点公式为OP =21(OA +OB ).(2)如果向量a 所在直线OA 平⾏于平⾯α或a 在α内,则记为a∥α,平⾏于同⼀个平⾯的向量,叫作共⾯向量,空间任意两个向量,总是共⾯的.如果两个向量a 、b 不共线.则向量p 与向量a 、b共⾯的充要条件是存在实数对x 、y.使p=xa+y b.对于空间任⼀点O 和不共线的三点A 、B 、C,A 、B 、C 、P共⾯的充要条件是OP =x OA +y OB +zOC (其中x+y+z=1).共⾯向量定理是共线向量定理在空间中的推⼴,共线向量定理证三点共线,共⾯向量定理证四点共⾯.4.空间向量基本定理如果三个向量a 、b 、c 不共⾯,那么对空间任⼀向量p ,存在⼀个惟⼀的有序实数组x 、y 、z,使p=x a+yb+zc.特别的,若a 、b、c 不共⾯,且xa+yb+zc=O,则x=y =z=0.常以此列⽅程、求值.由于0可视为与任意⼀个⾮零向量共线,与任意两个⾮零向量共⾯,所以三个向量不共⾯,隐含着三向量都不是0.空间任意三个不共⾯向量都可以作为空间向量的⼀个基底.要注意,⼀个基底是⼀个向量组,⼀个基向量是指基底中的某⼀向量.5.两个向量的数量积.a·b =|a |·|b |·co s(a,b ),性质如下:(1)a·e =|a|·cos;(2)a⊥b ?a ·b =0.(3)|a |2=a ·a ;(4)|a |·|b |≥a·b .⼆、重点难点突破(⼀)重点空间向量的加法、减法运算法则和运算律;空间直线、平⾯向量参数⽅程及线段中点的向量公式.空间向量基本定理及其推论,两个向量的数量积的计算⽅法及其应⽤.(⼆)难点空间作图,运⽤运算法则及运算律解决⽴体⼏何问题,两个向量数量积的⼏何意义以及把⽴体⼏何问题转化为向量计算问题.对于重点知识的学习要挖掘其内涵,如从向量等式的学习中可以挖掘出:(1)向量等式也有传递性;(2)向量等式两边加(减)相同的量,仍得等式.即“移项法则”仍成⽴;(3)向量等式两边同乘以相等的数或点乘相等的向量,仍是等式.这样知识掌握更加深刻.⽤空间向量解决⽴体⼏何问题.⼀般可以按以下过程进⾏思考:(1)要解决的问题可⽤什么向量知识来解决?需要⽤到哪些向量?(2)所需要的向量是否已知?若未知,是否可⽤已知条件转化成的向量直接表⽰?(3)所需要的向量若不能直接⽤已知条件转化为向量表⽰,则它们分别易⽤哪个未知向量表⽰?这些未知向量与已知条件转化⽽来的向量有何关系?(4)怎样对已经表⽰出来的所需向量进⾏运算,才能得到所需要的结论?三、易错点和易忽略点导析两个向量的夹⾓应注意的问题:①(a ,b)=(b,a );②(a,b)与表⽰点的符号(a,b )不同;③如图9-5-1(a)中的∠AOB =.图(b)中的∠A O B=π-(AO ,OB ),<-OA ,OB >=【综合应⽤创新思维点拨】⼀、学科内综合思维点拨【例1】已知两个⾮零向量e 1、e 2不共线,如果=e 1+e 2,=2e 1+8e 2,=3e 1-3e 2.求证:A 、B 、C 、D共⾯.思维⼊门指导:要证A 、B 、C、D 四点共⾯,只要能证明三向量AB 、、AD 共⾯,于是只要证明存在三个⾮零实数λ、µ、υ使λ+µ+υ=0即可.证明:设λ(e 1+e 2)+µ(2e 1+8e 2)+υ(3e 1-3e2)=0.则(λ+2µ+3υ)e1+(λ+8µ-3υ)e 2=0. ∵e 1、e 2不共线,∴?=-+=++.038,032υµλυµλ上述⽅程组有⽆数多组解,⽽λ=-5,µ=1,υ=1就是其中的⼀组,于是可知-5AB ++AD =0.故AB、AC、AD共⾯,所以A、B、C、D四点共⾯.点拨:寻找到三个⾮零实数 =-5,µ=1,υ=1使三向量符合共⾯向量基本定理的⽅法是待定系数法.⼆、应⽤思维点拨【例2】某⼈骑车以每⼩时α公⾥的速度向东⾏驶,感到风从正北⽅向吹来,⽽当速度为2α时,感到风从东北⽅向吹来.试求实际风速和风向.思维⼊门指导:速度是⽮量即为向量.因⽽本题先转化为向量的数学模型,然后进⾏求解,求风速和风向实质是求⼀向量.解:设a表⽰此⼈以每⼩时α公⾥的速度向东⾏驶的向量.在⽆风时,此⼈感到风速为-a,设实际风速为v,那么此⼈感到的风速向量为v-a.如图9-5-2.设OA=-a,OB=-2a.由于PO+OA=PA,从⽽PA=v-a.这就是感受到的由正北⽅向吹来的风.其次,由于PO+OB=PB,从⽽v-2=PB.于是,当此⼈的速度是原来的2倍时感受到由东北⽅向吹来的风就是PB.由题意,得∠PBO=45°, PA⊥B O,BA=A O,从⽽△PB O为等腰直⾓三⾓形.故PO =PB=2α.即|v|=2α.答:实际吹来的风是风速为2α的西北风.点拨:向量与物理中的⽮量是同样的概念,因⽽物理中的有关⽮量的求解计算在数学上可化归到平⾯向量或空间向量进⾏计算求解.知识的交叉点正是⾼考考查的重点,也能体现以能⼒⽴意的⾼考⽅向.三、创新思维点拨【例3】如图9-5-3(1),已知E、F、G、H分别是空间四边形ABCD边AB、BC、CD、D A的中点.(1)⽤向量法证明E、F、G、H四点共⾯;(2)⽤向量法证明BD∥平⾯EFGH.思维⼊门指导:(1)要证E、F、G、H四点共⾯,根据共⾯向量定理的推论,只要能找到实数x,y,使EG=x+y即可;(2)要证BD∥平⾯EFGH,只需证向量与共线即可.证明:(1)如图9-5-3(2),连结BG,则 EG =EB +BG =EB +21(BC +BD )=EB+BF +EH =EF +EH . 由共⾯向量定理推论知,E 、F、G 、H 四点共⾯. (2)∵EH =AH -AE =21AD -21AB =21(AD -AB )=21BD , ∴EH ∥B D.⼜EH ?⾯EFG H,BD ?⾯EFG H,∴BD ∥平⾯EF GH.点拨:利⽤向量证明平⾏、共⾯是创新之处,⽐较以前纯⼏何的证明,显⽽易见⽤向量证明⽐较简单明快.这也正是⼏何问题研究代数化的特点.【例4】如图9-5-4,在正⽅体AB CD —A1B 1C 1D 1中,E 为D 1C 1的中点,试求A 1C1与D E所成⾓.思维⼊门指导:在正⽅体AC 1中,要求A 1C1与D E所成⾓,只需求11C A 与所成⾓即可.要求11C A 与DE 所成⾓,则可利⽤向量的数量积,只要求出11C A ·DE 及|11C A |和|DE |即可.解:设正⽅体棱长为m,=a,=b ,1AA =c. 则|a|=|b |=|c |=m,a ·b =b·c =c ·a =0.⼜∵11C A =11B A +11C B =+=a +b ,DE =1DD +E D 1=1DD +2111C D =c +21a,∴11C A ·DE =(a +b )(c +21a)=a·c +b ·c+21a 2+21a ·b =21a 2=21m 2. ⼜∵|11C A |=2m ,|DE |=25m, ∴cos<11C A ,DE >1111m m m 252212?=1010. ∴<11C A ,>=a rccos 1010.即A 1C 1与D E所成⾓为arc cos 1010.点拨:A 1C1与DE 为⼀对异⾯直线.在以前的解法中求异⾯直线所成⾓要先找(作),后求.⽽应⽤向量可以不作或不找直接求.简化了解题过程,降低了解题的难度.解题过程中先把11C A 及DE ⽤同⼀组基底表⽰出来,再去求有关的量是空间向量运算常⽤的⼿段.四、⾼考思维点拨【例5】(2000,全国,12分)如图9-5-5,已知平⾏六⾯体ABCD ⼀A 1B 1C1D1的底⾯AB CD 是菱形,且∠C 1CB=∠C1CD =∠BCD.(1)求证:C 1C⊥BD;(2)当1CC CD 的值为多少时,能使A 1C ⊥平⾯C 1BD?请给出证明. 思维⼊门指导:根据两向量的数量积公式a ·b =|a |·|b|cos知,两个向量垂直的充要条件是两向量的数量积为0,即a ⊥b ?a ·b=0, 所以要证明两直线垂直,只要证明两直线对应的向量数量积为零即可.(1)证明:设CD =a ,CB =b ,1CC =c.由题可知|a |=|b |.设CD 、CB 、1CC 中两两所成夹⾓为θ,于是BD =CD -CB =a -b,1CC ·=c·(a -b )=c·a -c ·b =|c |·|a |cos θ-|c |·|b |c os θ=0,∴C 1C ⊥BD.(2)解:若使A1C ⊥平⾯C1BD ,只须证A 1C ⊥BD,A 1C⊥DC 1,由于:1CA ·D C 1=(CA +1AA )·(CD -1CC )=(a +b +c )·(a -c )=|a |2+a ·b-b·c-|c |2=|a |2+|b|·|a |·cos θ-|b |·|c |cos θ-|c|2=0,得当|a|=|c|时A 1C ⊥DC1.同理可证当|a |=|c |时,A 1C ⊥BD. ∴1CC CD =1时,A 1C⊥平⾯C 1BD. 点拨:对于向量数量积的运算⼀些结论仍是成⽴的.(a-b )·(a +b )=a2-b2;(a ±b )2=a2±2a ·b +b 2.五、经典类型题思维点拨【例6】证明:四⾯体中连接对棱中点的三条直线交于⼀点,且互相平分.(此点称为四⾯体的重⼼)思维⼊门指导:如图9-5-6所⽰四⾯体AB CD 中,E 、F 、G 、H 、P 、Q分别为各棱中点.要证明EF 、GH 、P Q相交于⼀点O ,且O为它们的中点.可以先证明两条直线EF 、G H相交于⼀点O ,然后证明P 、O 、Q 三点共线,即OP 、OQ 共线.从⽽说明PQ 直线也过O 点.证明:∵E 、G 分别为AB、AC 的中点, ∴EG ∥21B C.同理HF ∥21BC.∴EG ∥HF. 从⽽四边形EGFH 为平⾏四边形,故其对⾓线EF 、GH 相交于⼀点O ,且O 为它们的中点,连接O P、OQ .∵OP =OG +GP ,OQ =OH +HQ ,⽽O 为GH 的中点,∴OG +OH =0,GP ∥21CD,QH ∥21C D. ∴GP =21CD ,QH =21CD .∴OP +OQ =OG +OH +GP +HQ =0+21CD -21CD =0.∴OP =-OQ .∴P Q经过O 点,且O 为PQ 的中点.点拨:本例也可以⽤共线定理的推论来证明,事实上,设EF 的中点为O .连接O P 、O Q ,则FQ =EQ -EF ,⽽EQ =21AC =-FP ,EF =-2FO ,则FQ =-FP +2FO ,∴FO =21(FQ +FP ),从⽽看出O 、P 、Q 三点共线且O 为PQ的中点,同理可得GH 边经过O 点且O 为G H的中点,从⽽原命题得证.六、探究性学习点拨【例7】如图9-5-7所⽰,对于空间某⼀点O ,空间四个点A、B、C 、D(⽆三点共线)分别对应着向量a =OA ,b =OB ,c =OC ,d =OD .求证:A 、B、C 、D 四点共⾯的充要条件是存在四个⾮零实数α、β、γ、δ,使αa+βb +γc+δd =0,且α+β+γ+δ=0.思维⼊门指导:分清充分性和必要性,应⽤共⾯向量定理.证明:(必要性)假设A 、B 、C 、D 共⾯,因为A、B 、C 三点不共线,故,两向量不共线,因⽽存在实数x 、y ,使=x +yAC ,即d-a =x(b -a)+y(c-a ),∴(x+y -1)a-xb -yc +d=0.令α=x+y-1, β=-x,γ=-y,δ=1.则αa+βb+γc+δd=0,且α+β+γ+δ=0.(充分性)如果条件成⽴,则δ=-(α+β+γ),代⼊得αa +βb +γc +δd =αa +βb+γc -(α+β+γ)d=0.即α(a-d)+ β(b-d )+γ(c -d )=0.⼜∵a-d=OA -OD =DA ,b-d=DB ,c-d =DC , ∴αDA +βDB +γDC =0.∵α、β、γ为⾮零实数,不妨设γ≠0.则DC =-γαDA -γβDB .∴DC 与DA 、DB 共⾯,即A 、B 、C 、D 共⾯.点拨:在讨论向量共线或共⾯时,必须注意零向量与任意向量平⾏,并且向量可以平移,因⽽不能完全按照它们所在直线的平⾏性、共⾯关系来确定向量关系.【同步达纲训练】A 卷:教材跟踪练习题 (60分 45分钟)⼀、选择题(每⼩题5分,共30分)1.点O 、A 、B 、C为空间四个点,⼜OA 、OB 、OC 为空间⼀个基底,则下列结论不正确的是( )A.O 、A、B 、C四点不共线B. O 、A、B、C 四点共⾯,但不共线C. O 、A 、B 、C 四点中任三点不共线 D. O 、A、B 、C 四点不共⾯2.在正⽅体ABCD-A 1B 1C 1D 1中,下列各式中运算的结果为的共有( )①(+BC )+1CC ②(1AA +11D A )+11C D③(AB +1BB )+11C B ④(1AA +11B A )+11C BA.1个B.2个 C.3个 D .4个3.设命题p :a 、b 、c 是三个⾮零向量;命题q:{a ,b ,c }为空间的⼀个基底,则命题p 是命题q 的( )A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分⼜不必要条件4.设A 、B 、C 、D是空间不共⾯的四点,且满⾜·AC =0,AC ·=0,·=0,则△BC D是( )A .钝⾓三⾓形 B.锐⾓三⾓形 C.直⾓三⾓形 D.不确定5.下列命题中,正确的是( )A.若a与b 共线,则a 与b 所在直线平⾏B.若a ∥平⾯β,a 所在直线为a,则a ∥βC.若{a,b,c}为空间的⼀个基底,则{a-b,b-c ,c-a}构成空间的另⼀个基底D.若OP =21OA +21OB ,则P 、A 、B三点共线6.若a=e 1+e 2+e 3,b=e 1-e 2-e 3,c =e 1+e2,d =e 1+2e 2+3e 3,且d =x a+yb +z c,则x、y 、z 分别为()A.25,-21,-1 B .25,21,1 C.-25,21,1 D.25,-21,1 ⼆、填空题(每⼩题4分,共16分)7.设向量a 与b 互相垂直,向量c与它们构成的⾓都是60°,且|a |=5,|b |=3,|c|=8,那么(a+3c)·(3b -2a ) ;(2a +b -3c )2= .8.已知向量n A A 1=2a ,a 与b的夹⾓为30°,且|a|=3,则21A A +32A A +…+n n A A 1-在向量b的⽅向上的射影的模为 .9.如图9-5-8,已知空间四边形O AB C,其对⾓线为O B 、AC ,M 是边O A 的中点,G 是△ABC 的重⼼,则⽤基向量OA 、OB 、OC 表⽰向量MG 的表达式为 .10.已知P、A、B、C 四点共⾯且对于空间任⼀点O 都有OP =2OA +34OB +λOC ,则λ= .三、解答题(每⼩题7分,共14分)11.如图9-5-9,已知点O 是平⾏六⾯体ABC D—A 1B1C 1D 1体对⾓线的交点,点P是空间任意⼀点.求证:PA +PB +PC +PD +1PA +1PB +1PC +1PD =8PO .12.如图9-5-10,已知线段A B在平⾯α内,线段AC ⊥α,线段BD ⊥AB,且与α所成⾓是30°.如果A B=a,AC=BD =b,求C、D 间的距离.B卷:综合应⽤创新练习题(90分 90分钟)⼀、学科内综合题(10分)1.如图9-5-11所⽰,已知□ABCD,O 是平⾯AC外⼀点,1OA =2OA ,1OB =2OB ,1OC =2OC ,1OD =2OD .求证:A 1、B 1、C 1、D 1四点共⾯.⼆、应⽤题(10分)2.在△ABC 中,∠C=60°,CD 为∠C 的平分线,A C=4,B C=2,过B 作BN ⊥CD 于N 延长交CA 于E,将△BDC 沿CD 折起,使∠BNE=120°,求折起后线段AB 的长度.三、创新题(60分)(⼀)教材变型题(10分)3.(P 35练习2变型)如图9-5-12已知空间四边形ABCD 的每条边和对⾓线的长都等于a,求AB 与CD 的夹⾓.(⼆)⼀题多解(15分)4.已知矩形ABCD,P为平⾯ABCD 外⼀点,且PA ⊥平⾯AB CD,M 、N 分别为PC 、PD 上的点,且M 分成定⽐2,N 分PD 成定⽐1,求满⾜=x AB +y AD +z AP 的实数x 、y 、z 的值.(三)⼀题多变(15分)5.设a ⊥b,=6π,且|a |=1,|b |=2,|c |=3,求|a +b +c |. (1)⼀变:设a ⊥b,=3π,<b ,c>=6π,且|a|=1,|b|=2,|c|=3,求|a+2b-c|.(2)⼆变:设a ⊥b,=3π,且|a|=1,|b|=2,|c|=3,|a+b+c|=3617+,求-b 与c的夹⾓.(四)新解法题(10分)6.如图9-5-13,正⽅形A BCD 和正⽅形ABEF 交于A B,M 、N 分别是BD 、AE 上的点,且AN=DM ,试⽤向量证明MN ∥平⾯EB C.7.O 为空间任意⼀点,A 、B、C 是平⾯上不共线的三点,动点P 满⾜OP =OA +λ(||||AC AB +),λ∈[0,+∞),则P 的轨迹⼀定通过△ABC 的( )A.外⼼B.内⼼ C.重⼼ D.垂⼼四、⾼考题(10分) 8.(2002,上海,5分)若a 、b、c为任意向量,m∈R ,则下列等式不⼀定成⽴的是( )A.(a +b )+c =a +(b +c ) B.(a+b)·c=a ·c +b·cC.m(a +b )=ma+m bD.(a ·b)·c =a ·(b·c )加试题:竞赛趣味题(10分)证明:ab b a -+22+ac c a -+22>bc c b -+22(a,b,c 为正实数).【课外阅读】⽤向量表⽰三⾓形的四⼼由⾼中数学新教材中的向量知识出发,利⽤定⽐分点的向量表达式,可以简捷地导出三⾓形的重⼼、内⼼、垂⼼、外⼼这四⼼的向量表达式.【例】如图9-5-14,在△ABC 中,F 是A B上的⼀点,E 是AC 上的⼀点,且FB AF =l m ,EC AE =ln (通分总可以使两个异分母分数化为同分母分数),连结C F、BE 交于点D.求D 点的坐标.解:在平⾯上任取⼀点O ,连结O A、OB 、O C、O D 、OE 、OF,由定⽐分点的向量表达式,得:OF =(OA +l m ·OB )÷(1+lm ) =ml OB m OA l +?+? ①=ln OC l n OA +?+1=n l OC n OA l +?+? ②⼜=λλ+?+1OC OF =u OE u OB +?+1 ③(其中DCFD =λ,u DE BD =). 整理①、②、③式得λ=1+m n . 所以OD =n m l l ++OA +n m l m ++OB +nm l n ++OC ④由④式出发,可得三⾓形四⼼的向量表达式:(1)若BE 、CF是△A BC两边上的中线,交点G 为重⼼.由④式可得重⼼G 的向量表达式:OG =31(OA +OB +OC ). (2)若BE 、CF 是△AB C两内⾓的平分线,交点I是内⼼.因为FB AF =a b ,EC AE =a c , 由④式可得内⼼I 的向量表达式:OI =c b a a ++OA +c b a b ++OB +cb ac ++OC . (3)若BE 、CF 是△AB C两边上的⾼,交点H是垂⼼.EC AE =Ca A c cos cos ??=Aa C ccos cos . 同理FBAF =Aa B bcos cos . 由④式可得垂⼼H 的向量表达式:OH =OA C c B b A a C a cos cos cos cos +++OB C c B b A a C b cos cos cos cos +++OC Cc B b A a C ccos cos cos cos ++.(4)若BE 、C F的交点O ′是△A BC 的外⼼,即三边中垂线交点,则O ′A=O ′B=O′C.根据正弦定理:EC AE =CBE C BE EBA A BE ∠?∠?sin sin sin sin =)(21sin sin )(21sin sin C BO A B AO C '∠-?'∠-?ππ =A A C C cos sin cos sin ??=AC 2sin 2sin .同理FB AF =A B 2sin 2sin .由④式可得外⼼O ′的向量表达式:OO =C B A A 2sin 2sin 2sin 2sin ++OA +CB A B 2sin 2sin 2sin 2sin ++OB +OC CB AC 2sin 2sin 2sin 2sin ++. 这四个向量表达式,都由④式推出,都有着各⾃轮换对称的性质.好记,好⽤!新教材的优越性,由此可见.参考答案A 卷⼀、1.B 点拨:空间向量的⼀组基底是不共⾯的.2.D点拨:++1CC =+1CC =1AC ,同理根据空间向量的加法运算法则可知(2)、(3)、(4)的计算结果也为1AC .3.B 点拨:当三个⾮零向量a 、b 、c共⾯时,a 、b 、c 不能构成空间的⼀个基底,但是{a,b,c }为空间的⼀个基底时,必有a 、b 、c 都是⾮零向量.因此由P 推不出q,⽽由q 可推出P.4.B 点拨:·AB =0?AC ⊥A B.同理可得A C⊥AD,AB ⊥AD.设AB=a ,AC =b,AD=c.则BC=22b a +,CD=22c b +,B D=22c a +.∵c os∠BCD =CDBC BD CD BC ?-+2222>0,故△BCD 为锐⾓. 同理∠CBD 、∠B DC 亦为锐⾓.则△BC D为锐⾓三⾓形.5.D 点拨:向量共线则其所在直线平⾏或重合,故A错误;向量平⾏于平⾯,则向量在⾯内或所在直线与⾯平⾏,故B 错误;取λ1=λ2=λ3=1,则λ1(a-b )+λ2(b-c)+λ3(c-a)=0,即a-b,b-c,c -a 是共⾯向量,不能构成空间的基底,故C 错.x+y +z=1 x=25, 6.A 点拨: x-y+z=2 ? y=-21, x-y=3 z =-1.⼆、7.-62,373 点拨:(a+3c)·(3b -2a )=3a ·b-2a2+9c ·b -6a ·c=3|a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对空间四点 P,M,A,B 可通过证明下列结论成立来证 明四点共面. → = xMA → +yMB →. (1)MP → =OM → +xMA → +yMB →. (2)对空间任一点 O,OP
提 素 养 误 区 分 析
切 脉 搏 核 心 突 破
→ = xOM → + yOA → + zOB → (x+ y+ z= (3)对空间任一点 O,OP 1). → ∥AB → (或PA → ∥MB → 或PB → ∥AM → ). (4)PM
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
图 761
课 时 提 升 练


高三总复习· 数学(理)
提 素 养 误 区 分 析
研 动 向 考 纲 考 向
【思路点拨】
结合图形,利用三角形法则或平行四边
形法则及数乘向量运算求解.
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
课 时 提 升 练
1 1 → → → +OB → +OC → +OD → ). OC+OD= (OA 2 4
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
课 时 提 升 练


高三总复习· 数学(理)
提 素 养 误 区 分 析
研 动 向 考 纲 考 向
1.证明空间任意三点共线的方法 对空间三点 P,A,B 可通过证明下列结论成立来证明三 点共线.
菜 单
提 素 养 误 区 分 析
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
课 时 提 升 练
高三总复习· 数学(理)
提 素 养 误 区 分 析
考向二 共线、共面向量定理
研 动 向 考 纲 考 向
[ 典例剖析] 【例 2】 已知 E,F,G,H 分别是空间四边形 ABCD 的边 AB,BC,CD,DA 的中点,
课 时 提 升 练


高三总复习· 数学(理)
(3)∵M 是 AA1 的中点, 1→ → → → → ∴MP=MA+AP=2A1A+AP 1 1 1 1 =-2a+a+c+2b=2a+2b+c, 1→ → → → → 又NC1=NC+CC1= BC+AA1 2 1→ → 1 =2AD+AA1=2c+a,


高三总复习· 数学(理)
提 素 养 误 区 分 析
研 动 向 考 纲 考 向
【解】
(1)∵P 是 C1D1 的中点,
→ =AA → +A→ → ∴AP 1 1D1+D1P 1 → → =a+AD+2D1C1 1→ 1 =a+c+2AB=a+c+ 2b.
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
研 动 向 考 纲 考 向
空间向量的线性运算的方法 (1)表示向量的关键:用已知向量表示未知向量时,一定 要结合图形进行,以图形为指导是解题的关键. (2)向量加法的多边形法则:首尾相接的若干向量之和,
切 脉 搏 核 心 突 破
等于由起始向量的始点指向末尾向量的终点的向量,我们把 这个法则称为向量加法的多边形法则.向量加法的三角形法 则、平行四边形法则在空间中仍然成立. (3)空间向量的坐标运算类似于平面向量.
菜 单
演 实 战 沙 场 点 兵
课 时 提 升 练
高三总复习· 数学(理)
提 素 养 误 区 分 析
研 动 向 考 纲 考 向
提醒:一般把未知向量放在一个封闭图形中,借助于加 减法法则逐步地转化为已知向量,从而完成运算.
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
课 时 提 升 练


高三总复习· 数学(理)
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
课 时 提 升 练


高三总复习· 数学(理)
提 素 养 误 区 分 析
a· b 对于选项 C,设 b=(0,-1,1),则 cos 〈a,b〉= = |a ||b |
研 动 向 考 纲 考 向
-1×1 1 =-2.因为 0° ≤〈a,b 〉≤180° ,所以〈a,b〉=120° . 2× 2 a· b 对于选项 D,设 b=(-1,0,1),则 cos 〈a,b〉= = |a ||b | -1-1 =-1.因为 0° ≤〈a,b 〉≤180° ,所以〈a,b〉=180° . 2× 2 故选 B.
提 素 养 误 区 分 析
研 动 向 考 纲 考 向
[ 对点练习] 如图 762 所示,在长方体 ABCDA1B1C1D1 中,O 为 AC 的中点. 1→ 1 → → (1)化简:A1O- AB- AD; 2 2 → (2)设 E 是棱 DD1 上的点,且DE 2→ → ,AD → ,AA → 表示EO →. = DD1,试用AB 1 3
研 动 向 考 纲 考 向
→ )=EB → +BF → +EH → =EF → +EH →. +BD 所以 E,F,G,H 四点共面. 1 → 1→ 1 → → → → → (2)证明:因为EH=AH-AE=2AD-2AB=2(AD-AB)= 1→ BD. 2 所以 EH∥BD. 又 EH⊂平面 EFGH,BD⊄平面 EFGH, 所以 BD∥平面 EFGH.
1 1 1 → → ∴MP+NC1= a+ b+c+a+ c 2 2 2
研 动 向 考 纲 考 向
提 素 养 误 区 分 析
切 脉 搏 核 心 突 破
演 实 பைடு நூலகம் 沙 场 点 兵
3 1 3 =2a+2b+2c.
菜 单
课 时 提 升 练
高三总复习· 数学(理)
提 素 养 误 区 分 析
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
课 时 提 升 练


高三总复习· 数学(理)
提 素 养 误 区 分 析
研 动 向 考 纲 考 向
所以四边形 EFGH 是平行四边形. 所以 EG,FH 交于一点 M 且被 M 平分. 1 → → 1 → 1 → 1 1 → → 1 → 故 OM= (OE +OG) = OE + OG= × OA+OB + 2 2 2 2 2 2
【答案】 B
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
课 时 提 升 练


高三总复习· 数学(理)
[ 命题规律预测] 1. 高考在本节单独命题的几率较小,向量作为一
研 动 向 考 纲 考 向
种解题工具常常在求空间角,判断线面位置关系 命题规律 中得以体现. 2. 试题分两类:一是以客观题的形式考查基本运 算,二是在解答题中体现工具性. 预测 2016 年高考对本节知识单独命题的可能性 考向预测 依然不大,但应重视其在解答题中作为解题工具 出现.
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
图 763
课 时 提 升 练


高三总复习· 数学(理)
提 素 养 误 区 分 析
用向量方法求证:
研 动 向 考 纲 考 向
(1)E,F,G,H 四点共面; (2)BD∥平面 EFGH; (3)设 M 是 EG 和 FH 的交点,求证:对空间任一点 O, 1 → → → → → 有OM=4(OA+OB+OC+OD).
菜 单
提 素 养 误 区 分 析
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
课 时 提 升 练
高三总复习· 数学(理)
提 素 养 误 区 分 析
(3)找一点 O,并连接 OM,OA,OB,OC,OD,OE,
研 动 向 考 纲 考 向
OG. 1→ → 由(2)知EH=2BD, 1→ → 同理FG= BD. 2 → =FG →, 所以EH 即 EH 綊 FG,
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
课 时 提 升 练


高三总复习· 数学(理)
提 素 养 误 区 分 析
【解析】
研 动 向 考 纲 考 向
各选项给出的向量的模都是 2, |a |= 2.
a· b 对于选项 A,设 b=(-1,1,0),则 cos 〈a,b〉= = |a ||b | 1×-1 1 =-2.因为 0° ≤〈a,b〉≤180° ,所以〈a,b〉=120° . 2× 2 a· b 对于选项 B,设 b=(1,-1,0),则 cos 〈a,b〉= = |a ||b | 1×1 1 =2.因为 0° ≤〈a,b〉≤180° ,所以〈a,b〉=60° , 2× 2 正确.
切 脉 搏 核 心 突 破
量积及其坐标表示,能运用向量的数量积判断向量的共线与 垂直.
演 实 战 沙 场 点 兵
课 时 提 升 练


高三总复习· 数学(理)
提 素 养 误 区 分 析
研 动 向 考 纲 考 向
[ 基础真题体验] 考查角度[ 空间向量的数量积运算] (2014· 广东高考)已知向量 a=(1,0,-1),则下列向量中 与 a 成 60° 夹角的是( A.(-1,1,0) C.(0,-1,1) ) B.(1,-1,0) D.(-1,0,1)
提 素 养 误 区 分 析
切 脉 搏 核 心 突 破
演 实 战 沙 场 点 兵
课 时 提 升 练


高三总复习· 数学(理)
提 素 养 误 区 分 析
研 动 向 考 纲 考 向
考向一 空间向量的线性运算 [ 典例剖析] 【例 1】 如图 761 所示, 在平行六面体 ABCDA1B1C1D1
切 脉 搏 核 心 突 破
→1=a,AB → =b,AD → =c,M,N,P 分别是 AA1,BC, 中,设AA C1D1 的中点,试用 a,b,c 表示以下各向量:
相关文档
最新文档