EMI整改不同频段干扰原因及抑制办法

合集下载

开关电源EMI整改方案

开关电源EMI整改方案

开关电源的EMI处理方法一、开关电源EMI整改中,关于不同频段干扰原因及抑制办法。

1MHZ以内,以差模干扰为主。

①增大X电容量;②添加差模电感;③小功率电源可采用 PI 型滤波器处理(建议靠近变压器的电解电容可选用较大些)。

1MHZ-5MHZ,差模共模混合,采用输入端并联一系列 X 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,①对于差模干扰超标可调整 X 电容量,添加差模电感器,调差模电感量;②对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;③也可改变整流二极管特性来处理一对快速二极管如 FR107 一对普通整流二极管1N4007。

5M以上,以共摸干扰为主,采用抑制共摸的方法。

对于外壳接地的,在地线上用一个磁环串绕 2-3 圈会对 10MHZ 以上干扰有较大的衰减作用; 可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环. 处理后端输出整流管的吸收电路和初级大电路并联电容的大小。

20-30MHZ,①对于一类产品可以采用调整对地Y2 电容量或改变Y2 电容位置;②调整一二次侧间的Y1 电容位置及参数值;③在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。

④改变PCB LAYOUT;⑤输出线前面接一个双线并绕的小共模电感;⑥在输出整流管两端并联RC滤波器且调整合理的参数;⑦在变压器与MOSFET之间加BEAD CORE;⑧在变压器的输入电压脚加一个小电容。

⑨可以用增大MOS驱动电阻.30-50MHZ,普遍是MOS管高速开通关断引起。

①可以用增大MOS驱动电阻;②RCD缓冲电路采用1N4007 慢管;③VCC供电电压用1N4007 慢管来解决;④或者输出线前端串接一个双线并绕的小共模电感;⑤在MOSFET的D-S脚并联一个小吸收电路;⑥在变压器与MOSFET之间加BEAD CORE;⑦在变压器的输入电压脚加一个小电容;⑧PCB心LAYOUT 时大电解电容,变压器,MOS构成的电路环尽可能的小;⑨变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。

电源EMI传导辐射实际整改经验总结(绝对值得)

电源EMI传导辐射实际整改经验总结(绝对值得)

电源EMI传导辐射实际整改经验总结(绝对值得)第一篇:电源EMI传导辐射实际整改经验总结(绝对值得)1、在反激式电源中,Y电容接初级地与次级地之间在20MHZ时,会比Y电容接在高压与次级地之间高5dB左右。

当然也要视情况而定。

2、MOS管驱动电阻最好能大于或等于47R。

降低驱动速度有利于改善MOS管与变压器的辐射。

一般采用慢速驱动和快速判断的办法。

3、若辐射在40MHZ-80MHZ之间有些余量不够,可适当地增加MOS管DS之间的电容值,以达到降低辐射量的效果。

4、若在输入AC线上套上磁环并绕2圈,有降低40-60MHZ之间辐射值的趋势,那么在输入EMI滤波部分中串入磁珠则会达到同样的效果。

如在NTC电阻上分别套上两个磁珠。

5、在变压器与MOS管D极之间最好能串入一个磁珠,以降低MOS管电流的变化速度,又能降低输出噪音。

6、电源输入AC滤波部分,X电容放在共模电厂的那个位置并不重要,注意布线时要将铜皮都集中于X电容的引脚处,以达到更好的滤波效果,但X电容最好不要与Y电容连接在同一焊点。

7、在300W左右的中功率电源中,其又是由几个不同的电源部分组成,一般采用三极共模电感。

第一级使用100UH-3MH左右的双线并绕锰锌磁环电感,其后再接Y电容,第二级与第三级可使用相同的共模电感,需要使用的电感量并不要求很大,一般10MH左右就能达到要求。

若把Y电容放在第二级与第三级之间,效果就会差一些。

如果采用两级共模滤波,秕一级电感量适当取大些,1.5-2.5MH左右。

8、如果采用三级,第一级电感量适当取小些,在200UH-1MH 之间。

测试辐射时,最好能在初次级之间的Y电容套上磁珠。

如果用三芯AC输入线,在黄绿地线上也串磁环,并绕上两到三圈。

9、在二极管上套磁珠,一般要求把磁珠套在其电压变化最剧烈的地方,在正端整流二极管中,其A端电压变化最剧烈。

10、实例分析:一台19W的二合一电源,在18MH左右处有超过QP值7dB,前级采用两级共模滤波方法和一个X电容,无论怎样更改滤波部分,此处的QP值总是难以压下来。

EMI传导与辐射超标整改方案

EMI传导与辐射超标整改方案

传导与辐射超标整改方案开关电源电磁干扰的产生机理及其传播途径功率开关器件的高额开关动作是导致开关电源产生电磁干扰(emi)的主要原因。

开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的emi问题。

开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。

开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。

使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。

现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。

由电流波形可知,电流中含有高次谐波。

大量电流谐波分量流入电网,造成对电网的谐波污染。

另外,由于电流是脉冲波,使电源输入功率因数降低。

高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于pn结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。

例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。

当采用零电流、零电压开关时,这种谐波干扰将会很小。

另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。

3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。

开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。

EMC电磁兼容注意事项

EMC电磁兼容注意事项

开关电源EMI整改频段干扰原因及抑制办法开关电源EMI整改中,关于不同频段干扰原因及抑制办法:1MHZ以内----以差模干扰为主1.增大X电容量;2.添加差模电感;3.小功率电源可采用PI型滤波器处理1MHZ---5MHZ---差模共模混合采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,1.对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量;2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;3.也可改变整流二极管特性来处理,换一对慢恢复的5M---以上以共摸干扰为主,采用抑制共摸的方法。

1.对于外壳接地的,在地线上用一个磁环串绕2-3圈会对10MHZ以上干扰有较大的衰减作用;2.变压器用铜箔屏蔽并闭环3. 输入并电容量加大,输出整流管吸收电路参数调整。

对于20--30MHZ,1.对于一类产品可以采用调整对地Y电容量或改变Y电容位置;2.调整原副边隔离电容;3.调整变压器的各绕组的排布。

4.改变PCB LAYOUT;5.输出电感并绕消磁6.输出整流管两端RC滤波器调整合理的参数;7.在变压器的输入电压脚加一个小电容。

8. 可以用增大MOS驱动电阻.30---50MHZ 普遍是MOS管高速开通关断引起1.可以增大驱动电阻;2.缓冲电路采用慢管;3.或者输出线前端串接一个双线并绕的小共模电感;4.在MOSFET上加一个小吸收电路;5.在母线正对地加Y电容;6.PCB心LAYOUT时大电解电容,变压器,MOS构成的电路环尽可能的小,尤其是电流采样环路;7.变压器,输出二极管,输出电容构成的电路环尽可能的小。

8. 将MOS管接到变压器的输入脚50---100MHZ 普遍是输出整流管反向恢复电流引起1.可以在整流管漏极上串磁珠;2.调整输出整流管的吸收电路参数;3.可改变一二次侧跨接Y电容支路的阻抗,如PIN脚处加BEAD CORE或串接适当的电阻;4.也可改变MOSFET,输出整流二极管的本体向空间的辐射(如铁夹卡MOSFET; 铁夹卡DIODE,改变散热器的接地点)。

解决EMI之传导干扰地八大绝招

解决EMI之传导干扰地八大绝招

电磁干扰EMI中电子设备产生的干扰信号是通过导线或公共电源线进行传输,互相产生干扰称为传导干扰。

传导干扰给不少电子工程师带来困惑,如何解决传导干扰?找对方法,你会发现,传导干扰其实很容易解决,只要增加电源输入电路中EMC滤波器的节数,并适当调整每节滤波器的参数,基本上都能满足要求,第七届电路保护与电磁兼容研讨会主办方总结八大对策,以解决对付传导干扰难题。

对策一:尽量减少每个回路的有效面积图1传导干扰分差模干扰DI和共模干扰CI两种。

先来看看传导干扰是怎么产生的。

如图1所示,回路电流产生传导干扰。

这里面有好几个回路电流,我们可以把每个回路都看成是一个感应线圈,或变压器线圈的初、次级,当某个回路中有电流流过时,另外一个回路中就会产生感应电动势,从而产生干扰。

减少干扰的最有效方法就是尽量减少每个回路的有效面积。

对策二:屏蔽、减小各电流回路面积及带电导体的面积和长度如图2 所示,e1、e2、e3、e4为磁场对回路感应产生的差模干扰信号;e5、e6、e7、e8为磁场对地回路感应产生的共模干扰信号。

共模信号的一端是整个线路板,另一端是大地。

线路板中的公共端不能算为接地,不要把公共端与外壳相接,除非机壳接大地,否则,公共端与外壳相接,会增大辐射天线的有效面积,共模辐射干扰更严重。

降低辐射干扰的方法,一个是屏蔽,另一个是减小各个电流回路的面积(磁场干扰),和带电导体的面积及长度(电场干扰)。

对策三:对变压器进行磁屏蔽、尽量减少每个电流回路的有效面积如图3所示,在所有电磁感应干扰之中,变压器漏感产生的干扰是最严重的。

如果把变压器的漏感看成是变压器感应线圈的初级,则其它回路都可以看成是变压器的次级,因此,在变压器周围的回路中,都会被感应产生干扰信号。

减少干扰的方法,一方面是对变压器进行磁屏蔽,另一方面是尽量减少每个电流回路的有效面积。

对策四:用铜箔对变压器进行屏蔽如图4所示,对变压器屏蔽,主要是减小变压器漏感磁通对周围电路产生电磁感应干扰,以及对外产生电磁辐射干扰。

开关电源EMI整改经验总结

开关电源EMI整改经验总结

开关电源EMI整改中,关于不同频段干扰原因及抑制办法:一、1MHZ以内----以差模干扰为主(整改建议)1. 增大X电容量;2. 添加差模电感;3. 小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。

二、1MHZ---5MHZ---差模共模混合采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,(整改建议)1. 对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量;2. 对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;3. 也可改变整流二极管特性来处理一对快速二极管如FR107一对普通整流二极管1N4007。

三、5M---以上以共摸干扰为主,采用抑制共摸的方法。

(整改建议)对于外壳接地的,在地线上用一个磁环串绕2-3圈会对10MHZ以上干扰有较大的衰减作用;可选择紧贴变压器的铁芯粘铜箔,铜箔闭环。

处理后端输出整流管的吸收电路和初级大电路并联电容的大小。

四、对于20--30MHZ,(整改建议)1. 对于一类产品可以采用调整对地Y2电容量或改变Y2电容位置;2. 调整一二次侧间的Y1电容位置及参数值;3. 在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。

4. 改变PCB LAYOUT;5. 输出线前面接一个双线并绕的小共模电感;6. 在输出整流管两端并联RC滤波器且调整合理的参数;7. 在变压器与MOSFET之间加BEAD CORE;8. 在变压器的输入电压脚加一个小电容。

9. 可以用增大MOS驱动电阻。

五、30---50MHZ 普遍是MOS管高速开通关断引起(整改建议)1. 可以用增大MOS驱动电阻;2. RCD缓冲电路采用1N4007慢管;3. VCC供电电压用1N4007慢管来解决;4. 或者输出线前端串接一个双线并绕的小共模电感;5. 在MOSFET的D-S脚并联一个小吸收电路;6. 在变压器与MOSFET之间加BEAD CORE;7. 在变压器的输入电压脚加一个小电容;8. PCB心LAYOUT时大电解电容,变压器,MOS构成的电路环尽可能的小;9. 变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。

轻松了解EMI及其抑制方法

轻松了解EMI及其抑制方法

EMI翻译成中文就是电磁干扰。

其实所有的电器设备,都会有电磁干扰。

只不过严重程度各有不同。

电磁干扰会影响各种电器设备的正常工作,会干扰通信数据的正常传递,虽然对人体的伤害尚无定论,但是普遍认为对人体不利。

所以很多国家和地区对电器的电磁干扰程度有严格的规定。

当然电源也不例外的,所以我们有理由好好了解EMI以及其抑制方法。

下面结合一些专家的文献来描述EMI.首先EMI 有三个基本面就是噪音源:发射干扰的源头。

如同传染病的传染源耦合途径:传播干扰的载体。

如同传染病传播的载体,食物,水,空气.......接收器:被干扰的对象。

被传染的人。

缺少一样,电磁干扰就不成立了。

所以,降低电磁干扰的危害,也有三种办法:1. 从源头抑制干扰。

2.切断传播途径3.增强抵抗力,这个就是所谓的EMC(电磁兼容)先解释几个名词:传导干扰:也就是噪音通过导线传递的方式。

辐射干扰:也就是噪音通过空间辐射的方式传递。

差模干扰:由于电路中的自身电势差,电流所产成的干扰,比如火线和零线,正极和负极。

共模干扰:由于电路和大地之间的电势差,电流所产生的干扰。

通常我们去实验室测试的项目:传导发射:测试你的电源通过传导发射出去的干扰是否合格。

辐射发射:测试你的电源通过辐射发射出去的干扰是否合格。

传导抗扰:在具有传导干扰的环境中,你的电源能否正常工作。

辐射抗扰:在具有辐射干扰的环境中,你的电源能否正常工作。

首先来看,噪音的源头:任何周期性的电压和电流都能通过傅立叶分解的方法,分解为各种频率的正弦波。

所以在测试干扰的时候,需要测试各种频率下的噪音强度。

那么在开关电源中,这些噪音的来源是什么呢?开关电源中,由于开关器件在周期性的开合,所以,电路中的电流和电压也是周期性的在变化。

那么那些变化的电流和电压,就是噪音的真正源头。

那么有人可能会问,我的开关频率是100KHz的,但是为什么测试出来的噪音,从几百K到几百M都有呢?我们把同等有效值,同等频率的各种波形做快速傅立叶分析:蓝色:正弦波绿色:三角波红色:方波可以看到,正弦波只有基波分量,但是三角波和方波含有高次谐波,谐波最大的是方波。

电子设备的EMI与EMC问题解决方法

电子设备的EMI与EMC问题解决方法

电子设备的EMI与EMC问题解决方法随着科技的快速发展,电子设备在我们的日常生活中扮演着越来越重要的角色。

然而,随之而来的问题就是电磁干扰(Electromagnetic Interference,简称EMI)与电磁兼容性(Electromagnetic Compatibility,简称EMC)。

这些问题会导致设备性能下降,甚至可能造成严重的故障。

下面将详细介绍电子设备EMI与EMC问题的解决方法。

一、了解EMI与EMC的原因和影响1. EMI的原因:电子设备中的各种信号电路会产生互相干扰的电磁场,从而产生电磁波辐射,导致EMI问题。

2. EMC的影响:EMI问题可能会导致信号传输的错误、数据丢失、仪器测量不准确等影响设备性能的问题。

二、采取措施减少EMI问题1. 采用屏蔽技术:在电子设备的关键部件或线路周围设置屏蔽罩,以减少电磁波的辐射和接受。

这可以通过使用屏蔽材料和接地技术来实现。

2. 优化线路布局:合理排布电路,避免信号线与电源线之间的互相干扰,减少EMI问题的发生。

同时,使用分离地面平面和分层布局也可以有效降低EMI问题。

3. 控制信号的频率和功率:降低电子设备内部信号线路的频率和功率,可减少电磁波辐射。

这可以通过电路设计和合理选择相关元件来实现。

三、提高设备的EMC性能1. 通过滤波器控制电磁波干扰:在设备中添加滤波器,可有效降低电磁波的干扰。

常见的滤波器包括电源滤波器、信号滤波器等。

2. 使用合适的接地设计:良好的接地系统设计可以有效地减少EMI问题。

通过使用大地板、接地导线等,可将设备的电磁辐射能量导入地面。

3. 注意设备的散热设计:过高的温度可能会导致电子设备内部电路的不稳定工作,进而影响EMC性能。

因此,设备的散热设计应得到重视。

四、进行EMC测试和认证1. 进行EMI测试:通过使用专业的EMI测试仪器,对电子设备进行辐射和传导测量。

这可以帮助确定问题所在,并采取相应的措施进行修正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EMI整改不同频段干扰原因及抑制办法
开关电源EMI整改中,关于不同频段干扰原因及抑制办法:
1MHZ以内----以差模干扰为主
1.增大X电容量;
2.添加差模电感;
3.小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。

1MHZ---5MHZ---差模共模混合
采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,
1.对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量;
2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;
3.也可改变整流二极管特性来处理一对快速二极管如FR107一对普通整流二极管1N4007。

5M---以上以共摸干扰为主,采用抑制共摸的方法。

对于外壳接地的,在地线上用一个磁环串绕2-3圈会对10MHZ以上干扰有较大的衰减作用;
可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环.
处理后端输出整流管的吸收电路和初级大电路并联电容的大小。

对于20--30MHZ,
1.对于一类产品可以采用调整对地Y2电容量或改变Y2电容位置;
2.调整一二次侧间的Y1电容位置及参数值;
3.在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。

4.改变PCB LAYOUT;
5.输出线前面接一个双线并绕的小共模电感;
6.在输出整流管两端并联RC滤波器且调整合理的参数;
7.在变压器与MOSFET之间加BEAD CORE;
8.在变压器的输入电压脚加一个小电容。

9. 可以用增大MOS驱动电阻.
30---50MHZ 普遍是MOS管高速开通关断引起
1.可以用增大MOS驱动电阻;
2.RCD缓冲电路采用1N4007慢管;
3.VCC供电电压用1N4007慢管来解决;
4.或者输出线前端串接一个双线并绕的小共模电感;
5.在MOSFET的D-S脚并联一个小吸收电路;
6.在变压器与MOSFET之间加BEAD CORE;
7.在变压器的输入电压脚加一个小电容;
8.PCB心LAYOUT时大电解电容,变压器,MOS构成的电路环尽可能的小;
9.变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。

50---100MHZ 普遍是输出整流管反向恢复电流引起
1.可以在整流管上串磁珠;
2.调整输出整流管的吸收电路参数;
3.可改变一二次侧跨接Y电容支路的阻抗,如PIN脚处加BEAD CORE或串接适当的电阻;
4.也可改变MOSFET,输出整流二极管的本体向空间的辐射(如铁夹卡MOSFET; 铁夹卡DIODE,改变散热器的接地点)。

5.增加屏蔽铜箔抑制向空间辐射.
200MHZ以上开关电源已基本辐射量很小,一般可过EMI标准
补充说明:
开关电源高频变压器初次间一般是屏蔽层的,以上未加缀述.
开关电源是高频产品,PCB的元器件布局对EMI.,请密切注意此点.
开关电源若有机械外壳,外壳的结构对辐射有很大的影响.请密切注意此点.
主开关管,主二极管不同的生产厂家参数有一定的差异,对EMC有一定的影响.请密切注意此点.。

相关文档
最新文档