INVENTOR衍生的技巧和应用
2024版Inventor高级教程

Inventor高级教程•Inventor软件概述•零件建模与装配设计•钣金设计与模具开发目录•曲面造型与渲染技术•自动化与定制化功能实现•工程图生成与标注规范•协同设计与数据管理策略01Inventor软件概述软件背景及发展历程初始阶段Autodesk Inventor最初是由Mechanical Desktop开发团队创建的,旨在为用户提供一款更加直观、易用的三维机械设计工具。
发展历程随着技术的不断进步和用户需求的变化,Inventor经历了多个版本的更新和迭代,逐渐增加了新的功能和模块,如钣金设计、管路设计、运动仿真等。
现状如今,Inventor已经成为一款功能强大、应用广泛的三维机械设计软件,被广泛应用于机械、汽车、航空航天、电子等领域。
主要功能与应用领域主要功能Inventor具备强大的三维建模、装配、工程图绘制、钣金设计、管路设计、运动仿真等功能,能够满足用户从产品设计到制造的全流程需求。
应用领域Inventor被广泛应用于机械、汽车、航空航天、电子等领域,特别适用于复杂产品的设计和制造,如汽车发动机、飞机起落架、精密仪器等。
高级教程目标与内容安排目标本高级教程旨在帮助用户深入了解Inventor的高级功能和技巧,提高用户的设计效率和创新能力,为用户在职业生涯中的发展打下坚实的基础。
内容安排本教程将涵盖Inventor的高级建模技巧、复杂装配管理、工程图高级设置、钣金与管路设计、运动仿真与优化等内容,通过实例讲解和操作演示相结合的方式,帮助用户快速掌握相关知识和技能。
同时,本教程还将提供一些实用的设计经验和技巧,帮助用户更好地应对实际工作中的挑战。
02零件建模与装配设计利用Inventor 的曲面工具创建复杂的自由形状和有机形状。
高级曲面建模多实体建模零件特征重构在同一个文件中创建多个实体,便于进行布尔运算和组合。
对现有零件进行特征识别和重构,以便进行修改和优化。
030201复杂零件建模技巧装配约束与运动仿真高级装配约束使用角度、平行、垂直等约束条件精确控制零件间的相对位置。
Inventor征文:浅述Inventor应用技巧之一

Autodesk Inventor 提供一个样式库,其中包含一组用于零件和部件的常用材料、颜色和光源,并提供用于工程图的常用绘图标准,例如 ANSI、ISO 和 DIN。
样式库是设计项目中所有文档的公用样式来源。
每个样式库都是 .xml 文件的一个集合,其中每个文件对应一种样式类型。
例如,集合中存在引出序号、尺寸、图层、明细表和所有其他样式类型的文件。
举例说明:欲增加“Q235/A”,并且将该材料添加到新设计的零件中,具体操作步骤如下:1、在Autodesk inventor中,单击“文件”“新建”,然后选择标准零件图模板。
2、在“标准”工具栏上,单击“格式”“样式编辑器”,弹出如下图所示画面,在该窗口内,可新增一些颜色、光源、材料等样式。
图(1)3、点击“材料” 旁边的“+” ,在弹出的子项目中选择“低碳钢”,使其亮显,接下来我们将以低碳钢为模板来创建“Q235/A”。
4、点击右侧的“新建”按钮在弹出的“新样式名”窗口中,添加“Q235/A” ,如下图所示。
图(2)5、添加完毕后,点击“确定”按钮。
“Q235/A”的新样式就会出现在旁边栏的子项中,并且亮显。
图(3)6、在亮显的“Q235/A”文字上面,双击鼠标左键,使文字变为粗黑色的亮显,新添加的“Q235/A”新材料样式即用于当前的零件设计中。
点击“完成”,退出。
7、在“标准”工具栏上,单击“文件”“iproperties”,弹出如下图所示窗口,点击“物理特性”栏,可以看到在“材料”内显示为“Q235/A”。
图(4)提示:①、可以将刚创建的标准零件保存为“Q235/A”零件模板,以方便以后使用。
②、其他的颜色、光源、材料等新样式的添加按上述步骤操作即可。
INVENTOR衍生的技巧和应用

INVENTOR衍生的技巧和应用任何一个可用的CAD软件,要解决的事情有二:关联与表达。
因为这是设计中最为基础的需要,无论用何种机制完成,最基本的就是“符合工程师原本的设计思维”。
在Inventor中,衍生(Derived)是这种关联的有效工具,能力很强、用着很舒服。
因为篇幅关系,本文仅就零件设计中的使用进行分析和说明。
1.公用草图设计参数的关联,是所有设计中必然涉及到的、基本的功能要求,也是CAD软件必备的功能。
但是,其关联可能不是很具体的数据,而是某个图样。
例如总体设计提出了一种方案,而表达方法是一个二维的草图,并保存为B.IPT文件,参见图1。
如果有好几个人同时在设计相关的不同的零部件,这就是并行设计,并行设计都与总体设计的意图相关。
我们希望做到:“多个几乎同时进行的设计,共同基于一个草图;并且在这一个草图发生改变之后,所有的相关设计能够自动跟随改变”。
如果这个设想可以实现,就能做到“任何一个人在任何一个位置上对一个设计数据做出说明,大家都能看到并同时关联使用”。
实际上在Inventor中,当总图设计修改了原始草图之后,所有利用这个草图衍生的零件,都将做到关联修改。
例如某个设计项目组,需借用上级设计的意图表达的草图,完成相关的零件设计。
其中一零件设计师的操作过程将是: ? 开始新零件,结束草图;利用“衍生零件”功能,引入图1中的零件,只需要草图,具体的衍生参数设置参见图2;? 借助衍生而来的草图直接创建特征(见图3),进而创建其他特征完成自己的新零件。
这样,当上游设计(B.IPT)的草图参数发生改变后,再打开自己的设计结果,进行更新之后,即可见到模型已经关联改变了。
在这种模式下,可以添加自己的特征,但不可以逆向修改原草图。
这正是通常的设计管理所需要的结果。
衍生结果本身也有若干可操作的功能,在浏览器中,选定衍生,可在右键菜单中看到(见图4)。
做衍生的目的就是要实现“关联”,如果“断开”,这个草图脱离了与原草图的数据关联,与重新做的草图并无不同(甚至更为麻烦)。
【inventor设计加速器】Inventor在建筑设计中的应用和技巧

竭诚为您提供优质文档/双击可除
【inventor设计加速器】Inventor在建筑设计中的应
用和技巧
inventor在建筑设计中的应用和技巧
Inventor在建筑设计中的应用和技巧
1引言
传统的建筑建设过程一般由概念草图设计→绘制建筑工程图→绘制建筑效果图→建筑施工等组成。
随着计算机技术的发展,将建筑设计与计算机辅助设计相结合,借助三维建筑模型来多角度地展示建筑物复杂多变的空间结构,实现了建筑设计可视化。
autodeskinventor是美国autodesk公司推出的基于特征的参数化三维设计软件,可以随处剖切三维建筑模型,如房屋的水平剖切、房屋的垂直剖切和各层楼梯间的剖切,等,使内部结构一目了然。
()利用计算机的虚拟设计,为设计人员提供了广阔的思维空间,以激发设计和创新灵感。
对比图1和图2两种楼梯的外观效果,可以动态地观察、推敲和修改设计,从中选择一种比较合理、美观的设计方案。
下页余下全文inventor在建筑设计中的应用和技巧
此文档接下来的内容需要付费浏()览上页。
Inventor技巧总结

Ctrl O = 打开,Ctrl N = 新建文档,Ctrl P = 打印。
一、Inventor 如何自定义图纸样式
自定义图框 软件缺省的图框是可编辑的参数化图框,可以自动随图纸的大小变化;自定义的图框是不可编辑的非参 数化图形,所以不同型号的图框需全部画出。 新建工程图文件,执行“格式”,“定义新图框”,进入绘图环境绘制自定义图框,线条类型通过样式定义。 注:只能画出内框,而代表图纸标准尺寸的外框不要画出,因为标题栏将以最外层图框定位。
=
清除最后选择的草图(例如,取消当前创建直线段。) yR-1- k8r5
删除 Delete = 0 ];uGe
Tab = 在“精确输入”工具栏中的各个输入栏之间切换 dQe-N5h
Ctrl + 回车 = 在提交精确输入的草图点时禁用推断
标准 Windows 键:Ctrl Z =撤消,Ctrl Y = 恢复,Ctrl C = 复制,Ctrl V = 粘贴,Ctrl S = 保存,
自定义标题栏 执行“格式”,“定义新标题栏”,进入绘图环境。依据用户标准的标题栏尺寸绘制自定义标题栏,线条类 型通过样式定义。标题栏中固定不变的文字可以应用“文本”命令输入,包括作者、零件号、创建日期等需 要变动的文字可以应用“特性字段”命令定义,以便软件根据文件特性自动填写。执行“特性字段”命令,用 鼠标定位文字区域,出现“格式字段文本”对话框,在其中可以定义文字的字体、字号、字型、对齐方式, 从软件的特性数据库中挑选相应的特性字段作为自动填写的内容,确定退出对话框。以此种方式完成标题 栏中全部项目的定义工作,执行“格式”,“保存标题栏”。此时在浏览器“工程图资源”“标题栏”一项中出现 自定义的标题栏。删除图纸项中缺省的标题栏 GB1,插入自定义标题栏。将此文件保存为模板,存 到…\Inventor\Templates 目录中,今后可以直接应用。 标题栏中自动填写的文字内容,由软件的应用者在文件特性对话框中输入。
INVENTOR衍生的技巧跟运用

INVENTOR衍生的技巧和应用任何一个可用的CAD软件,要解决的事情有二:关联与表达。
因为这是设计中最为基础的需要,无论用何种机制完成,最基本的就是“符合工程师原本的设计思维”。
在Inventor中,衍生(Derived)是这种关联的有效工具,能力很强、用着很舒服。
因为篇幅关系,本文仅就零件设计中的使用进行分析和说明。
1.公用草图设计参数的关联,是所有设计中必然涉及到的、基本的功能要求,也是CAD软件必备的功能。
但是,其关联可能不是很具体的数据,而是某个图样。
例如总体设计提出了一种方案,而表达方法是一个二维的草图,并保存为B.IPT文件,参见图1。
如果有好几个人同时在设计相关的不同的零部件,这就是并行设计,并行设计都与总体设计的意图相关。
我们希望做到:“多个几乎同时进行的设计,共同基于一个草图;并且在这一个草图发生改变之后,所有的相关设计能够自动跟随改变”。
如果这个设想可以实现,就能做到“任何一个人在任何一个位置上对一个设计数据做出说明,大家都能看到并同时关联使用”。
实际上在Inventor中,当总图设计修改了原始草图之后,所有利用这个草图衍生的零件,都将做到关联修改。
例如某个设计项目组,需借用上级设计的意图表达的草图,完成相关的零件设计。
其中一零件设计师的操作过程将是: ? 开始新零件,结束草图;利用“衍生零件”功能,引入图1中的零件,只需要草图,具体的衍生参数设置参见图2;? 借助衍生而来的草图直接创建特征(见图3),进而创建其他特征完成自己的新零件。
这样,当上游设计(B.IPT)的草图参数发生改变后,再打开自己的设计结果,进行更新之后,即可见到模型已经关联改变了。
在这种模式下,可以添加自己的特征,但不可以逆向修改原草图。
这正是通常的设计管理所需要的结果。
衍生结果本身也有若干可操作的功能,在浏览器中,选定衍生,可在右键菜单中看到(见图4)。
做衍生的目的就是要实现“关联”,如果“断开”,这个草图脱离了与原草图的数据关联,与重新做的草图并无不同(甚至更为麻烦)。
2024版Inventor基础教程[1]
![2024版Inventor基础教程[1]](https://img.taocdn.com/s3/m/de0f96765627a5e9856a561252d380eb629423dc.png)
逐步完善
随着版本的迭代更新,Inventor 逐步增加了更多功能和工具,如
钣金设计、管路设计等。
现状与发展趋势
如今,Inventor已经成为一款功 能强大的三维CAD软件,广泛应 用于各个行业。未来,Inventor 将继续致力于提高用户体验和增
加新功能。
Inventor应用领域
01
02
03
04
机械设计
装配体概念
装配体是由多个零部件组成的整体, 用于模拟实际产品的结构和功能。
零部件约束
在装配体中,可以使用各种约束来定 义零部件之间的相对位置和关系,如 配合、对齐、角度等。
装配体分析
可以对装配体进行干涉检查、运动仿 真等分析,以验证设计的正确性和可 行性。
爆炸视图
通过爆炸视图可以清晰地展示装配体 的内部结构和零部件之间的相对位置 关系。
材质调整
掌握材质编辑器使用方法, 调整材质属性如反射、折 射、透明度等,以达到更 真实的渲染效果。
灯光和阴影调整策略
灯光类型
01
了解不同灯光类型(如点光源、平行光、环境光等)及其特点,
根据需要选择合适的灯光。
阴影设置
02
学习如何调整阴影参数,如阴影贴图分辨率、阴影颜色等,使
阴影更自然、逼真。
灯光布局
视图样式设置
视图窗口管理
可以设置视图的样式和属性,如背景色、网 格线、坐标系等,提高视觉效果和操作便利 性。
支持多个视图窗口的同时打开和管理,方便 用户进行多视角查看和比较。
03
草图绘制基础
草图环境设置与进入方式
草图环境设置
在进入草图模式之前,需要设置草图环境,包括选择草图平面、设置草图方向、调 整草图网格等。
浅谈Inventor在机械制图教学中的应用

浅谈Inventor在机械制图教学中的应用Inventor是一种专业的三维机械设计软件,它对于机械制图教学中的应用非常广泛。
通过Inventor软件的教学,学生可以深入了解机械设计的基础知识,并且掌握三维设计技能。
本文将从Inventor在机械制图教学中的应用、教学案例以及未来发展趋势等方面进行浅谈。
1.提升学生的学习兴趣传统的机械制图教学通常是通过纸笔绘制二维图纸来进行的,这种方式往往难以激发学生的学习兴趣。
而Inventor软件可以将学生从纸上繁琐的绘图工作中解放出来,让他们直接通过计算机进行三维设计和模拟,从而更容易吸引学生的兴趣,激发他们对机械设计的热情。
2.提高学生的设计能力Inventor软件可以实现快速的三维设计和模拟,学生可以通过软件的操作来实现自己的设计想法,并且可以实时地查看设计效果。
这种实践性的学习方式可以帮助学生更好地理解机械设计的原理,并且提高他们的设计能力。
3.满足教学的需求Inventor软件作为专业的机械设计软件,其功能非常强大,可以满足机械制图教学的各种需求。
不论是从简单的零部件设计到复杂的装配体设计,Inventor都可以提供丰富的功能和工具,帮助教师完成教学任务。
1.零部件的三维设计与装配在机械制图教学中,通常会涉及到零部件的设计与装配。
通过Inventor软件,学生可以学习如何利用软件中的各种工具进行零部件的三维设计,并且将各个零部件进行装配,从而完成整体的设计。
通过实际操作,学生可以对零部件的设计原理和装配过程有更深入的了解。
2.运动仿真与分析Inventor软件还可以进行零部件的运动仿真与分析,这对于机械制图教学来说是非常有用的。
学生可以通过软件模拟零部件的运动过程,观察各个零部件之间的相互作用,从而更好地理解机械系统的工作原理。
3.绘制工程图纸除了三维设计和模拟外,Inventor软件还可以帮助学生进行工程图纸的绘制。
学生可以通过软件的功能完成各种视图的绘制,包括正视图、俯视图、侧视图等,并且可以添加尺寸标注和注释等,从而完成具有工程实践价值的图纸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
INVENTOR衍生的技巧和应用
任何一个可用的CAD软件,要解决的事情有二:关联与表达。
因为这是设计中最为基础的需要,无论用何种机制完成,最基本的就是“符合工程师原本的设计思维”。
在Inventor中,衍生(Derived)是这种关联的有效工具,能力很强、用着很舒服。
因为篇幅关系,本文仅就零件设计中的使用进行分析和说明。
1.公用草图
设计参数的关联,是所有设计中必然涉及到的、基本的功能要求,也是CAD软件必备的功能。
但是,其关联可能不是很具体的数据,而是某个图样。
例如总体设计提出了一种方案,而表达方法是一个二维的草图,并保存为B.IPT文件,参见图1。
如果有好几个人同时在设计相关的不同的零部件,这就是并行设计,并行设计都与总体设计的意图相关。
我们希望做到:“多个几乎同时进行的设计,共同基于一个草图;并且在这一个草图发生改变之后,所有的相关设计能够自动跟随改变”。
如果这个设想可以实现,就能做到“任何一个人在任何一个位置上对一个设计数据做出说明,大家都能看到并同时关联使用”。
实际上在Inventor中,当总图设计修改了原始草图之后,所有利用这个草图衍生的零件,都将做到关联修改。
例如某个设计项目组,需借用上级设计的意图表达的草图,完成相关的零件设计。
其中一零件设计师的操作过程将是: ? 开始新零件,结束草图;利用“衍生零件”功能,引入图1中的零件,只需要草图,具体的衍生参数设置参见图2;
? 借助衍生而来的草图直接创建特征(见图3),进而创建其他特征完成自己的新零件。
这样,当上游设计(B.IPT)的草图参数发生改变后,再打开自己的设计结果,进行更新之后,即可见到模型已经关联改变了。
在这种模式下,可以添加自己的特征,但不可以逆向修改原草图。
这正是通常的设计管理所需要的结果。
衍生结果本身也有若干可操作的功能,在浏览器中,选定衍生,可在右键菜单中看到(见图4)。
做衍生的目的就是要实现“关联”,如果“断开”,这个草图脱离了与原草图的数据关联,与重新做的草图并无不同(甚至更为麻烦)。
实际上这是要解决一种特殊的需要:想删除这个衍生关联。
这就要先“断开”,然后才可以删除。
2.模型之间的布尔运算
在两个零件模型之间做布尔运算,是设计中相当普通的需求,AutoCAD/MDT中都直接有这种功能,然而目前Inventor还没提供直接的操作。
但是,并不是说Inventor的算法核心不能完成这样的要求。
可能的间接方法有几种,这里先介绍利用衍生的解决方案。
例如:已经设计了某零件的锻造毛坯MP.IPT,现在要设计锻造模具的型腔。
希望能利用零件毛坯与模具体的差运算,直接“挖”出型腔,并保持两者的设计数据关联。
这是设计过程的一种常见的要求。
做法如下:
? 在毛坯零件模型中注意将轴线呈可见状态。
? 开始新零件,结束草图;在特征工具面版上启用“衍生零部件”工具;
? 选定MP.IPT作为衍生的源零件;
? 在衍生参数对话框中,选定“实体为工作曲面”;
? 选定“定位几何图元”这样就能把原模型的可见的设计基准轴线加入进来,参见图5。
? 在“原始坐标系”的XY面创建草图,根据衍生零件跟随进来的基准轴线,创建和约束模子的外框草图,见图6左。
? 拉伸成模子方块,参见图6。
? 利用“分割”功能,以衍生的曲面为工具,切割模子方块,挖出模腔,参见图7。
? 设置衍生曲面呈不可见,见图8左。
.零件分割
进行罩壳类零件设计时,常常是先设计好整体,之后根据需要分割成多个零件。
设计构思的正确表达,是希望将来各个罩壳零件都能按照整体设计的变化而跟随变化。
如图9,整体设计为BaseK.IPT;零件上的工作面则是未来分割零件的工具。
当然,这个分割工具也可以是曲面。
首先创建新零件,再利用衍生功能引用BaseK.IPT,并带着分割工具面引入?,衍生参数设置参见图10。
之后用工作面切割,分别形成各个零件各自另存,结果参见图11。
4.产生控制路径
图12是零件局部结构,这是用钢丝弯曲而成的。
可以肯定,在Inventor中,只要完成了空间曲线组成的三维路径,用扫掠将很容易完成这类模型的创建。
实际上,三维草图投影棱边的结果,已经是“真正”意义上的三维空间曲线了。
这提示我们,做出辅助实体,为生成三维扫掠路径创造基础条件。
于是,这类模型的解决方案就有了:
□ 创建基础实体零件,见图13;
□ 开始新零件,衍生这个基础实体零件;
□ 创建三维草图,投影衍生曲面的相关棱边,成为路径;
□ 在衍生曲面的开叉端做草图,投影直线,以投影点为圆心,作草图圆;
□ 扫掠完成,结果见图14。
5.衍生功能的总结
衍生功能很有趣,它是工程师常挂在嘴边上的设计用语—“在xxx基础上如何如何…”这个设计思维的清晰的表达方法。
Inventor关于零件环境中衍生机制的几个规则是:
? 衍生结果零件的基础特征。
基础特征是不能在衍生零件环境下修改的,就是说,只能因为原零件的修改造成衍生零件的相关修改,而不能逆向操作。
这清楚地表达了设计数据的继承关系。
? 衍生零件可以在原零件基础上添加特征。
在原零件修改之后,衍生零件的新加特征将能保持定义时的条件,更新之后跟随变化。
这就清楚地表达了设计构思中的继承和关联。
? 并运算。
将原零件作为基础特征。
在创建衍生零件的对话框中,使“实体”参数有效。
? 差运算。
将原零件作为切割工具。
在创建衍生零件对话框中,使“实体作为工作曲面”有效,原零件将成为曲面。
这种切割仍保持两个零件的关联性能。
? 关于定位特征的规则
只有可见的、未退化的草图图元、可见的定位特征、可见的曲面,才可以被选择并加入进衍生的新零件。
这是规则,可以理解和容易遵守的规则。
? 关于“比例系数”参数
在笔者的设计经验中,还确实没有碰到过改变某零件的整体比例,就能够成为新零件的需求。
但是,对于铸造模型创建中需要解决“缩尺”的设计要求下,这个功能会很好地完成“改变比例”设计。
? 关于“断开连接”选项
如果“断开”,这个零件就成为某些部分(衍生的结果造成的部分)不可控制了。
实际上,这是为删除这个衍生准配条件。
先断开,之后就可以删除了;为什么要删除?应当是为“替换衍生源文件”做准备。
? 关于相互的位置关系
这是零件衍生唯一的一个不顺利的地方。
原零件在衍生进入时,是以“自己的基准坐标系与当前的基准坐标系相重合”这样的规则确定位置的。
因此,如果想控制衍生零件与当前零件的位置关系,有两种对策:
或者各自对自己的“原始坐标系”坐标系控制好位置关系;
或者在引入衍生之后再开始创新零件结构。
? 关于参数传递的规则
原零部件的设计参数,可以利用衍生传递到新零部件中继续使用。
方法是在原零部件的参数中,将某参数右边的复选框选定,如图15。
5.衍生功能的总结
衍生功能很有趣,它是工程师常挂在嘴边上的设计用语—“在xxx基础上如何如何…”这个设计思维的清晰的表达方法。
Inventor关于零件环境中衍生机制的几个规则是:
之后在以这个零部件作为衍生的原始条件时,就可以控制是否“输出参数”了。
凡是“输出参数”,都将自动添加到这个零件的“自定义属性”栏目中。
这是个很重要的性能,在后边的工程图处理中相当有用!
? 草图的衍生
对于二维草图,可见的草图都能衍生进来,而不管是否被特征引用过;但是,三维草图不会被衍生带进来。
? 非几何参数的传递
一个零件的设计数据,是几何参数和非几何参数组成。
而衍生实际上仅是在大部分几何构成上作数据处理,并不会涉及到非几何数据。
在衍生的参数设计中,目前还没有提供关于原始模型的非几何设计参数,是否在衍生中被继承下来的设置开关,这几乎是唯一的缺憾。