几何图形中的多个结论探究

合集下载

初中数学中考复习 第3关 多结论的几何及二次函数问题为背景的选择填空题(原卷版)

初中数学中考复习 第3关 多结论的几何及二次函数问题为背景的选择填空题(原卷版)

第3关 多结论的几何及二次函数问题为背景的选择填空题【考查知识点】以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力;以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。

【解题思路】1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法,为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本图形。

大量积累基本图形,并在此基础上“截长补短”,“能割善补”,是学习几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以算做一个基本图形.2. 以二次函数为背景的选择填空题中,根据图象的位置确定a 、b 、c 的符号,a >0开口向上,a <0开口向下.抛物线的对称轴为x=2ba-,由图像确定对称轴的位置,由a 的符号确定出b 的符号.由x=0时,y=c ,知c 的符号取决于图像与y 轴的交点纵坐标,与y 轴交点在y 轴的正半轴时,c >0,与y 轴交点在y 轴的负半轴时,c <0.确定了a 、b 、c 的符号,易确定abc 的符号;根据对称轴确定a 与b 的关系;根据图象还可以确定△的符号,及a+b+c 和a -b+c 的符号。

【典型例题】【例1】(2019·新疆中考真题)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABMFDM SS=;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④【名师点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质【例2】(2019·湖北中考真题)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断: ①0ab >且0c <; ②420a b c -+>; ③8>0+a c ; ④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,则12125x x x x ++⋅=-.其中正确的个数有( )A .5个B .4个C .3个D .2个【名师点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab>0),对称轴在y 轴左侧;当a 与b 异号时(即ab<0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac>0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac<0时,抛物线与x 轴没有交点.【例3】(2019·辽宁中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF;③BCCG =﹣1;④HOM HOGS S =2)A.①②③B.①②④C.①③④D.②③④【名师点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.【例4】(2018·广西中考真题)如图,抛物线y=14(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4【名师点睛】本题考查了二次函数与圆的综合题,涉及到抛物线的对称轴、圆的面积、平行四边形的判定、待定系数法、两直线垂直、切线的判定等,综合性较强,有一定的难度,运用数形结合的思想灵活应用相关知识是解题的关键.【方法归纳】1.多结论的几何选择填空题考查的知识点较多,如相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、四边形的知识、圆的知识、等腰三角形的判定与性质以及特殊角三角函数等知识.这类题目的综合性很强,难度较大,解题的关键是注意数形结合思想的应用.2. 多结论的二次函数选择题主要考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.数形结合思想贯穿这类题目的始终,解题时应时时注意.【针对练习】1.(2018·四川中考真题)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形; ②∠PBA=∠APQ ; ③△FPC 为等腰三角形; ④△APB ≌△EPC ;其中正确结论的个数为( )A .1B .2C .3D .42.(2018·辽宁中考真题)已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论: ①abc >0;②该抛物线的对称轴在x=﹣1的右侧; ③关于x 的方程ax 2+bx+c+1=0无实数根; ④a b cb++≥2. 其中,正确结论的个数为( ) A .1个B .2个C .3个D .4个3.(2019·四川中考真题)如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.(2019·广西中考真题)如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为1S ,2S ,则下列结论错误的是( )A .212S S CP +=B .2AF FD =C .4CD PD = D .3cos 5HCD ∠=5.(2019·山东中考真题)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .46.(2019·黑龙江中考真题)如图,在正方形ABCD 中,E F 、是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且42AB EF =,=,设AE x =.当PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( )①当0x =(即E A 、两点重合)时,P 点有6个②当02x <<时,P 点最多有9个③当P 点有8个时,x =﹣2④当PEF 是等边三角形时,P 点有4个 A .①③B .①④C .②④D .②③7.(2019·广东中考真题)如图,正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①ANH GNF ∆≅∆;②AFN HFG ∠=∠;③2FN NK =;④:1:4AFN ADM S S ∆∆=.其中正确的结论有( )A .1个B .2个C .3个D .4个8.(2019·湖北中考真题)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有( )A .1个B .2个C .3个D .4个9.(2018·黑龙江中考真题)抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++. 其中正确的有( )A .5个B .4个C .3个D .2个10.(2018·黑龙江中考真题)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②③S 平行四边形ABCD =AB•AC ④OE=14AD ⑤S △APO =12,正确的个数是( )A .2B .3C .4D .511.(2018·山东中考真题)如图,在矩形ABCD 中,∠ADC 的平分线与AB 交于E ,点F 在DE 的延长线上,∠BFE=90°,连接AF 、CF ,CF 与AB 交于G ,有以下结论: ①AE=BC ②AF=CF ③BF 2=FG•FC ④EG•AE=BG•AB其中正确的个数是( )A .1B .2C .3D .412.(2019·四川中考真题)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个13.(2019·山东中考真题)如图,正方形ABCD ,点F 在边AB 上,且:1:2AF FB =,CE DF ⊥,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使12BG BC =,连接CM .有如下结论:①DE AF =;②4AN AB =;③ADF GMF ∠=∠;④:1:8ANF CNFB S S ∆=四边形.上述结论中,所有正确结论的序号是( )A .①②B .①③C .①②③D .②③④14.(2018·湖北中考真题)如图,在四边形ABCD 中,AB=AD=5,BC=CD 且BC >AB ,BD=8.给出以下判断:①AC 垂直平分BD ;②四边形ABCD 的面积S=AC•BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形; ④当A ,B ,C ,D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125. 其中正确的是_____.(写出所有正确判断的序号)15.(2019·广西中考真题)我们定义一种新函数:形如2y ax bx c =++(0a ≠,且240b a ->)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x 2-2x -3|223y x x =--的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为()1,0-,()3,0和()0,3;②图象具有对称性,对称轴是直线1x =;③当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大;④当1x =-或3x =时,函数的最小值是0;⑤当1x =时,函数的最大值是4.其中正确结论的个数是______.16.(2018·新疆中考真题)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).17.(2018·黑龙江中考真题)如图,抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,下列结论中: ①abc <0;②9a ﹣3b+c <0;③b 2﹣4ac >0;④a >b , 正确的结论是_____(只填序号)18.(2019·湖南中考真题)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则2k =④若25MF MB =,则MD =2MA .其中正确的结论的序号是_______.19.(2019·辽宁中考真题)如图,点P 是正方形ABCD 的对角线BD 延长线上的一点,连接PA ,过点P 作PE ⊥PA 交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F ,则下列结论中:①PA =PE ;②CE PD ;③BF ﹣PD =12BD ;④S △PEF =S △ADP ,正确的是___(填写所有正确结论的序号)20.(2019·内蒙古中考真题)如图,在Rt ABC ∆中,90,3,ABC BC D ︒∠==为斜边AC 的中点,连接BD ,点F 是BC 边上的动点(不与点B C 、重合),过点B 作BE BD ⊥交DF 延长线交于点E ,连接CE ,下列结论:①若BF CF =,则222CE AD DE +=;②若,4BDE BAC AB ∠=∠=,则158CE =; ③ABD ∆和CBE ∆一定相似;④若30,90A BCE ︒︒∠=∠=,则DE =其中正确的是_____.(填写所有正确结论的序号)21.(2018·湖北中考真题)如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA=OB=a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM′的对称点C ,画直线BC 交OM′于点D ,连接AC ,AD ,有下列结论:①AD=CD ;②∠ACD 的大小随着α的变化而变化;③当α=30°时,四边形OADC 为菱形;④△ACD a 2;其中正确的是_____.(把你认为正确结论的序号都填上).。

【猜想归纳】图案规律中的猜想归纳思想(学生版)

【猜想归纳】图案规律中的猜想归纳思想(学生版)

图案规律中的猜想归纳思想知识方法精讲1.规律型:图形的变化类图形的变化类的规律题首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.2.认识图形(1)几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形.(2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形.(3)重点和难点突破:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.3.猜想归纳思想归纳猜想类问题也是探索规律型问题,这类问题一般给出一组具有某种有规律的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,通过认真观察、分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论。

考查学生的归纳、概括、类比能力。

有利于培养学生思维的深刻性和创造性。

解决归纳猜想类问题的基本思路是“观察→归纳→猜想→证明(验证)”,具体做法:(1)认真观察所给的一组数、式、图等,发现它们之间的关系;(2)根据它们之间的关系分析、概括,归纳它们的共性和蕴含的变化规律,猜想得出一个一般性的结论;(3)结合题目所给的材料情景证明或验证结论的正确性。

4.归纳猜想类问题可以分成四大类:(1)数式归纳猜想题这类题通常是先给出一组数或式子,通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论。

找出题目中规律,即不变的和变化的,变化的部分与序号的关系是解这类题的关键。

(2)图形归纳猜想题此类题通常给出一组图形的排列(或操作得到一系列的图形)探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系。

其解题关键是找出相邻两个图形之间的位置关系和数量关系。

(3)结论归纳猜想题结论归纳猜想题常考数值结果、数量关系及变化情况。

中点弦的二级结论-概念解析以及定义

中点弦的二级结论-概念解析以及定义

中点弦的二级结论-概述说明以及解释1.引言1.1 概述中点弦是几何学中一个重要的概念,它是指连接圆的两点且位于圆的直径上的弦。

中点弦在几何学中具有许多重要的性质和应用,可以帮助我们更好地理解圆的结构和性质,以及解决与圆相关的问题。

本文将重点探讨中点弦的定义、性质和在几何中的应用,希望可以帮助读者更深入地理解这一概念,并为进一步研究提供启示。

"1.2 文章结构"部分的内容如下:文章结构部分将主要介绍本文的整体组织结构,包括各个章节的内容概述和联系,以及每个章节之间的逻辑关系和过渡。

本文总共分为引言、正文和结论三个部分。

在引言部分,我们将首先概述中点弦的基本概念和重要性,指出本文的研究目的和意义。

然后我们将介绍文章整体的结构安排,为读者提供一个整体的认识和理解。

在正文部分,我们将首先解释中点弦的定义,包括什么是中点弦以及中点弦的性质。

接着我们将讨论中点弦在几何中的应用,包括中点弦与圆的关系、中点弦在圆内外的位置关系等内容,通过实际案例展示中点弦的作用和重要性。

最后在结论部分,我们将总结中点弦在几何中的重要性和应用价值,指出其对几何学习的促进作用。

同时展望未来对中点弦的进一步研究方向,为读者提供新的思路和启发。

最后给出整篇文章的结论,强调中点弦的重要性和不可替代性。

整个文章的结构安排合理,内容层次清晰,希望读者能够有更深入的认识和理解。

1.3 目的目的部分的内容:在本文中,我们的目的是探讨和分析中点弦在几何学中的重要性以及其在不同领域中的应用。

通过对中点弦的定义、性质和几何应用进行深入研究,我们可以更好地理解其在解决问题和证明定理时起到的作用。

同时,我们也希望通过这篇文章向读者展示中点弦的研究价值,并为未来对中点弦的进一步探索提供一定的启示和方向。

最终,我们的目的是通过对中点弦的深入探讨,为读者提供一个全面的了解,并归纳总结中点弦的二级结论。

2.正文2.1 中点弦的定义中点弦是指在一个圆内部连接两个圆的直径端点,并且将这条直径所分割的弧平分的线段。

浅谈立体几何教学中的数学探究

浅谈立体几何教学中的数学探究

浅谈立体几何教学中的数学探究杨婷燕(浙江省诸暨市草塔中学,311812) 新课程标准要求在数学学习中要进行一定的数学探究活动,对一些数学及其应用问题用科学探究的方法来完成,要让学生有一个自主建构知识的过程,学会自主学习,同时也要求教师在新课程的实践教学中不断地探究学习,做一个终身学习的先行者.一、对数学探究的认识数学探究即数学探究性课题学习,是指学生围绕某个数学问题,自主探究、学习的过程.这个过程包括:观察分析数学事实、提出有意义的数学问题、猜测探求适当的数学结论或规律、给出解释或证明.数学探究是高中数学课程中引入的一种新的学习方式.数学探究有助于学生初步了解数学概念和结论产生的过程,初步理解直观和严谨的关系,初步尝试数学研究的过程,体验创造的激情,建立严谨的科学态度和不怕困难的科学精神;数学探究有助于培养学生勇于质疑和善于反思的习惯,培养学生发现、提出解决数学问题的能力;数学探究有助于发展学生的创新意识和实践能力.作为教学一线的教师,在教学中如何引导学生进行数学探究活动,关系到新课程标准理念能否在教学实践中得到具体的落实.二、如何实施数学探究教科书中设计了一个个探究问题,在教学中用问题去引导学生进行思考,或讨论、或交流,通过多种形式进行探究活动.但教科书中的问题探究深浅不一,有的只是一个公式的推导、证明或一个表格的填空,有的却是让学生甚至老师都有点难以下手,不知从何处开始探究,目标不明确.因此,如何进行数学探究,教学时间如何控制和把握探究的目标,等等.这些都是值得我们认真探讨的问题.本文仅对人民教育出版社高中数学教材(A 版)数学②(以下简称教材)中的几个探究实例,说明在立体几何教学中如何引导学生进行数学探究.三、立体几何教学中如何进行数学探究1.创设问题情境,培养学生根据问题层层深入进行探究的学习习惯教师通过精心设计教学程序,通过学生自我设问、学生之间设问、师生之间设问等方式提出问题,并引导学生根据问题主动进行探索,寻求结论.案例1 如图1,直四棱柱A ′B ′C ′D ′-AB CD (侧棱与底面垂直的棱柱称为直棱柱)中,底面四边形AB CD 满足什么条件时,A ′C ⊥B ′D ′(教材第70页)?笔者是通过师生之间设问的方式,设计以下问题,引导学生进行探究的:(1)要使A ′C ⊥B ′D ′,即证两直线互相垂直,应先考察A ′C 与B ′D ′之间是什么关系?(应先考察它们的位置关系.)(2)它们的位置关系如何?(是异面直线.)(3)怎样证明两条异面直线垂直?(可通过线面垂直得到线线垂直或利用三垂线定理・4・高中数学教与学 2008年及其逆定理得到线线垂直.)(4)要使A′C⊥B′D′,可通过哪些线面垂直得到?本题应选择哪一种?(可通过证明A′C 垂直B′D′所在的平面或证明B′D′垂直A′C所在的平面,本题可选择通过证明B′D′垂直A′C 所在的平面的方法,连结CA,先证得B′D′⊥平面A′CA.)(5)要使B′D′⊥平面A′C,需要哪些条件?(需要B′D′垂直平面A′C内的两条相交直线,即垂直A′A和CA.)(6)这两个条件已具备了吗?还欠什么条件?(已具备了一个条件B′D′⊥A′A,可由A′A ⊥平面A′B′C′D′证得,还欠条件B′D′⊥AC.)(7)以上条件应怎样转化为四边形AB CD 所应满足的条件呢?(显然,只要作四边形AB CD的对角线BD,由B′D′∥BD,要使B′D′⊥AC,只要BD AC就行了,即底面四边形AB CD应满足的条件是对角线互相垂直.)2.通过类比归纳,教给学生利用旧知识探究新知识的方法数学学科的一个突出特点就是新旧知识之间有着密切的联系,所以,通过新旧知识的类比来探究新知识的特点及性质,加强了新旧知识的联系,加深学生对新知识的认识和理解.案例2 圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到.圆台可以由什么平面图形旋转得到?如何旋转(教材第6页)?“用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.”这是课本上对圆台的定义.但在教学上,我们还可以借助教材中设计的探究,让学生类比圆柱、圆锥的定义给出圆台的另外一个定义:以直角梯形垂直于底边的腰所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆台.这种模仿类比让同学们自己下定义,不用花几分钟时间,就可以使学生从另一个角度认识圆柱、圆锥、圆台之间的联系.案例3 棱柱、棱锥、棱台也是由多个平面图形围成的多面体,它们的展开图是什么?如何计算它们的表面积(教材第27页)?这个探究要求学生类比正方体、长方体的表面积,讨论棱柱、棱锥、棱台的表面积问题,并通过有关例题进一步加深学生的认识.教师可以设计探究问题:(1)棱柱的展开图由什么平面图形组成?(2)棱锥和棱台呢?这个问题解决了,适时点出求表面积的问题就可以转化为求平行四边形、三角形和梯形的面积问题3.动手操作,通过实验发现数学规律,激发学生探究数学结论的兴趣数学知识理论性强,内容比较枯燥乏味,在课堂充分发挥学生的主观能动性,让学生积极参与,动手操作,从实践中探索新的数学结论,活跃了数学课堂的气氛,激发学生学习数学的兴趣.案例4 实例:如图2,请同学们准备一块三角形的纸片,我们一起来做个试验:过&AB C的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)(教材第68页).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在平面α垂直?对于以上探究问题,笔者采用以下办法组织学生进行探究:第一步:将全班同学分成若干个小组,4~6人一组;第二步:各小组的同学按要求进行试验;第三步:各小组的同学按要求进行讨论,寻找结论;第四步:各小组代表汇报试验结果;第五步:老师进行小结,归纳出线面垂直・5・第3期 高中数学教与学的判定定理.4.结合例题,借题发挥,进行知识拓展和总结通过例题的解决,提升得到一类问题的思考方法和步骤,发挥例题的问题探究效能.案例5 如图3,已知AB ⊥平面B CD,B C ⊥CD,你能发现哪些平面互相垂直,为什么(教材第77页)?这是非常经典的一个几何图形,我们在题目中经常会碰到,在教学中有必要对其进行探究,除了研究平面与平面互相垂直的关系外,还可以让学生探究:(1)四面体的四个面的形状是怎样的?(都是直角三角形.)(2)有哪些直线与平面垂直?(3)任意两个面所成的二面角的大小如何计算(如何确定其平面角)?四、数学探究的反思1.洞悉探究本质,树立探究理念 探究的问题应该是未知的,有兴趣的,具有一定的神秘性.探究问题的第一层次是要求激发学生学习的好奇心和强烈的探究欲望,让其有较多的思考余地和动手机会;第二层次是要求能有探究活动过程的乐趣和结果的美妙;第三层次是要求有激励学生不断去研究新认知的机会与原动力.2.探究是一种学习方式、学习习惯丰富学生的学习方式,改进学生的学习方法是高中数学教学的基本理念.学生的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受.独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式.3.加强交流学习,多作合作探究对于探究学习,教师应该引导学生互相学习,加强交流合作,对教学内容、行为和方式进行多方面的研究,用这种科学研究的氛围感染学生.4.目标调控探究学习将课堂教学目标和要求先列在章节或节前,对照目标展开探究学习.根据新课程标准制定目标进行有效的课堂教学,让师生在共同的目标下开展探究活动,能使数学探究更加富有成效.(上接第8页) =λ-1,12,1-λ,∴AQ 2=(λ-1)2+14+(1-λ)2 =2(λ-1)2+14.∴当λ=1时,|AQ |最小,此时,有AQ ⊥AQ =0,12,0,∴cos 〈AQ,D P 〉=AQ ・D P|AQ ||D P |=1412×34=33,二面角A -EF -D 的大小为arccos33.评注 该解法将求二面角化为求两个半平面内分别垂直于棱的两个向量的夹角,而D P ⊥EF 等价于|D P |取得最小值,于是将找这两个向量的问题巧妙地转化为求点到直线的距离,这是一种新的解题方法,值得我们去研究.其实根据本人对高考的研究,2007年大部分的立体几何高考大题都可以用函数方法去处理.・6・高中数学教与学 2008年。

教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形

教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形

教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形《多姿多彩——几何图形》教案设计【教材分析】多姿多彩的图形中的几何图形,是人教版教材《数学》七年级上册第四章第一节的第一课时。

所含内容在小学阶段学生已有了感性认识,本课时以现实背景为素材,让学生亲自经历将实际问题抽象成数学模型的过程,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对空间图形的认识和感受。

本节课的知识是进一步学习平面几何以及立体几何的基础,具有承上启下的作用。

本节课是学习空间与图形的第一课时需要在情感上激发学生兴趣,培养学生学习数学的热情。

【教学目标】知识与技能:通过观察生活中的大量图片或实物,能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能认识一些简单几何体,能用语言描述它们的基本特性,并能对它们进行简单的分类;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.过程与方法:经历探索平面图形与立体图形之间的关系,发展空间观念,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对几何图形的感性认识;培养动手操作能力,培养观察、抽象、归纳、概括、判断等思维能力以及分类的数学思想。

情感态度与价值观:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩;激发对学习空间与图形的兴趣;通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识。

【教学重点】简单几何体的识别与分类。

【教学难点】从具体实物中抽象出几何图形及常见几何体的分类。

【教学关键】从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。

【教学方法】情境教学、实践探究、多媒体演示相结合。

【教学资源】多媒体辅助教学;圆柱、圆锥、正方体、长方体、棱柱、棱锥等简单几何体的实物和模型;三角形、正方形、长方形、正六边形纸片;牙签、胶泥等。

【教学过程】(一)创设情景,设疑导入师:同学们,我们的世界是五彩缤纷、绚丽多彩的。

八年级数学秘籍-活用几何基本图形,解题事半功倍(原卷版)

八年级数学秘籍-活用几何基本图形,解题事半功倍(原卷版)

活用几何基本图形,解题事半功倍几何题目图形千变万化,但有一些经典图形经常在这些题目里直接或间接到的出现. 因此,灵活掌握和运用这些图形是学好几何的必备技能.一、基本图形1. “8字”形B2. 双垂直C结论:∠CAD=∠CBE;结论:∠A=∠BCD,∠B=∠ACD;D结论:∠CAD=∠CBE.3. 与角平分线有关的三个重要结论(1)双内角平分线BC条件:∠1=∠2,∠3=∠4,结论:∠BOC =90°+∠A ;12证明:∠A +∠ABC +∠ACB =180°,∠BOC +∠2+∠4=180°,即:∠A +2∠2+2∠4=180°,∠2+∠4=90°-∠A ,12∴∠BOC =180°-(∠2+∠4)=90°+∠A ;12(2)一内角平分线,一外角平分线C 条件:∠1=∠2,∠3=∠4,结论:∠O =∠A ;12证明:∠4=∠2+∠O ,2∠4=2∠2+∠A ,可得:∠O =∠A ;12(3)双外角平分线条件:∠1=∠2,∠3=∠4,结论:∠BOC =90°-∠A ;12证明:∠A +∠ABC +∠ACB =180°,∠BOC +∠2+∠4=180°,即:∠A +180°-2∠2+180°-2∠4=180°,∠2+∠4=90°+∠A ,12∴∠BOC =180°-(∠2+∠4)=90°-∠A ;124.四边形外角∠1与∠2是四边形ABCD 的外角,结论:∠1+∠2=∠A +∠B ;5.飞镖模型BC∠BOC =∠A +∠B +∠C6. 与面积相关C如上图所示,D 、E 、F 分别是△ABC 各边的中点结论:图中,S △AOF = S △AOE = S △BOF = S △COE =S △BOD = S △COD二、典例解析【例1-1】(安徽淮南月考)如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP =50°,则∠A =( ).A .60°B .80°C .70°D .50°【例1-2】(平原县月考)如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A .90°-αB .90°+αC .αD .360°-α121212【变式1-1】(陕西西安·高新一中月考)已知,如图,∠XOY =90°,点A 、B 分别在射线OX 、OY 上移动,BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠ACB的大小是否发生变化?如果保持不变,请给出证明;如果随点A、B移动发生变化,请求出变化范围.【变式1-2】(武城县月考)如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若∠ABC=75°,∠ACB=45°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.【例2-1】(广东模考)如图所示,∠的度数是( )A.10°B.20°C.30°D.40°【例2-2】(霍林郭勒市月考)如图1所示,称“对顶三角形”,其中,∠A+∠B=∠C+∠D利用这个结论,完成下列填空.(1)如图(2),∠A+∠B+∠C+∠D+∠E=;(2)如图(3),∠A+∠B+∠C+∠D+∠E=;(3)如图(4),∠1+∠2+∠3+∠4+∠5+∠6=;(4)如图(5),∠1+∠2+∠3+∠4+∠5+∠6+∠7=.【变式1-1】(1)如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系: ;(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 度;(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明.【变式1-2】(广东广州月考)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为_______.【例3】(安徽淮南月考)某零件如图所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?【变式3-1】(山西盐湖期末)探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.【变式3-2】(山东岱岳期末)如图1六边形的内角和为度,如图2123456∠+∠+∠+∠+∠+∠m 六边形的内角和为度,则________.123456∠+∠+∠+∠+∠+∠n m n -=【例4】(唐山市月考)如图所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,S △ABC =4平方厘米,则S △BEF 的值为( )A .2平方厘米B .1平方厘米C .平方厘米D .平方厘米1214【变式4-1】(山东历下期中)如图,△ABC 的面积为.第一次操作:分别延长,,至点1AB BC CA ,,,使,,,顺次连接,,,得到△.第二次1A 1B 1C 1A B AB =1B C BC =1C A CA =1A 1B 1C 111A B C 操作:分别延长,,至点,,,使,,,11A B 11B C 11C A 2A 2B 2C 2111A B A B =2111B C B C =2111C A C A =顺次连接,,,得到△,…按此规律,要使得到的三角形的面积超过2020,最少经过多少2A 2B 2C 222A B C 次操作( )A .B .C .D .4567【变式4-2】(台州市月考)在四边形ABCD 中,P 是AD 边上任意一点,当AP = AD 时,与12PBC S 和 之间的关系式为:________________;一般地,当AP = AD (n 表示正整数)时,ABC S DBC S △1n 与和之间关系式为:________________.PBC S ABC S DBC S △【例5】(庆云县月考)探究与发现:(探究一)我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系,并证明你探究的数量关系.(探究二)三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.(探究三)若将ADC改成任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论直接写出∠A+∠B与∠P的数量关系 .【变式5-1】(河南宛城月考)问题情景:如图1,中,有一块直角三角板放置在上ABC ∆PMN ABC ∆(点在内),使三角板的两条直角边恰好分别经过点和点.试问与P ABC ∆PMN PM PN 、B C ABP ∠是否存在某种确定的数量关系?ACP ∠(1)特殊探究:若,则________度,_________度,50A ︒∠=ABC ACB ∠+∠=PBC PCB ∠+∠=_________度;ABP ACP ∠+∠=(2)类比探索:请探究与的关系;ABP ACP ∠+∠A ∠(3)类比延伸:如图2,改变直角三角板的位置;使点在外,三角板的两条直角PMN P ABC ∆PMN 边仍然分别经过点和点,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.PM PN 、B C【变式5-2】(吉林宽城期末)将三角形纸片沿折叠,使点落在点处.ABC DE A 'A (感知)如图①,若点落在四边形的边上,则与之间的数量关系是'A BCDE BE A ∠1∠.(探究)如图②,若点落在四边形的内部,则与之间存在怎样的数量关系?'A BCDE A ∠12∠+∠请说明理由.(拓展)如图③,若点落在四边形的外部,,,则的大小为 'A BCDE 180∠=︒224∠=︒A ∠度.三、习题专练1. (安徽淮南月考)如图,∠A +∠B +∠C +∠D +∠E +∠F =_____.2.(惠州市光正实验学校月考)如图,在四边形ABCD 中,∠ABC 与∠BCD 的平分线的交点E 恰好在AD 边上,则∠BEC =( )A .∠A +∠D ﹣45°B .(∠A +∠D )+45°12C .180°﹣(∠A +∠D )D .∠A +∠D 12123.(山东潍坊期末)如图,点D 是△ABC 的边BC 的延长线上的一点,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推…,已知∠A =α,则∠A 2020的度数为_____.(用含α的代数式表示).4.(信阳市月考)如图,BE 、CF 是△ABC 的角平分线,∠BAC =80°,BE 、CF 相交于D ,则∠BDC 的度数是_______.5.(惠州市月考)如图,∠A +∠B +∠C +∠D +∠E =___________________度.6.(商城县月考)如图,△ABC的两个内角平分线相交于点P,过点P向AB,AC两边作垂直线l1、l2,若∠1=40°,则∠BPC=_________.7.(临沭县月考)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=_____.8.(霍林郭勒市月考)如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2018为_____.9.(四川师范大学附属中学期中)如图,已知△ABC 中,∠A =60°,点O 为△ABC 内一点,且∠BOC =140°,其中O 1B 平分∠ABO ,O 1C 平分∠ACO ,O 2B 平分∠ABO 1,O 2C 平分∠ACO 1,…,O n B 平分∠ABO n ﹣1,O n C 平分∠ACO n ﹣1,…,以此类推,则∠BO 1C =_____°,∠BO 2017C =_____°.10.(重庆月考)如图,分别为四边形的边的中点,并且图中四个小,,,E F G H ABCD ,,,AB BC CD DA 三角形的面积之和为,即,则图中阴影部分的面积为____.112341S S S S +++=11.(江苏邗江期末)(1)如图1,AB ∥CD ,点E 是在AB 、CD 之间,且在BD 的左侧平面区域内一点,连结BE 、DE .求证:∠E =∠ABE +∠CDE .(2)如图2,在(1)的条件下,作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F、∠ABE、∠CDE之间的关系,并证明你的猜想.(3)如图3,在(1)的条件下,作出∠EBD的平分线和△EDB的外角平分线,两线交于点G,猜想∠G、∠ABE、∠CDE之间的关系,并证明你的猜想.12.(莆田月考)如图,点D为△ABC的边BC的延长线上一点.(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度数;(2)若∠ABC的平分线与∠ACD的平分线交于点M,过点C作CP⊥BM于点P.试探究∠PCM与∠A的数量关系.13. (全国月考)如图,四边形ABCD中,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD = β.(1)如图①,若α+β= 150°,求∠MBC+∠NDC的度数;(2)如图①,若BE与DF相交于点G,∠BGD = 30°,请写出α、β所满足的等量关系式;(3)如图②,若α = β,判断BE 、DF 的位置关系,并说明理由.14.(贵州赫章期末)数学问题:如图,在中,的等分线分别交ABC 20,,A ABC ACB ∠=∠∠ 2020于点根据等分线等分角的情况解决下列问题:12102020,,.....,,,O O O O 2020(1)求的度数.1BO C ∠(2)求的度数.3BO C ∠(3)直接写出的度数.2020BO C ∠15.(山西月考)综合与实践:阅读下面的材料,并解决问题.(1)已知在中,,图1,图2,图3中的的内角平分线或外角平分线都交于点ABC ∆60A ∠=︒ABC ∆,请直接写出下列角的度数如图1,_________;如图2,_________;如图O O ∠=O ∠=3,_________;如图4,,的三等分线交于点,,连接,则O ∠=ABC ∠ACB ∠1O 2O 12O O _________.21BO O ∠=(2)如图5,点是两条内角平分线的交点,求证:.O ABC ∆1902O A ∠=︒+∠(3)如图6,在中,的三等分线分别与的平分线交于点,,若,ABC ∆ABC ∠ACB ∠1O 2O 1115∠=︒,求的度数.2135∠=︒A ∠16.(福建永安期末)(1)如图1.在△ABC 中,∠B =60°,∠DAC 和∠ACE 的角平分线交于点O ,则∠O = °,(2)如图2,若∠B =α,其他条件与(1)相同,请用含α的代数式表示∠O 的大小;(3)如图3,若∠B =α,,则∠P = (用含α的代数式11,PAC DAC PCA E n n AC ∠=∠∠=∠表示).17.(重庆市璧山区青杠初级中学校初二期中)如图,在△ABC 中,已知于点D ,AE 平分AD BC ⊥()BAC C B ∠∠>∠(1)试探究与的关系;EAD ∠C B ∠∠、(2)若F 是AE 上一动点,当F 移动到AE 之间的位置时,,如图2所示,此时FD BD ⊥的关系如何?EFD C B ∠∠∠与、(3)若F 是AE 上一动点,当F 继续移动到AE 的延长线上时,如图3,,①中的结论是否FD BC ⊥还成立?如果成立请说明理由,如果不成立,写出新的结论.。

专题六 几何图形综合问题

专题六 几何图形综合问题

类型一
类比、迁移与拓展类几何综合问题
(1)该类问题常常是先根据特殊的条件结合图形猜想出结论,然后在一般条件下论证结论,最后运用
结论解决问题;或者是在特殊条件下得出结论,改变条件的特殊性(如点的位置发生改变,图形的形状
发生改变等)判断结论是否仍然成立.
(2)解答该类问题注意类比,几问之间层层递进,但是原理相同,图形结构类似或方法类似,或在此基
∵四边形ABCD和四边形AEGF是正方形,∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,
∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,
∴△EAD≌△AFH(SAS),∴DE=AH.
又∵AM=MH,∴DE=AM+MH=2AM.
∵△EAD≌△AFH,∴∠ADE=∠FHA.
边形ABCD中这对互余的角可类比(1)中思路进行拼合,先作∠CDF=
∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量
关系是
.
(1)解:∠DCA′
(2)解:AD2+DE2=AE2


方法运用
(3)如图③所示,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平
∵△AMB≌△HMF,∴∠FHA=∠BAM,∴∠ADE=∠BAM.
又∵∠BAM+∠DAM=∠DAB=90°,∴∠ADE+∠DAM=90°,
∴∠AND=180°-(∠ADE+∠DAM)=90°,即DE⊥AM.
故DE=2AM,DE⊥AM.
类型三 几何多结论判断问题
几何多结论判断问题考查的知识点较多,主要以圆和四边形为核心,解决问题的主要手段是利用三

数学中的几何推理

数学中的几何推理

数学中的几何推理几何推理是数学中的一个重要主题,它涉及了平面和空间中的形状、大小、位置和运动等各个方面。

通过几何推理,我们可以从已知条件出发,运用逻辑推理,得出一系列结论。

在数学学科中,几何推理不仅有助于深入理解几何概念和性质,还能培养我们的逻辑思维和问题解决能力。

本文将从几何推理的基本原理、常见推理方法以及其在实际问题中的应用方面进行讨论。

1. 几何推理的基本原理几何推理的基本原理体现了数学思维的逻辑性和严密性。

几何推理的基础可以追溯到欧几里得几何学,其中最基本的原理包括:1.1 直观性原理:几何推理应基于几何图形的直观特征,根据我们观察到的形状、角度、长度等特性进行推论。

1.2 自明性原理:几何推理的结论应与已知条件一致,不可违背已知事实。

1.3 一致性原理:几何推理的结论应在整个几何系统中都成立,应与其他的结论协调一致。

1.4 可传递性原理:如果从已知条件可以得出某个结论A,而从结论A又可以得出另一个结论B,则从已知条件可以推出结论B。

2. 常见的几何推理方法在几何推理中,有许多常见的推理方法,常用于解决不同类型的几何问题。

下面介绍几种常见的几何推理方法:2.1 反证法:通过假设问题的对立面,即假设结论不成立,然后推导出矛盾的结论,从而证明问题的正确性。

2.2 归纳法:通过已知条件观察并总结出多个特殊情况的结论,再推广到一般情况。

2.3 线性推理法:通过利用平行线、相似三角形等性质,运用相等角、相等边长等直观特征进行推理。

2.4 递推法:通过已知条件找出问题的规律,然后逐步推导出后续的结论,直到达到问题所要求的结果。

2.5 数学归纳法:通过假设结论对于某个特定的初始条件成立,在此基础上证明结论对于任意自然数成立。

3. 几何推理的实际应用几何推理不仅存在于数学学科中,还广泛地应用于实际生活和其他学科中。

下面介绍几个实际应用的例子:3.1 工程设计:在建筑和工程设计中,几何推理用于确定房间、建筑物或道路的合理布局和尺寸,以保证结构的稳定性和功能的实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何图形中的多个结论探究
1.(2014年黑龙江牡丹江) (2014•黑龙江牡丹江, 第8题3分)如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF 是等腰三角形;④∠ADE=∠BEF,其中结论正确的个数是()
第1题图
A. 3 B. 4 C. 1 D. 2
2、(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()
3、(2013•眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,
其中正确的有()个.
4.(2015湖南岳阳第8题3分)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;
②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项
是( ) A . ①② B . ①②③ C . ①④ D . ①②④
6.如图,四边形ABCD 是矩形纸片, 2=AB .对折矩形纸片ABCD ,使AD 与BC
重合,折痕为EF ;展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N ,折痕
BM 与EF 相交于点Q ;再次展平,连接BN ,MN ,延长MN 交BC 于点G .
有如下结论:
①︒=∠60ABN ; ②1=AM ; ③3
3=
QN ; ④△BMG 是等边三角形; ⑤P 为线段BM 上一动点,
H 是BN 的中点,则PH PN +的最小值是3.
其中正确结论的序号是 ☆ .
)7. (2014•黑龙江龙东,第20题3分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .则下列结论:
①△ABG ≌△AFG ;②BG =CG ;③AG ∥CF ;④S △EGC =S △AFE ;⑤∠AGB +∠AED =145°. 其中正确的个数是( )
8. (2014•黑龙江绥化,第18题3分)如图,在矩形ABCD 中,AD =
AB ,∠BAD 的平分
线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:
)
16(题

①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,
其中正确的有()
9.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:
①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()
A.1个B.2个C.3个D.4个
10.如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()
①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.
A.2 B.3 C.4 D.5
11.如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,
N.下列结论:①AF⊥BG;②BN=NF;③=;④S四边形CGNF=S四边形ANGD.其中正确的结论的序号是①③.
12. 如图,在AC B Rt ∆中,
30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,下列结论:
①若O C 、两点关于AB 对称,则32=OA ; ②O C 、两点距离的最大值为4; ③若AB 平分CO ,则CO AB ⊥; ④斜边AB 的中点D 运动路径的长为2
π. 其中正确的是 .
13.(2016·广东广州)如图5,正方形ABCD 的边长为,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450
得到△DGH ,HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:
①四边形AEGF 是菱形 ②△AED ≌△GED ③∠DFG =112.5︒ ④BC +FG =1.5
其中正确的结论是 .(填写所有正确结论的序号)
14.如图,在半径为6cm 的⊙O 中,点A 是劣弧的中点,点D 是
优弧
上一点,
∠D=30°,下列四个结论:①OA ⊥BC ;②BC=6;③sin ∠AOB=;④四边形ABOC
是菱形.
其中正确结论的序号是( )
图5。

相关文档
最新文档