9、对数与对数函数

合集下载

2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)

2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)

(2)由题意,易知 a>1.
在同一坐标系内作出 y=(x-1)2,x∈(1,2)及 y=logax 的图象.
若 y=logax 过点(2,1),得 loga2=1,所以 a=2. 根据题意,函数 y=logax,x∈(1,2)的图象恒在 y=(x-1)2,x∈(1,2)的上方. 结合图象,a 的取值范围是(1,2]. 规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高 点、最低点等)排除不符合要求的选项. 2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 考点三 对数函数的性质及应用 【例 3-1】 已知函数 f(x)=ln x+ln(2-x),则( )
调性时,一定要明确底数 a 的取值对函数增减性的影响,及真数必须为正的限制条件.
[方法技巧]
1.对数值取正、负值的规律
当 a>1 且 b>1 或 0<a<1 且 0<b<1 时,logab>0;
当 a>1 且 0<b<1 或 0<a<1 且 b>1 时,logab<0.
2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化
2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.
1,-1
3.对数函数 y=logax(a>0,且 a≠1)的图象过定点(1,0),且过点(a,1),a
,函数图象只在
第一、四象限.
三、 经典例题
考点一 对数的运算
【例 1-1】
(1)计算:
lg1-lg 25 4
÷100-1=________.

对数与对数函数

对数与对数函数
y
o
1
3
0<a<1时,在 x=1右侧总是 底大图低.
练习3. 比较大小
12
log23 > log32 >log0.53 ___________________________. (2) log0.34 _____ <
(1) log32,log23, log0.53的大小关系为
log0.20.7
练习4.已知下列不等式,比较正数m,n的大小 (1)若log3m < log3n 则 m
log0.71.8
解:∵函数y= log0.7x 中底数 0<0.7<1 ∴ 函数y= log0.7x在(0,+)上 是减函数 ∵ 1.6 < 1.8 ∴ log0.71.6 > log0.71.8
③.
loga4
loga3.14
解 :讨论 a 的情况 I. 当 a>1 时 y=logax 是增函数 因为 所以 4 > 3.14 loga4 > loga3.14 y=logax 是减函数
所以所求函数的定义域为{x| x>
2 7
且x ≠
2 5
}.
例2、比较下列各组数中两个数的大小:
(1)log 2 3 . 4 与 log 2 8 . 5 解:∵ y = log 2 x 在 ( 0 , + ∞) 上是增函数
4
且 3 . 4 <8 . 5
∴ log 2 3 . 4 < log 2 8 . 5
1.2
1
0.8
0.6
0.4
0.2
1.8
0.5 1 1.5 2
2.7
2.5 3 3.5
-0.5 -0.2

【高中数学】突破09对数与对数运算重难点题型(举一反三)(解析版)

【高中数学】突破09对数与对数运算重难点题型(举一反三)(解析版)

学习资料分享[公司地址]2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1对数的概念与基本性质】1.对数的概念条件)1,0(≠>=a a N a x 且结论数x 叫做以a 为底N 的对数,a 叫做对数的底数,N 叫做真数记法Nx a log =2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln .3.对数与指数的关系当0>a ,且1≠a 时,N x N a a x log =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ;(2)01log =a )1,0(≠>a a 且;(3))1,0(1log ≠>=a a a a 且.【知识点2对数的运算性质】1.运算性质条件0>a ,且1≠a ,0,0>>N M 性质NM MN a a a log log )(log +=N M NM a a a log log log -=M n M a n a log log =(n ∈R)2.换底公式ab bc c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0).3.知识拓展(1)可用换底公式证明以下结论:①ab b a log 1log =;②1log log log =⋅⋅ac b c b a ;③b b a n a n log log =;④b n m b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是()A .(﹣∞,5)B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可.【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.3有意义,则实数t的取值范围是()【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【分析】根据对数式log(t﹣2)3有意义,【答案】解:要使对数式log(t﹣2)须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.(x+1)中,要使式子有意义,x的取值范围为()【变式1-2】在M=log(x﹣3)A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N>0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg +()lg 1(2)lg 52+lg 8+lg 5lg 20+(lg 2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2+(lg 2+lg 5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.a+log(c﹣b)a=2log 【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a•log(c﹣b)a.(c+b)a=,log(c﹣b)a=证明左端=右【分析】依题意,利用对数换底公式log(c+b)端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+===a•log(c﹣b)a.=2log(c+b)∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3+log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。

对数的运算与对数函数

对数的运算与对数函数

1.对数的概念如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。

即指数式与对数式的互化:log ba aN b N =⇔=2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。

自然对数:通常将以无理数 2.71828e =⋅⋅⋅为底的对数叫做自然对数,记作ln N 。

3.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈,则log a = 。

⑷log a N a N =2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的. 推广:⑴1log log a b b a=⑵log log log log a b c a b c d d =, ⑶1log log n a a M M n =,则log na m M = 。

特别地:log log 1a b b a =知识要点对数运算与对数函数【例1】 求下列各式中x 的取值范围。

(1)2log (5)x +(2)1log (10)x x --【例2】 将下列指数式化为对数式,对数式化为指数式。

(1) 1642= (2) 9132=- (3) 481log 3=(4) 6125log -=a (5)lg0.0013=-; (6)ln100=4.606【例3】 计算(1)lg 4lg 25+ (2)22log 24log 6-(3)531log ()3(4) 001.0lg (5)e1ln (6)1lg【巩固1】3log =2log =(2log (2= 21log 52+=【巩固2】). A. 1 B. -1 C. 2 D. -2【巩固3】计算2(lg5)lg 2lg50+⋅= .知识要点【例4】 (1)(2 。

对数公式及对数函数的总结

对数公式及对数函数的总结

对数公式及对数函数的总结对数是数学中的一个重要概念。

如果一个数N可以表示为a的x次方(a>0且a≠1),那么x就是以a为底N的对数,记作x=logaN。

其中a称为底数,N称为真数。

负数和零没有对数。

对数式与指数式可以互相转化:x=logaN等价于ax=N (a>0,a≠1,N>0)。

常用的对数有lgN(即以10为底N的对数)和lnN(即以自然常数e为底N的对数)。

自然常数e≈2..对数函数是指函数y=logax(a>1或0<a<1)的图像。

它的定义域为正实数集,值域为实数集。

对数函数的图像经过点(1,0),在(0,+∞)上是增函数,在(0,1)上是减函数。

当x=1时,y=0.对数函数既非奇函数也非偶函数。

对数公式在数学中有广泛的应用。

例如,可以用对数公式计算各种对数值,如log26-log23=2,log212+log25=log=3,等等。

还可以用对数公式来解对数的值,如lg14-2lg7+lg7/lg18-2lg2-(-1)=log0.5,以及2(lg2+lg5)+log3(4/27)的值等。

在第一象限内,a越大图像越靠下,在第四象限内,a越大图像越靠上。

总之,对数及其函数在数学中有着广泛的应用,是不可或缺的数学工具。

4、已知a>b>c,那么a>b>c。

3、设a=log3π,b=log23,c=log32,则a>b>c。

2、如果a>b>logc1,那么B选项___c。

5、如果a>1,且a-x-logaxy。

1、已知函数f(x)=logx,如果f(ab)=1,则f(a)+f(b)=2.6、设函数f(x)={x-1,x<2;2logx-1,x≥2},那么f(f(2))=2log2-1.7、设函数f(x)满足:当x≥4时,f(x)=1/x;当x<4时,f(x)=f(x+1),那么f(2+log23)=1/7.参数问题部分无需改写。

对数与对数函数

对数与对数函数

对数与对数函数1.对数的概念(1).对数的定义:如果 那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。

即指数式与对数式的互化:log ba a Nb N =⇔= 如22=4 ==> lg 24=2 注意:负数与0没有对数(2).常用对数: 10log N 叫做常用对数,记作lg N 如lg2 ,自然对数:无理数 2.71828e=⋅⋅⋅为底记作ln N 。

(3).注意:①log a 1=0 ②log a a=1 ③lg10=1 ④1ne=1 如log a (x-1)=1 则x-1=a 若log a (x-1)=0 则x-1=1 2.对数恒等式、换底公式 (1)对数恒等式:①log Na a = (01,0)a a N>≠>且②log Na a = (01,0)a a N >≠>且(2)换底:log aN =log log b b Na(a ,b>0且a ,b ≠1,N>0) log log log a b c b c d ⋅⋅=log a d (a ,b,c>0且a ,b,c ≠1)3.对数的运算性质:如果01,0,0aa M N >≠>>且,那么(1)log ()a MN = . (2)log a MN= (3)log n a M = (4)log n amM = (5)log log a b b a ⋅= (6)log a b =1log b a例1.指数式34 =81的对数式是 ,对数式41log 2=-2的指数式是 。

log 55= log 39= , (3)49log 77 = , (4) log 575-log 53 = ,(5) lg10 = , (6)log 21 = lne=_________例2.计算 (1)()()222lg 2lg 2lg 5lg 2lg 21+⋅+-+ (2)()()231lg 5lg8lg1000lg 2lg lg 0.066++++(3)22271log log 12log 421482+--(4)()2lg 2lg 2lg 50lg 25+⋅+(5)()()3948log 2log 2log 3log 3+⋅+ 例3.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .b a b a +++12B .b a b a +++12C .b a b a +-+12D .b a ba +-+12例4.已知2 lg(x -2y)=lgx +lgy ,则yx 的值为 A .1 B .4 C .1或4 D .4 或2课堂练习:1、已知log 5X=3,则X =( )A 100 B 1000 C 25 D 1252、在对数式N alog =b 中,真数N 的取值范围是( )A N >0 B N>0且N ≠1 C N ≠1 D N 取任何实数3、式子lg5+lg800-2lg2 =( ) A 1000 B 100 C 3 D 24、如果a>0且a ≠1,则正确的是( )A 5log 3log 2log a a a=+ B 6log 3log 2log a a a =+C 3log 2log 3log 2log a a a a∙=+ D 6log 3log 2log a a a =∙5、ln 3e+lne 3=( ) A 2 B 3 C 4 D 66、如果a>0且a ≠1,则下列式子错误的是( ) A log a 1= 0 B log a a =1 C log a M n= n DN a N a =log7、式子=3log 9log 28( ) A.32B.1C.23D. 2 8、式子16log 8=( )A43 B4 C34 D 39、下列等式不成立的有( ) A lne=1 B ln1=0 C ln 2e=2 D e ln2=2 10.计算(1)25log 41log 49log 752∙∙(2)2)18(lg - -125(3)lg25+lg2·lg50+(lg2)2(4)()643log [log log 81](5)23lg 3lg 9lg 27lg 355lg81lg 27++-- (6)()502log 33335322log 2log log 85log 89-+-+11.若234342423log log log log log log log log log 0xy z ===,求x y z ++=的值。

对数与对数函数-高考数学复习课件

对数与对数函数-高考数学复习课件
> 1,
故有ቊ
解得1< a ≤3.
6 − 2≥0,
(2)(2024·河南郑州模拟)设函数 f ( x )=ln| x +3|+ln| x -3|,则
f ( x )( A
)
A. 是偶函数,且在(-∞,-3)上单调递减
B. 是奇函数,且在(-3,3)上单调递减
C. 是奇函数,且在(3,+∞)上单调递增
因为0< a < b ,所以ln a <0,ln b >0,
所以0< a <1, b >1,
所以-ln a =ln b , 所以ln a +ln b =ln( ab )=0,
1
所以 ab =1,则 b = ,

2
所以 a +2 b = a + .

2
令 g ( x )= x + (0< x <1),
a >1
0< a <1
图象
定义域
(0,+∞)

值域
性质
R
过定点 (1,0)
,即 x = 1
时, y = 0

a >1
0< a <1
当 x >1时, y >0 ;
当0< x <1时, y <0

性质
在(0,+∞)上是 增


当 x >1时, y <0 ;
当0< x <1时, y >0




在(0,+∞)上是 减
内容索引
必备知识
自主梳理
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 对数与对数运算
1. 对数的概念
如果 ax = N ( a >0,且 a ≠1),那么数 x 叫做以 a 为底 N 的对数,记作

课时作业(九) 对数与对数函数 (3)

课时作业(九) 对数与对数函数 (3)

课时作业(九) 对数与对数函数 基础过关组 一、单项选择题1.函数y =log 3(2x -1)+1的定义域是( ) A .[1,2] B .[1,2)C .[23,+∞)D .(23,+∞)解析 由Error!即Error!解得x ≥23。

答案 C2.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B .12xC .log 12x D .2x -2解析 由题意知f (x )=log a x (a >0且a ≠1),因为f (2)=1,所以log a 2=1,所以a =2。

所以f (x )=log 2x 。

故选A 。

答案 A3.(2020·全国Ⅰ卷)设a log 34=2,则4-a =( ) A .116B .19C .18D .16解析 解法一:因为a log 34=2,所以log 34a =2,则有4a =32=9,所以4-a =14a =19。

故选B 。

解法二:因为a log 34=2,所以-a log 34=-2,所以log 34-a =-2,所以4-a =3-2=132=19。

故选B 。

解法三:因为a log 34=2,所以a 2=1log 34=log 43,所以4a2 =3,两边同时平方得4a =9,所以4-a =14a =19。

故选B 。

解法四:因为a log 34=2,所以a =2log 34=log 39log 34=log 49,4a =9,所以4-a =14a =19。

故选B 。

答案 B4.如果log12x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x解析 因为log 12x <log 12y <log 121,所以x >y >1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 函数、导数及其应用
栏目导引
(1)计算:2(lg 2)2+lg 2·lg 5+ lg 22-lg 2+1;
(2)已知 loga2=m,loga3=n,求 a2m+n 的值.
解析: (1)原式=lg 2(2lg 2+lg 5)+ lg 22-2lg 2+1
=lg 2(lg 2+lg 5)+|lg 2-1| =lg 2+(1-lg 2)=1.
【变式训练】 1.求值:
(1)log2 478+log212-12log242-1;
(2)(log32+log92)(log43+log83).
解析: (1)原式=log2 478+log212-log2 42-
log22=log2 48×7×4122×2=log2212=-32.
(2)原式=llgg 23+2llgg23·2llgg32+3llgg32
3ABCD24∴ba、 . 、.. . .- =23解 解 <函是是 是 是1b=析 析x数偶偶 奇 奇≤1::函函 函 函y1=.数数 数 数l∴g由因,, , ,|xa条在 |在 在 在 l=(o件g区区 区 区b12=可(答间间 间 间3)2x知(案(((.--- 00, ,:2ll∞∞oo)+ +gg≥,,aab∞ ∞0b23=00,-,))))上上 上 上1∴11,单单 单 单 =0<调调 调 调0,3递递 递 递x-减增 减 增∴2≤1,
=32llgg
2 5lg 3·6lg
32=54.
第二章 函数、导数及其应用
栏目导引
2.对数函数的图象与性质
y=logax
a>1
图象
0<a<1
性质
(1)定义域:_(_0_,__+__∞__)_(2)值域:R
(3)过点__(1_,_0_)_,即x=_1_时,y=_0_
(4)当x>1时, __y_>__0__
第9课时 对数与对数函数
第二章 函数、导数及其应用
栏目导引
1.对数的概念
(1)对数的定义 如果_a_x_=__N_(_a_>__0_且__a_≠_1_),那么数x叫做以a为 底N的对数,记作__lo_g_a_N__(a_>__0_且__a_≠_1_)_,其中 _a_叫做对数的底数,__N_叫做真数.
第二章 函数、导数及其应用
栏目导引
(2)对数的运算法则
如果 a>0,且 a≠1,M>0,N>0,那么
①loga(M·N)=_l_o_g_aM__+__lo_g_a_N_;
②logaMN =__l_o_ga_M__-__lo_g_a_N_;
③logaMn=_n_·_lo_g_a_M___(n∈R);
第二章 函数、导数及其应用
栏目导引
对数函数的综合问题
已知函数 f (x) 2x 1 (1)若 f(x)=2,求 x 的值; 2 x
(2)若 2t f (2t) mf (t) 0对于t [1, 2] 恒成立, 求实数 m 的取值范围。
当0<x<1时, ___y_<__0__
(4)当x>1时, __y_<__0__ 当0<x<1时, __y_>__0__
(5)是(0,+∞)上的 (5)是(0,+∞)上的
__增__函__数__
_减__函__数___
第二章 函数、导数及其应用
栏目导引
3.反函数 指数函数y=ax(a>0且a≠1)与对数函数 __y_=__lo_g_a_x_(a_>__0_且__a_≠__1) 互为反函数,它们 的图象关于直线___y_=__x_对称.
第二章 函数、导数及其应用
栏目导引
已知
f(x)
=
Hale Waihona Puke log a1 - mx 1- x
(a
>
0,
且a
≠1)
是奇函数.
(1) 求 m 的值;
(2) 判断函数 f(x)在(0,1)上的单调区间;
(3)求使 f(x)>0 的 x 的取值范围。
第二章 函数、导数及其应用
栏目导引
【变式训练】2.函数 f (x) log2 (x2 ax a) 在 (,1 3) 上是增函数,求实数 a 的取值范围
第二章 函数、导数及其应用
栏目导引
1.(2010·四川卷)2log510+log50.25=( )
A3..解析0 : By=.l1g|x|是C偶.函2数,由D图.象4知在(-∞,0)
12上.解若单析函调数:递y2减=lo,lgo5g在1a(0(x+0+,blo+)(ga5∞>0.)02上5且=单a≠l调og1递)5的1增0图0.+象过log两50点.2(-5 1,0) 和(0,1),答=则案lo:ag=5_2_5B_=___2,.b=__答__案__:. C
第二章 函数、导数及其应用
栏目导引
(2)方法一:∵loga2=m,∴am=2. ∵loga3=n,∴an=3. 故 a2m+n=(am)2·an=4×3=12.
方法二:∵loga2=m,loga3=n, ∴a2m+n=a2loga2+loga3=aloga12=12.
第二章 函数、导数及其应用
栏目导引

log
an
M
1
=___n_l_og_a_M_.
乘加除减 乘方提前
(3)对数的常用关系式
①恒等式: logaa b =__b_; loga1 = __0__; alogaN = __N___
换底公式__l_o_g_aM__=__llo_og_gb_bMa__(b_>__0__且__b_≠__1_), ②logab=log1ba,推广 logab·logbc·logcd=_l_o_g_ad_.
4.函数 y= log1 (3x 2) 的定义域是________. 2
第二章 函数、导数及其应用
栏目导引
对数式的化简与求值
对数源于指数,对数与指数互为逆运算,对 数的运算可根据对数的定义、对数的运算性 质、对数恒等式和对数的换底公式进行.在 解决对数的运算和与对数的相关问题时要注 意化简过程中的等价性和对数式与指数式的 互化.
例:若函数 y f (x) 是 y ax 的反函数,
且其图像过点 ( a , a) ,则 f (x) _lo_g_1_2_x___
第二章 函数、导数及其应用
栏目导引
对数函数的性质
利用对数函数的性质,讨论与对数函数有关 的复合函数的奇偶性和单调性问题,必须弄 清三方面的问题,一是定义域,所有问题都 必须在定义域内讨论;二是底数与1的大小 关系;三是复合函数的构成,即它是由哪些 基本初等函数复合而成的.
相关文档
最新文档