系统辨识
系统辨识算法

系统辨识算法一、引言系统辨识是指通过对系统输入输出数据进行观测和分析,从而建立数学模型以描述和预测系统行为的过程。
系统辨识算法是在给定输入输出数据的基础上,利用数学方法和计算机模拟技术,对系统的结构和参数进行估计和辨识的算法。
系统辨识算法在控制工程、信号处理、机器学习等领域具有广泛的应用。
二、系统辨识方法系统辨识方法可以分为参数辨识和非参数辨识两类。
1. 参数辨识参数辨识是指通过对系统模型中的参数进行估计,来描述和预测系统的行为。
常用的参数辨识方法有最小二乘法、最大似然估计法、递推最小二乘法等。
最小二乘法是一种基于最小化误差平方和的优化方法,通过优化目标函数来估计参数值。
最大似然估计法是一种基于概率统计理论的方法,通过似然函数最大化来估计参数值。
递推最小二乘法是一种基于递推迭代的方法,通过更新参数估计值来逼近真实参数值。
2. 非参数辨识非参数辨识是指通过对系统的输入输出数据进行分析,来估计系统的结构和参数。
常用的非参数辨识方法有频域分析法、时域分析法、小波分析法等。
频域分析法是一种基于信号频谱特性的方法,通过对输入输出信号的频谱进行分析,来估计系统的频率响应。
时域分析法是一种基于信号时域特性的方法,通过对输入输出信号的时序关系进行分析,来估计系统的时域特性。
小波分析法是一种基于小波变换的方法,通过对输入输出信号的小波变换系数进行分析,来估计系统的时频特性。
三、系统辨识应用系统辨识算法在实际工程中有着广泛的应用。
1. 控制工程系统辨识算法在控制系统设计中起到关键作用。
通过对控制对象进行辨识,可以建立准确的数学模型,从而设计出性能优良的控制器。
例如,在自适应控制中,可以利用系统辨识算法来实时辨识系统模型,从而根据实际系统特性调整控制器参数。
2. 信号处理系统辨识算法在信号处理领域有重要应用。
通过对信号进行辨识,可以提取信号的特征和结构,从而实现信号去噪、信号分析、信号识别等目标。
例如,在语音信号处理中,可以利用系统辨识算法来建立语音模型,进而实现语音识别和语音合成。
系统辩识基础知识点

系统辨识根底复习资料知识点汇总:1.所谓系统,按通常的意义去理解,就是按某种相互依赖关系联系在一起的客体的集合。
2.所谓系统辨识,利用对未知系统的试验数据或在线运行数据〔输入/输出数据〕以及原理和原则建立系统的〔数学〕模型的科学。
3.系统辨识的步骤:〔1〕先验知识和建模目的的依据;〔2〕实验设计;〔3〕结构辨识;〔4〕参数估量;〔5〕模型适用性检验。
4.系统的数学模型,描述系统输入与输出之间数量关系的数学表达式称为系统的数学模型。
5. 目前最流行的操纵系统辅助工具是Matlab。
6.机理分析和系统辨识相结合建模方法也称为“灰箱问题〞。
7.机理建模这种建模方法也称为“白箱问题〞。
8.频谱覆盖宽、能量均匀分布是白噪声信号的特点。
9.最小二乘法辨识方法不属于系统辨识的经典方法。
10.关于多阶最小二乘法,描述错误的选项是计算简单,计算量小,只用五步根本的最小二乘法可获得较好的结果。
11.渐消记忆法是指对旧数据加上遗忘因子,按指数加权来使得旧数据的作用衰减。
12.脉冲响应数学模型属于非参数型。
13.检验模型的标准是模型的实际效果,检验应从不同的侧面检验其可靠性。
14.与周期测试信号相比,阶跃响应法不能够比拟精确地反映对象的动态特性。
15.闭环系统前向通道的阶次不是可辨识的。
16.使辨识系统可被辨识的X要求是辨识时间内系统的动态必须被输入信号延续鼓励。
17.观测数据内容不属于系统辨识的根本内容。
18.输入数据不属于系统辨识过程中的3大要素。
19.棕箱不属于按提供的实验信息分类的建模方法。
20.数学建模不属于现代操纵论的三大支柱。
21.不属于传递函数辨识的时域方法的是时间图索法。
22.关于递推算法收敛性的结论错误的选项是递推辅助变量法收敛于非真值。
23.设A为n×n矩阵,B为n×m矩阵,C为m×n矩阵,并且A,A+BC和I+CA-1B 都是非奇异矩阵,则以下等式横成立的是A+BC-1=A-1-A-1BI+CA-1B]-1CA-1。
系统辨识方法

系统辨识方学习总结一.系统辨识的定义关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。
L.Ljung也给“辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。
出了一个定义:二.系统描述的数学模型按照系统分析的定义,数学模型可以分为时间域和频率域两种。
经典控制理论中微分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程和离散状态空间方程也如此。
一般在经典控制论中采用频域传递函数建模,而在现代控制论中则采用时域状态空间方程建模。
三.系统辨识的步骤与内容(1)先验知识与明确辨识目的这一步为执行辨识任务提供尽可能多的信息。
首先从各个方面尽量的了解待辨识的系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。
对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。
(2)试验设计试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。
主要涉及以下两个问题,扰动信号的选择和采样方法和采样间隔(3)模型结构的确定模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的,对所辨识系统的眼前知识的掌握程度密切相关。
为了讨论模型和类型和结构的选择,引入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。
所谓模型结构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。
在单输入单输出系统的情况下,系统模型结构就只是模型的阶次。
当具有一定阶次的模型的所有参数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。
(4)模型参数的估计参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶段就称为模型参数估计。
(5)模型的验证一个系统的模型被识别出来以后,是否可以接受和利用,它在多大程度上反映出被识别系统的特性,这是必须经过验证的。
第02讲系统辨识三要素

第02讲系统辨识三要素系统辨识是指通过对系统输入和输出数据的观测和分析,求解出系统的数学模型的过程。
系统辨识主要有两种方法:非参数辨识和参数辨识。
在进行参数辨识时,需要确定三个基本要素,分别是模型结构、参数估计方法和误差分析方法。
本文将详细介绍这三个要素。
首先,模型结构是系统辨识的核心要素之一、模型结构决定了辨识出的数学模型与实际系统之间的对应关系。
模型结构的选择需要根据实际问题和已有的知识和经验来确定。
常用的模型结构包括线性模型、非线性模型、时变模型等。
例如,对于一个物理系统来说,可以尝试使用一阶惯性环节、二阶惯性环节等常见的线性模型结构进行辨识;对于一个生物系统来说,可以采用Lotka-Volterra模型等非线性模型结构进行辨识。
选择合适的模型结构可以提高系统辨识的精度和可靠性。
其次,参数估计方法是指在给定模型结构的情况下,通过对系统输入和输出数据进行处理和分析,求解出模型参数的过程。
参数估计方法分为两类:最小二乘法和最大似然法。
最小二乘法通过最小化观测数据与模型预测数据之间的残差平方和来估计模型参数;最大似然法通过最大化观测数据的似然函数来估计模型参数。
当观测数据服从高斯分布时,最小二乘法和最大似然法等效。
参数估计方法的选择需要根据数据性质和实际问题来确定。
对于小样本数据,最大似然法常常具有更好的效果;对于大样本数据,最小二乘法通常是更好的选择。
最后,误差分析方法是指用来评估辨识结果的准确性和可信度的方法。
误差分析方法主要包括残差分析、模型检验和辨识结果评价等。
残差分析是通过分析辨识结果与观测数据之间的差异来评估模型拟合程度的方法。
模型检验是通过将辨识结果应用到实际应用中,观察其预测能力和鲁棒性来评价模型的有效性。
辨识结果评价是通过计算模型的性能指标,如均方误差、决定系数等来评估辨识结果的准确性和可靠性。
误差分析方法的选择需要根据实际问题和辨识结果的要求来确定。
对于较为简单的问题,可以选择较为简单的误差分析方法;对于复杂的问题,需要选择更为精确和全面的误差分析方法。
系统辨识的基本步骤

系统辨识的基本步骤
系统辨识的基本步骤包括:
1.数据采集:从现实世界中获取需要识别的信息,例如人脸图像、
语音信号、文字等。
数据采集的质量直接影响到后续的识别效果,因此需要注意采集环境、采集设备等因素。
2.特征提取:从采集到的数据中提取出具有代表性的特征。
3.模型建立:根据提取的特征,建立相应的模型。
4.模型训练:使用训练数据对模型进行训练,调整模型参数,提高
模型的准确性和鲁棒性。
5.模型评估:使用测试数据对模型进行评估,计算模型的精度、召
回率、F1值等指标,以检验模型的性能。
6.模型应用:将训练好的模型应用于实际场景中,进行目标检测、
分类、跟踪等任务。
在实际应用中,还需要根据具体的问题和任务进行适当的调整和改进,以提高系统的性能和适应性。
时域控制理论工程中的系统辨识与滤波设计

时域控制理论工程中的系统辨识与滤波设计时域控制理论工程涉及到系统辨识和滤波设计两个重要方面。
系统辨识是指通过分析系统输入与输出之间的关系,建立系统的数学模型;滤波设计则是为实现所期望的控制效果,设计合适的滤波器对信号进行处理。
本文将就这两个方面进行详细的探讨。
一、系统辨识系统辨识是时域控制理论工程中的核心内容之一,它旨在通过实验数据或观测数据建立系统的数学模型。
常用的系统辨识方法包括参数辨识、非参数辨识和结构辨识等。
1. 参数辨识参数辨识是一种根据已知输入输出数据来识别系统参数的方法。
通过假设系统满足某种数学模型(如ARX模型、ARMA模型等),可以通过最小二乘法、最大似然估计等方法估计参数的值。
参数辨识方法适用于线性系统,且要求系统具有一定的稳定性。
2. 非参数辨识非参数辨识是一种不依赖于系统模型假设的辨识方法。
主要通过频域分析或自回归-移动平均模型(ARMA)来描述和分析系统的频率响应性质。
这种方法在系统具有非线性、非稳态或随机性质的情况下更为适用。
3. 结构辨识结构辨识是一种通过试验和观测数据来确定系统的结构模型的方法。
它可以用于估计系统的状态方程、传递函数、状态空间模型等。
常用的结构辨识方法包括系统辩识算法、频域辩识法和小波分析法等。
二、滤波设计滤波设计是时域控制理论工程中的另一个重要环节。
通过设计适当的滤波器,可以实现对信号的滤波处理,达到所需的控制效果。
1. 低通滤波器低通滤波器主要用于去除高频噪声、抑制高频分量。
在时域控制工程中,低通滤波器对于滤除系统中的高频干扰信号具有重要作用。
2. 高通滤波器高通滤波器主要用于滤除低频分量,提取系统中的高频信号。
在某些情况下,需要突出系统的高频响应,这时可以使用高通滤波器。
3. 带通滤波器带通滤波器可以通过滤除信号的低频和高频成分,仅保留某一频率范围内的信号。
在时域控制理论工程中,带通滤波器常常用于提取特定频率范围内的控制信号。
4. 带阻滤波器带阻滤波器可以阻断某一特定频率范围内的信号,也被称为陷波器。
控制系统中的系统辨识与自适应控制

控制系统中的系统辨识与自适应控制在控制系统中,系统辨识与自适应控制是两个关键的方面。
系统辨识是指通过实验或推理的方法,从输入和输出的数据中提取模型的参数和结构信息,以便更好地理解和控制系统的行为。
而自适应控制是指根据系统辨识得到的模型参数和结构信息,实时地调整控制器的参数以适应系统变化,以提高控制性能。
一、系统辨识1.1 参数辨识参数辨识是指确定系统动态模型中的参数。
常用的方法包括最小二乘法、极大似然估计法等。
最小二乘法是一种常见的参数辨识方法,通过最小化实际输出与模型输出之间的误差平方和来确定参数。
1.2 结构辨识结构辨识是指确定系统动态模型的结构,包括确定系统的阶数、输入输出关系等。
常用的结构辨识方法有ARX模型、ARMA模型等。
ARX模型是指自回归外部输入模型,适用于输入输出具有线性关系的系统。
ARMA模型是指自回归滑动平均模型,适用于输入输出关系存在滞后效应的系统。
二、自适应控制自适应控制是根据系统辨识得到的模型参数和结构信息,动态地调整控制器的参数以适应系统的变化。
常用的自适应控制方法有模型参考自适应控制、模型预测控制等。
2.1 模型参考自适应控制模型参考自适应控制是建立在系统辨识模型基础上的控制方法。
通过将系统输出与参考模型输出进行比较,通过调整控制器参数来减小误差。
常见的模型参考自适应控制方法有自适应PID控制、自适应模糊控制等。
2.2 模型预测控制模型预测控制是一种基于系统辨识模型的控制策略,通过对系统未来的状态进行预测,以求得最优控制输入。
模型预测控制可以同时考虑系统的多个输入和多个输出,具有较好的控制性能。
三、应用案例3.1 机械控制系统在机械控制系统中,系统辨识和自适应控制可以被应用于伺服控制系统。
通过系统辨识可以得到伺服电机的动态模型,然后利用自适应控制方法调整PID控制器的参数,以提高伺服系统的响应速度和稳定性。
3.2 化工控制系统在化工控制系统中,系统辨识和自适应控制可以被应用于控制某个反应器的温度。
系统辨识与模型预测控制

系统辨识与模型预测控制系统辨识与模型预测控制是现代控制理论中的关键概念,它们在工程领域中被广泛应用于系统建模及控制设计中。
本文将详细介绍系统辨识与模型预测控制的基本概念、原理、方法和应用。
一、系统辨识系统辨识是指通过实验数据对系统的动态行为进行建模和估计的过程。
它可以帮助我们了解系统的性质和结构,并在控制系统设计中提供准确的数学模型。
系统辨识的主要任务是确定系统的参数和结构,并评估模型的质量。
1.1 参数辨识参数辨识是系统辨识的主要内容之一,它通过收集系统的输入和输出数据,并根据建模方法对参数进行估计。
常用的参数辨识方法包括最小二乘法、极大似然法、频域法等。
参数辨识的结果对建模和控制设计具有重要的指导意义。
1.2 结构辨识结构辨识是指确定系统的数学结构,即选择合适的模型形式和结构。
常用的结构辨识方法有ARX模型、ARMA模型、ARMAX模型等。
结构辨识的关键是根据系统的性质和实际需求选择适当的模型结构,以保证模型的准确性和有效性。
二、模型预测控制模型预测控制是一种基于系统动态模型的控制方法,它通过在线求解最优控制问题实现对系统的控制。
模型预测控制通过对系统未来动态行为的预测,结合控制目标和约束条件,求解优化问题得到最优控制输入。
它具有优良的鲁棒性和适应性,并且能够处理多变量、非线性以及时变系统的控制问题。
2.1 模型建立模型预测控制的第一步是建立系统的数学模型,通常采用系统辨识的方法得到。
模型可以是线性的或非线性的,根据实际需求选择适当的模型结构和参数。
2.2 控制器设计模型预测控制的核心是设计控制器,控制器的目标是使系统输出跟踪参考轨迹,并满足约束条件。
控制器设计通常通过求解一个离散时间最优控制问题来实现,常用的方法有二次规划、线性规划、动态规划等。
2.3 优化求解模型预测控制的关键是求解最优控制问题,将系统的模型和控制目标转化为一个优化问题,并通过数值优化方法求解得到最优解。
常用的优化算法包括线性规划、非线性规划、遗传算法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 最小二乘法(LS )辨识系统Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)+v(k) 辨识参数 L T LLTL LS y XX X 1)(-Λ=θ其中MAT程序>> x=[0 1 0 1 1 0 1 1 1];>> n=403; >> M=[]; >> for i=1:ntemp=xor(x(4),x(9)); M(i)=x(9); for j=9:-1:2 x(j)=x(j-1); endx(1)=temp; end>> v=randn(1,400); >> z=[]; >> z(1)=-1; >> z(2)=0; >> for i=3:402z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)+v(i-2); end>> H=zeros(400,4); >> for i=1:400 H(i,1)=-z(i+1); H(i,2)=-z(i); H(i,3)=M(i+1); H(i,4)=M(i); end>> Estimate=inv(H'*H)*H'*(z(3:402))' 辨识参数为: Estimate =-1.49161.03640.4268>>二、最小二乘递推法(RLS)辨识Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)+v(k) 递推公式:其中:MATLAB程序:>> x=[0 1 0 1 1 0 1 1 1];n=403;M=[];for i=1:ntemp=xor(x(4),x(9));M(i)=x(9);for j=9:-1:2x(j)=x(j-1);endx(1)=temp;endv=randn(1,400);z=[];z(1)=-1;z(2)=0;for i=3:402z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)+v(i-2); endP=100*eye(4);Pstore=zeros(4,401);>> Pstore(:,1)=[P(1,1),P(2,2),P(3,3),P(4,4)];>> Theta=zeros(4,401);Theta(:,1)=[3;3;3;3];>> K=[10;10;10;10];h=[-z(i-1);-z(i-2);M(i-1);M(i-2)];K=P*h*inv(h'*P*h+1);Theta(:,i-1)=Theta(:,i-2)+K*(z(i)-h'*Theta(:,i-2));P=(eye(4)-K*h')*P;Pstore(:,i-1)=[P(1,1),P(2,2),P(3,3),P(4,4)];end>> i=1:401;>> figure(1)>> plot(i,Theta(1,:),i,Theta(2,:),i,Theta(3,:),i,Theta(4,:)) >> title('待估参数过渡过程')>> figure(2)>> plot(i,Pstore(1,:),i,Pstore(2,:),i,Pstore(3,:),i,Pstore(4,:)) >> title('估计方差变化过程')结果图:三、增广最小二乘法(ELS)辨识Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)-v(k+1)+0.2*v(k) 公式:其中:x=[0 1 0 1 1 0 1 1 1];n=403;M=[];for i=1:ntemp=xor(x(4),x(9));M(i)=x(9);for j=9:-1:2x(j)=x(j-1);endx(1)=temp;endv=randn(1,402);z=zeros(402,1);z(1)=-1;z(2)=0;for i=3:402z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)-v(i-1)+0.2*v(i-2); endP=100*eye(6);Pstore=zeros(6,401);Pstore(:,1)=[P(1,1),P(2,2),P(3,3),P(4,4),P(5,5),P(6,6)];>> Theta=zeros(6,401);>> Theta(:,1)=[3;3;3;3;3;3];>> K=[10;10;10;10;10;10];>> for i=3:402h=[-z(i-1);-z(i-2);M(i-1);M(i-2);v(i-1);v(i-2)];K=P*h*inv(h'*P*h+1);Theta(:,i-1)=Theta(:,i-2)+K*(z(i)-h'*Theta(:,i-2));P=(eye(6)-K*h')*P;Pstore(:,i-1)=[P(1,1),P(2,2),P(3,3),P(4,4),P(5,5),P(6,6)];end>> disp('参数a1、a2、b1、b2、d1、d2估计结果:')参数a1、a2、b1、b2、d1、d2估计结果:>> Theta(:,401)ans =-1.50000.70001.00010.5002-0.99990.2000>> i=1:401;>> figure(1)>> plot(i,Theta(1,:),i,Theta(2,:),i,Theta(3,:),i,Theta(4,:),i,Theta(5,:),i,Theta(6,:)); >> title('待估参数过渡过程')>> figure(2)>> plot(i,Pstore(1,:),i,Pstore(2,:),i,Pstore(3,:),i,Pstore(4,:),i,Pstore(5,:),i,Pstore(6,:)); >> title('估计方差变化过程')四、广义最小二乘法(GLS)辨识系统:Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)+e(k) e(k+2)+2.1*e(K+1)-2.5*e(k)=v(k+2)公式:>> x=[0 1 0 1 1 0 1 1 1];n=403;M=[];for i=1:ntemp=xor(x(4),x(9));M(i)=x(9);for j=9:-1:2x(j)=x(j-1);endx(1)=temp;end>> v=randn(1,400);>> e=[];>> e(1)=v(1);>> e(2)=v(2);>> for i=3:400e(i)=0*e(i-1)+0*e(i-2)+v(i);end>> z=zeros(400,1);>> z(1)=-1;z(2)=0;>> for i=3:400z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)+e(i);end>> zf=[];>> zf(1)=-1;>> zf(2)=0;>> for i=3:400zf(i)=z(i)-0*z(i-1)-0*z(i-2);end>> uf=[];>> uf(1)=M(1);>> uf(2)=M(2);for i=3:400uf(i)=M(i)-0*M(i-1)-0*M(i-2);end>> P=100*eye(4);>> Pstore=zeros(4,400);>> Pstore(:,2)=[P(1,1),P(2,2),P(3,3),P(4,4)];>> Theta=zeros(4,400);>> Theta(:,2)=[3;3;3;3];>> K=[10;10;10;10];PE=10*eye(2);ThetaE=zeros(2,400);>> ThetaE(:,2)=[0.5,0.3];>> KE=[10;10];>> for i=3:400h=[-zf(i-1);-zf(i-2);uf(i-1);uf(i-2)];K=P*h*inv(h'*P*h+1);Theta(:,i)=Theta(:,i-1)+K*(z(i)-h'*Theta(:,i-1));P=(eye(4)-K*h')*P;Pstore(:,i-1)=[P(1,1),P(2,2),P(3,3),P(4,4)];he=[-e(i-1);-e(i-2)];KE=PE*he*inv(1+he'*PE*he);ThetaE(:,i)=ThetaE(:,i-1)+KE*(e(i)-he'*ThetaE(:,i-1)); PE=(eye(2)-KE*he')*PE;end>> disp('参数a1、a2、b1、b2估计结果:')参数a1、a2、b1、b2估计结果:>> Theta(:,400)ans =-1.48650.66990.97590.4721>> disp('噪声传递系数c1、c2估计结果:')噪声传递系数c1、c2估计结果:>> ThetaE(:,400)ans =-0.0404-0.0228>> i=1:400;>> figure(1)>> plot(i,Theta(1,:),i,Theta(2,:),i,Theta(3,:),i,Theta(4,:)) >> title('待估参数过渡过程')>> figure(2)>> plot(i,Pstore(1,:),i,Pstore(2,:),i,Pstore(3,:),i,Pstore(4,:)) >> title('估计方差变化过程')>> figure(3)>> plot(i,ThetaE(1,:),i,ThetaE(2,:));结果图方差变化过程五、辅助变量最小二乘法辨识:Z(K+2)=1.5*Z(K+1)-0.7*Z(k)+u(K+1)+0.5*u(k)+e(k) e(k)=v(k)+0.5*v(k-1)+0.2*v(k-2)递推公式:MATLAB程序:>> x=[0 1 0 1 1 0 1 1 1];n=403;M=[];for i=1:ntemp=xor(x(4),x(9));M(i)=x(9);for j=9:-1:2x(j)=x(j-1);endx(1)=temp;end>> v=randn(1,400);e=[];>> e(1)=0.3;>> e(2)=0.5;>> for i=3:400e(i)=v(i)-0.5*v(i-1)+0.2*v(i-2);end>> z=zeros(402,1);>> z(1)=-1;z(2)=0;for i=3:400z(i)=1.5*z(i-1)-0.7*z(i-2)+M(i-1)+0.5*M(i-2)+e(i); end>> P=100*eye(4);>> Pstore=zeros(4,400);>> Pstore(:,1)=[P(1,1),P(2,2),P(3,3),P(4,4)];>> Theta=zeros(4,400);>> Theta(:,1)=[3;3;3;3];>> Theta(:,2)=[3;3;3;3];>> Theta(:,3)=[3;3;3;3];>> Theta(:,4)=[3;3;3;3];>> K=[10;10;10;10];>> for i=5:400h=[-z(i-1);-z(i-2);M(i-1);M(i-2)];hstar=[-z(i-2-1);-z(i-2-2);M(i-1);M(i-2)];K=P*hstar*inv(h'*P*hstar+1);Theta(:,i)=Theta(:,i-1)+K*(z(i)-h'*Theta(:,i-1));P=(eye(4)-K*h')*P;Pstore(:,i-1)=[P(1,1),P(2,2),P(3,3),P(4,4)];end>> disp('参数a1、a2、b1、b2估计结果:')参数a1、a2、b1、b2估计结果:>> Theta(:,400)ans =-1.57560.74240.86780.3569>> i=1:400;figure(1)plot(i,Theta(1,:),i,Theta(2,:),i,Theta(3,:),i,Theta(4,:)) title('待估参数过渡过程')>> figure(2)plot(i,Pstore(1,:),i,Pstore(2,:),i,Pstore(3,:),i,Pstore(4,:)) title('估计方差变化过程')。