煤直接液化和煤间接液化综述

合集下载

煤的液化技术

煤的液化技术
设计新型的反应器,以提高煤液化的反应速度和 转化率,同时降低能耗和减少环境污染。
市场发展前景
1 2 3
替代石油资源
随着石油资源的日益枯竭,煤液化技术作为一种 替代石油的能源资源,具有广阔的市场前景。
满足环保要求
煤液化技术能够降低煤炭燃烧过程中的污染物排 放,符合环保要求,有助于推动清洁能源市场的 发展。
对煤液化技术企业给予税收优惠政策,降低企业税负,提高市场 竞争力。
THANKS FOR WATCHING
感谢您的观看
出口潜力
煤液化产品如柴油、汽油等可作为燃料或化工原 料,具有较大的出口潜力,有助于提升我国能源 产业的国际竞争力。
政策支持与推动
产业政策引导
政府通过制定产业政策,鼓励和支持煤液化技术的研发和应用, 推动产业健康发展。
资金扶持
政府提供资金扶持,支持企业进行技术研发和产业化推广,减轻 企业负担。
税收优惠
润滑油
煤液化过程中产生的润滑油具有 优良的润滑性能和稳定性,可用 于机械设备的润滑。
民用燃料
燃气
通过煤液化技术得到的液化石油气可作为居民生活和商业用 途的燃气。
供暖
煤液化燃料可用于集中供暖和家庭采暖,提高居民生活质量 。
化工原料
乙烯
煤液化技术可以生产乙烯等化工原料 ,进一步用于生产塑料、合成纤维等 高分子材料。
该技术最早由南非开发,主要 产品是柴油和航空煤油等。
间接液化技术的优点是工艺流 程相对简单,对原料煤的适应 性较强,但转化效率较低,且 催化剂消耗较大。
合成气液化
合成气液化是指将合成气在一定 条件下转化为液体燃料的过程。
该技术通常采用费托合成工艺, 将合成气在催化剂作用下转化为

煤炭液化技术

煤炭液化技术

煤炭液化技术[编辑本段] 煤炭液化技术煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。

根据不同的加工,使其转化成为液体燃料路线,煤炭液化可分为直接、化工原料和液化和间接液化两大类:一、直接液化直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。

1、发展历史煤直接液化技术是由德国人于1913 年发现的,并于二战期间在德国实现了工业化生产。

德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。

二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。

70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。

日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。

目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。

这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。

到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d 级以上大型中间试验,具备了建设大规模液化厂的技术能力。

煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。

目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。

2、工艺原理煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。

第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。

煤炭液化技术包括煤炭直接液化和煤炭间接液化

煤炭液化技术包括煤炭直接液化和煤炭间接液化

成绩中国矿业大学2011 级本科课程考试试卷考试科目学科前沿讲座考试时间2014年12月学生姓名彭玉斌学生学号06112931所在院系化工学院任课教师周敏教授等多名教师题目:煤炭液化技术煤炭液化技术摘要;煤炭液化技术包括煤炭直接液化和煤炭间接液化,是属于洁净煤技术的一种。

文章简要论述了煤炭直接接液化技术和煤炭间接液化技术的化学反应机理和化学反应过程;回顾了液化技术的发展历史,国外煤液化技术的发展状况;介绍了我国煤碳液化的现状;展望今后煤炭液化的发展方向。

关键字:煤炭;直接液化;间接液化所谓煤炭液化是指,固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。

根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类。

1煤炭直接液化概述煤与石油都是由碳、氢、氧为主的元素组成的天然有机矿物燃料。

只是煤中氢含量及H/C原子比,较石油相比要低很多。

要将煤转化为液体产物,必须在适当的温度、氢压、溶剂和催化剂的条件下,将煤中的大分子裂解为小分子,进而加氢稳定,降低H/C原子比,从而得到液体产物。

1.1煤直接液化的化学反应一般认为煤直接液化的过程是煤在溶剂、催化剂和高压氢气存在下,随着温度的升高,煤开始在溶剂中膨胀形成胶体体系。

煤进行局部溶解,并发生煤有机质的分裂、解聚,同时在煤有机质与溶剂间进行氢分配,于350~400℃左右生成沥青质含量较高的高分子物质。

在此过程中主要发生煤的热解、自由基加氢稳定、自由基缩合以及氮、氧、硫元素杂元素的脱除等一系列反应。

其主要反应是自由基的生成和加氢稳定。

自由基稳定后可生成分子量小的馏分油,分子量大的沥青烯,及分子量更大前沥青烯。

前沥青烯可进一步分解为分子量较小的沥青烯、馏分油和烃类气体。

同样沥青烯通过加氢可进一步生成馏分油和烃类气体。

如果煤的自由基得不到氢而它的浓度又很大时,这些自由基碎片就会互相结合而生成分子量更大的化合物甚至生成焦炭。

图1表示了煤热解产生自由基以及溶剂向自由基供氢、溶剂和前沥青烯、沥青烯加氢的过程:1.2煤直接液化技术的发展历程煤直接加氢液化一般是在较高温度,高压,氢气(或CO+H2, CO+H2O)、催化剂和溶剂作用下,将煤进行解聚、裂解加氢,直接转化为液体油的加工过程。

煤的直接液化与间接液化作业

煤的直接液化与间接液化作业

煤的直接液化与间接液化装备0904 张康200906081214煤液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。

根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类。

直接液化(DCL)发展历史1923年,德国化学家首先开发出了煤炭间接液化技术。

40年代初,为了满足战争的需要,德国曾建成9个间接液化厂。

二战以后,同样由于廉价石油和天然气的开发,上述工厂相继关闭和改作它用。

之后,随着铁系化合物类催化剂的研制成功、新型反应器的开发和应用,煤间接液化技术不断进步,但由于煤炭间接液化工艺复杂,初期投资大,成本高,因此除南非之外,其它国家对煤炭间接液化的兴趣相对于直接液化来说逐渐淡弱。

煤炭间接液化技术主要有三种,即的南非的萨索尔(Sasol)费托合成法、美国的Mobil甲醇制汽油法和正在开发的直接合成法。

目前,煤间接液化技术在国外已实现商业化生产,全世界共有3家商业生产厂正在运行,它们分别是南非的萨索尔公司和新西兰、马来西亚的煤炭间接液化厂。

新西兰煤炭间接液化厂采用的是Mobil液化工艺,但只进行间接液化的第一步反应,即利用天然气或煤气化合成气生产甲醇,而没有进一步以甲醇为原料生产燃料油和其它化工产品,生产能力1.25万桶/天。

马来西亚煤炭间接液化厂所采用的液化工艺和南非萨索尔公司相似,但不同的是它以天然气为原料来生产优质柴油和煤油,生产能力为50万吨/年。

因此,从严格意义上说,南非萨索尔公司是世界上唯一的煤炭间接液化商业化生产企业。

南非萨索尔公司成立于50年代初,1955年公司建成第一座由煤生产燃料油的Sasol-1厂。

70年代石油危机后,1980年和1982年又相继建成Sasol-2厂和Sasol-3厂。

3个煤炭间接液化厂年加工原煤约4600万t,产品总量达768万t,主要生产汽油、柴油、蜡、氨、乙烯、丙烯、聚合物、醇、醛等113种产品,其中油品占60%,化工产品占40%。

煤的直接液化

煤的直接液化

煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。

煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。

通过煤炭液化,不仅可以生产汽油、柴油、LPG(液化石油气)、喷气燃料,还可以提取BTX(苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。

煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。

煤炭直接加氢液化一般是在较高温度(400℃以上),高压(10MPa以上),氢气(或CO+H2, CO+H2O)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。

煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。

煤与石油主要都是由C、H、O等元素组成。

煤和石油的根本区别就在于:煤的氢含量和H/C 原子比比石油低,氧含量比石油高I煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。

煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。

通过加氢,改变煤的分子结构和H/C原子比,同时脱除杂原子,煤就可以液化变成油。

1927年德国在莱那(Leuna)建立了世界上第一个煤直接液化厂,规模10×l04 t/a。

间接液化与直接液化对比分析

间接液化与直接液化对比分析

间接液化与直接液化对比分析一、煤炭液化发展状况1、间接液化技术发展状况煤的间接液化技术是先将煤气化,然后合成燃料油和化工产品。

目前南非萨索尔公司、荷兰壳牌公司、美国美孚公司、丹麦托普索公司都拥有成熟技术,但达到和正在商业化生产的只有南非萨索尔公司。

该公司已先后建成了三个间接液化工厂,年产汽油、柴油、蜡、乙烯、丙烯、聚合物、氨、醇、醛、酮等113种化工产品,共计760万吨,其中油品占60%左右。

在我国,科技部863计划和科学院于2001年联合启动了“煤变油”重大科技项目,中科院山西煤化所承担了这一项目的研究。

2002年9月,千吨级间接液化中试平台实现了第一次试运转,并合成出第一批粗油品。

到2003年底,中试平台已运行4次,使用间接液化技术生产出了无色透明的高品质柴油,这是目前世界上纯度最高、最优质的清洁柴油。

山东兖矿集团在煤炭间接液化技术方面也取得了较大进展。

神华集团拟在陕西榆林建设煤间接液化项目,以榆神矿区储量丰富、质量优良和便于开采的煤炭资源为依托,建立坑口煤炭间接液化工厂。

拟建规模为年产液化产品600万吨,分2期建设,每期工程年产300万吨。

2、直接液化技术发展状况煤炭直接液化技术是煤炭在高温、高压和催化剂作用下的去除杂质并加氢的过程。

德国从二战期间就开始这方面的研究,但随着石油的发现被搁置,直到近年又重新启动。

目前德国GMT公司、美国的HTI公司和日本的NEDOL组织都拥有这方面技术,但世界上还没有达到工业化生产的装置。

在我国,神华集团投资600亿元的500万吨/年“煤变油”直接液化工程于2004年在内蒙古鄂尔多斯开工建设,预计2007年一期工程建成。

而且,神华还在上海建成了每天6吨的直接液化装置,目的在于对“煤变油”工业化生产之前的工艺和设备进行探讨。

目前,云南、黑龙江、内蒙古、山东、山西、贵州等都在筹划自己的“煤变油”项目,只是由于风险太大而进展较慢。

决策部门希望等神华的工业化示范项目效果出来后再定,以免造成不必要的浪费。

煤制油

煤制油

煤制油煤制油包括直接液化和间接液化两种工艺技术路线。

1.煤炭直接液化技术煤在高压和一定温度下直接与氢气反应生成液体燃料油的工艺技术称为直接液化。

煤炭直接液化主要产品为汽油、柴油、航空煤油、石脑油、LPG(液化石油气),另外还可以提取BTX(苯、甲苯、二甲苯),副产品有硫磺、氨或尿素等。

直接液化工艺的产品中,柴油的比例在60~70%,汽油和LPG占40~30%左右。

直接液化的工艺主要有Exxon供氢溶剂法(EDS)。

氢-煤法等。

EDS法是煤浆在循环的供氢溶剂中与氢混合,溶剂首先通过催化器,拾取氢原子,然后通过液化反应器,释放出氢原子,使煤分解。

氢-煤法是采用沸腾床反应器,直接加氢将煤转化成液体燃料。

直接液化过程流程现代煤炭直接液化技术提高了产品质量,特别是通过液化后的提质加工工艺,使液化油通过加氢精制、重整、加氢裂化,可得到合格的汽油、柴油或航空煤油。

尤其是柴油的凝点很低,可以在高寒地区使用,所得航空煤油的比重较大,同样容积的油箱可使飞机的续航距离增加。

2. 煤炭间接液化技术间接液化是把煤炭先气化再合成,煤在高温下与氧气和水蒸气反应生成合成反应气(CO+H2),合成反应气再经F-T合成催化反应合成液体燃料及其化学品。

煤炭间接液化主要产品为汽油、柴油、航空煤油、石脑油、LPG、以及乙烯、丙稀等重要化工原料,副产品有α烯烃、硬蜡、氨、醇、酮、焦油、硫磺、煤气等。

间接液化的产品品种是可以变通的,即可以生产油品,又可以根据市场需要加以调节,生产高附加值、价格高、市场紧缺的化工产品。

对中国的石油产品市场而言,以优质石脑油和高质量柴油、烯烃、LPG 和石蜡等产品为好。

另外烯烃的价值较高,LPG也是市场紧俏物资。

此外我国石蜡生产和销售市场上,高熔点微晶蜡缺口较大,高品位润滑油也是国内比较紧缺的。

因此,汽油、柴油与高附加值的润滑油、微晶蜡等市场紧缺的产品并举,可以作为合成油产品的主攻方向。

间接液化在可控制的条件下进行合成,获得的柴油的十六烷值达70,且低硫、无芳烃,既可直接供给环保要求高的地区使用,也可作为优质油与其它油品调配。

煤的直接液化与间接液化技术进展

煤的直接液化与间接液化技术进展

煤的直接液化与间接液化技术进展郭新乐(合肥学院,化学与材料工程系,安徽合肥230022)摘要:分析了煤液化技术在我国经济发展中的战略性意义,介绍了煤液化技术,包括直接液化技术,间接液化技术,展望了我国煤液化技术的发展方向并提出了建议。

关键词:煤液化技术;直接液化;间接液化Prospect of Direct Coal Liquefaction and Indirect Coal LiquefactionGUO Xin-Le(Department of Chemical and Mater ials Engineering, Hefei University, Anhui Hefei 230022,China)Abstract: This paper introduced the significance of the coal liquefaction technology in the development of economy. The coal liquefaction technology was then reviewed, including direct coal liquefaction and indirect coal liquefaction. Prospects were done, and the development direction of the coal liquefaction technology in China was suggested.Key words: coal liquefaction technology of; direct coal liquefaction; indirect coal liquefaction众所周知石油作为能源储备资源较煤炭少,且分布不均匀,石油供需矛盾日益突出。

我国富煤,贫油这一资源特点,决定了能源发展必然以煤为主,长期以来,煤炭在我国的能源消费结构中一直占70%以上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤直接液化和煤间接液化综述摘要:煤的直接液化和间接液化技术经过长期发展,已形成了各自的工艺特征和典型工艺。

我国总的能源特征是“富煤、少油、有气”,以煤制油已成为我国能源战略的一个重要趋势。

经过长期不断努力,我国初步形成了“煤制油”产业化的雏形,在未来将迎来更多机遇和挑战。

关键字:煤直接液化煤间接液化发展历程现状前景1.煤直接液化煤直接液化又称煤加氢液化, 是将固体煤制成煤浆, 在高温高压下, 通过催化加氢裂化, 同时包括热解、溶剂萃取、非催化液化, 将煤降解和加氢从而转化为液体烃类, 进而通过稳定加氢及加氢提质等过程, 脱除煤中氮、氧、硫等杂原子并提高油品质量的技术。

煤直接液化过程包括煤浆制备、反应、分离和加氢提质等单元。

煤的杂质含量越低, 氢含量越高, 越适合于直接液化。

1.1发展历程煤直接液化技术始于二十世纪初, 1913年德国科学家Bergius首先研究了煤高压加氢, 并获得了世界上第一个煤液化专利, 在此基础上开发了著名的I G Farben工艺。

该工艺反应条件较为苛刻, 反应温度为470℃, 反应压力为70MPa。

1927年德国在Leuna建立了世界上第一个规模为0.1Mt/a的煤直接液化厂, 到第二次世界大战结束时,德国的18个煤直接液化工厂总油品生产能力已达约4.23Mt/a , 其汽油产量占当时德国汽油消耗量的50%。

第二次世界大战前后, 英国、美国、日本、法国、意大利、苏联等国也相继进行了煤直接液化技术的研究。

以后由于廉价石油的大量发现, 从煤生产燃料油变得无利可图, 煤直接液化工厂停工, 煤直接液化技术的研究处于停顿状态。

20世纪70年代,石油危机发生后, 各发达国家投人大量人力物力进行煤直接液化技术的研发, 相继开发出多种煤直接液化工艺, 但由于从20世纪80年代后期起原油价格在高位维持的时间不长,从煤生产燃料油获利的可能性较低, 这些工艺都没有实现工业化。

1.2煤直接液化技术的工艺特征典型的煤直接加氢液化工艺包括: ①氢气制备;②煤糊相(油煤浆)制备; ③加氢液化反应;④油品加工等“先并后串”四个步骤。

氢气制备是加氢液化的重要环节,大规模制氢通常采用煤气化及天然气转化。

液化过程中,将煤、催化剂和循环油制成的煤浆,与制得的氢气混合送入反应器。

在液化反应器内,煤首先发生热解反应,生成自由基“碎片”,不稳定的自由基“碎片”再与氢在催化剂存在条件下结合,形成分子量比煤低得多的初级加氢产物。

出反应器的产物构成十分复杂,包括气、液、固三相。

气相的主要成分是氢气,分离后循环返回反应器重新参加反应;固相为未反应的煤、矿物质及催化剂;液相则为轻油(粗汽油) 、中油等馏份油及重油。

1.3典型工艺自从1973年世界发生第一次石油危机以来,美国、德国、日本等国家相继开发了许多煤直接液化新工艺如(SRC,EDS , H-Coal,HTI , IGOR,NEDOL等), 其中比较有代表性的工艺是HTI,IGOR和NEDOL工艺。

其中IGOR和NEDOL工艺建设有大型中试厂, 而HTI工艺仅进行了规模为3t/d的实验室试验。

1.3.1德国的IGOR 工艺20世纪70年代,世界石油危机发生后,德国以鲁尔煤炭公司为首与VEBA石油公司和DMT矿冶及检测技术公司合作, 开发出了比德国原工艺更先进的新液化(IGOR)工艺, 其特点是:(1)反应条件苛刻温度470℃, 压力30MPa;(2)催化剂使用炼铝工业的废渣(赤泥);(3)两个液化油加氢精制反应器串联在一个高压系统内在其中进行的液化反应可一次得到杂原子含量极低的液化精制油;(4)该液化油经过蒸馏就可以得到十六烷值大于45的柴油, 汽油馏分再经重整即可得到高辛烷值汽油;(5)循环溶剂是加氢油, 供氢性能好, 煤液化油转化率高, 但投资高, 同时未对加氢催化剂寿命进行工业考核。

1.3.2美国的HTI工艺美国的HTI工艺为两段催化液化工艺, 采用近十年来开发的悬浮床反应器和拥有专利的铁基催化剂。

该工艺的主要特点是(1)反应条件比较温和, 反应温度440~450℃, 反应压力17MPa;(2)采用特殊的液体循环沸腾床(悬浮床)反应器, 达到全返混反应器模式;(3)所采用的催化剂活性高, 用量少;(4)在高温分离器后面串联一台加氢固定床反应器, 对液化油进行在线加氢精制(5)固液分离采用超临界溶剂萃取方法, 从液化残渣中最大限度地回收重油, 从而大幅度提高了液化油收率。

1.3.3日本的NEDOL工艺日本在20世纪80年代初专门成立了日本新能源产业综合开发机构(NEDO), 负责实施阳光计划, 在NEDO的组织下, 经过十几家大公司的合作, 开发出了称为的烟煤液化工艺。

该工艺特点的是:(1)反应压力较低, 为17~19MPa, 反应温度455~465℃(2)催化剂采用合成硫化铁或天然硫铁矿;(3)采用蒸馏的方法进行固液分离;(4)配煤浆用的循环剂单独加氢, 以提高溶剂的加氢能力;(5)液化油含有较多的杂原子, 还需加氢提质才能得到合格产品;(6)两个加氢提质反应器采用离线的方式, 操作灵活, 加氢催化剂寿命得到保障。

一般认为煤大分子的基本单元主体为缩合的芳烃核, 单元中的非芳烃核部分为杂环、氢化芳环脂肪族基团、含氧官能团和烷基侧链。

而煤直接液化法是通过对煤进行催化加氢生产燃料油, 因而煤直接液化产物主要由芳烃和环烷烃构成, 并含有一定量的氮、氧和硫等杂原子。

经后续提质加工后, 可降低其杂原子和芳烃的含量, 但无法大幅度降低环状烃的含量, 因而产物石脑油馏分的芳烃潜含量高, 产物柴油馏分的凝点低, 十六烷值偏低, 是煤直接液化油的主要特点。

2.煤间接液化技术煤间接液化是先将煤气化生产合成气, 完全破坏了煤原有的化学结构, 然后以合成气为原料通过费托合成(F-T合成)生产出馏程不同的液态烃。

煤间接液化包括造气单元、F-T合成单元、分离单元、后加工提质单元等, 其核心是合成反应单元。

与直接液化技术相比, 间接液化技术对煤基本没有要求。

2.1发展历程1923年德国科学家Frans Fischer和Hans Tropsch发明了将合成气经催化转化为液态烃的方法,简称F-H合成。

1936年德国建成世界上第一座煤间接液化工厂, 到二战结束时, 在德国、法国、日本、中国和美国等共建了套以煤基合成气为原料的合成油装置。

二战以后由于廉价石油的大量发现, 从煤生产液体燃料成本变得过高, 这些装置先后停产。

20世纪50年代, 南非联邦受到国际制裁, 无法进口石油, 为满足对燃料油的需求, 根据本国煤的特点, 发展了煤间接液化生产燃料油的技术。

自1955年以来, 陆续建立了座大型煤间接液化厂, 分别是工Saso lⅠ,Saso lⅡ,Saso lⅢ, 产品包括发动机燃料、聚烯烃等。

目前公司的煤间接液化工厂仍在运行, 并获得可观利润。

2.2煤间接液化技术的工艺特征间接液化工艺包括: ①煤的气化及煤气净化、变换和脱碳; ②合成反应; ③油品加工三个纯“串联”步骤。

气化装置产出的粗煤气经除尘、冷却,得到净煤气,净煤气经CO宽温耐硫变换和酸性气体(包括H2S和CO2等)脱除,得到成分合格的合成气。

合成气进入合成反应器,在一定的温度、压力及催化剂作用下, H2和CO转化为直链烃类、水以及少量的含氧有机化合物。

生成物经三相分离,水相提取醇、酮、醛等化学品; 油相采用常规石油炼制手段(如常、减压蒸馏) ,根据需要切取出产品馏份,经进一步加工(如加氢精制、临氢降凝、催化重整、加氢裂化等工艺)得到合格的油品或中间产品。

2.3典型工艺除南非的Saso l公司外, 许多发达国家的大石油公司开发出多种以一合成为核心的工艺, 但大多是以天然气生产的合成气作为原料, 生产化工产品或燃料油, 例如MDS,MTG,ASC-21和Syntroleum等工艺。

它们与Saso l的低温F-T合成(LTFT)工艺或高温F-T合成工艺的主要区别在于制取合成气单元。

2.3.1LTFT工艺Saso l公司的LTFT工艺采用沉淀铁催化剂, 反应温度较低(220~270)℃, 工作压力3.0~5.0MPa, 产品以煤油、柴油和蜡为主。

气化单元采用Lurgi炉, 早期的F-T合成单元反应器采用列管式Arge固定床, 不存在催化剂和液态产物分离的问题, 但催化剂床层压力降大, 更换催化剂的难度大。

后Sasol公司开发出浆态床反应器和将液态产物与催化剂分离的独有技术, 用于低温F-T合成工艺。

浆态床反应器结构简单, 传热效率高, 可在等温下操作, 易于控制操作参数, 但存在传质阻力较大的问题, 这正是目前F-T合成的研发热点。

2.3.2HTFT工艺Sasol公司的HTFT工艺采用熔铁催化剂, 反应温度在300~350℃, 工作压力2.0~3.0MPa, 产品主要为汽油和轻烯烃。

工艺的气化单元采用Lurgi炉, 早期的F-T合成采用Synthol循环流化床, 但其结构复杂, 操作费用高, 重质烃的选择性差。

1992年开发出SAS 固定流化床反应器, 其反应器结构简单, 体积小, 操作费用低。

到1999年Sasol公司用8台固定流化床反应器替代了早期的台循环流化床反应器。

高温煤间接液化工艺的产品以汽油和轻烯烃为主, 经提质加工后可得到高质量的汽油。

低温煤间接液化工艺的产品以链状烃为主, 主要为煤油、柴油并含有一定量的石脑油和石蜡。

其石脑油馏分富含支链ɑ烯烃, 并含有7%~10%的氧化物, 不适合作汽油, 但可转化为含氧化合物作汽油调合组分, 或直接作裂解原料生产乙烯。

将煤油、柴油以上馏分进行加氢异构降凝后, 得到的柴油馏分芳烃质量含量小于3%, 十六烷值在70以上,硫含量小于1ug/g, 符合《世界燃料规范》Ⅱ类柴油的要求, 而其十六烷值远高于该规范要求, 是非常好的提高柴油十六烷值的调合组分。

山西煤化所进行“煤变油”的研究已有20年的历史,千吨级中试平台在2002年1月实现了第一次试运转,并合成出第一批粗油品,到2002年底已累计获得了数十吨合成粗油品。

2003年底又从粗油品中生产出了无色透明的高品质柴油。

目前,山西煤化所中试基地正准备第5次开车,计划运行6个月左右。

目前世界上可以通过“煤制油”技术合成高品质柴油的只有南非等少数国家。

山西煤化所优质清洁柴油的问世,标志着我国已具备了开发和提供先进成套产业化自主技术的能力,并成为世界上少数几个拥有可将煤变为高清洁柴油全套技术的国家之一。

据介绍,该所2005年将在煤矿生产地建一个10万吨/年的示范厂,预计投资12~14亿元,在成熟技术保证的前提下。

初步形成“煤制油”产业化的雏形。

3.中国煤制油化工产业现状及前景分析在我国多煤少油贫气的资源禀赋现实中,发展煤制油化工作为石油的替代,具有重要意义。

相关文档
最新文档