常见傅里叶变换

合集下载

信号与系统傅里叶变换对照表

信号与系统傅里叶变换对照表

信号与系统傅里叶变换对照表
傅里叶变换是信号与系统领域中非常重要的数学工具,它将一个时域信号转换为频域信号,可以帮助我们理解信号的频谱特性。

下面是一份傅里叶变换的对照表,列出了一些常见的信号和它们的傅里叶变换形式:
1. 单位冲激函数(单位脉冲):
时域表示,δ(t)。

频域表示,1。

2. 正弦函数:
时域表示,sin(2πft)。

频域表示,jπ[δ(f-f0) δ(f+f0)]
3. 余弦函数:
时域表示,cos(2πft)。

频域表示,1/2[δ(f-f0) + δ(f+f0)] 4. 矩形脉冲信号:
时域表示,rect(t/T)。

频域表示,T sinc(fT)。

5. 三角脉冲信号:
时域表示,tri(t/T)。

频域表示,T^2 sinc^2(fT)。

6. 高斯脉冲信号:
时域表示,exp(-πt^2/σ^2)。

频域表示,exp(-π^2f^2σ^2)。

7. 指数衰减信号:
时域表示,exp(-at)。

频域表示,1/(a+j2πf)。

8. 阶跃函数(单位阶跃函数):
时域表示,u(t)。

频域表示,1/(j2πf) + 1/2。

9. 周期方波信号:
时域表示,square(t/T)。

频域表示,(1/T)[δ(f-nf0) + δ(f+nf0)], n为整数。

以上仅列举了一些常见的信号及其傅里叶变换形式。

傅里叶变换对照表可以帮助我们在信号分析和系统设计中快速理解信号的频域特性,从而更好地理解信号与系统的行为和特性。

常见信号的傅里叶变换

常见信号的傅里叶变换

常见信号的傅里叶变换介绍傅里叶变换是一种重要的数学工具,用于将信号从时域转换到频域。

通过傅里叶变换,我们可以分析信号的频谱特性,并提取出信号中的各种频率成分。

本文章将介绍常见信号的傅里叶变换,帮助读者深入了解这一重要的信号处理技术。

简介信号的时域和频域表示•时域表示:信号在时间上的变化情况,通常使用函数表示,如f(t)。

•频域表示:信号在频率上的分布情况,使用频谱表征,表示信号中各个频率成分的大小和相位信息。

傅里叶变换的基本原理傅里叶变换基于傅里叶级数的思想,将一个信号分解为一系列复指数函数的叠加,这些复指数函数包含了不同频率的成分。

傅里叶变换可以用公式表示为:F(ω)=∫f∞−∞(t)e−jωt dt其中,F(ω)表示信号f(t)的频域表示,e−jωt为复指数函数。

常见信号的傅里叶变换正弦信号与余弦信号正弦信号与余弦信号是最基本的周期信号,在通信、电子、音频等领域中广泛应用。

对于正弦信号f(t)=Asin(ωt+ϕ),其频域表示为:F(ω)=A2j[δ(ω−ω0)−δ(ω+ω0)]其中,δ(ω)为单位冲激函数。

对于余弦信号f(t)=Acos(ωt+ϕ),其频域表示与正弦信号类似,只是相位不同。

矩形脉冲信号矩形脉冲信号是一种在时域上为矩形、在频域上为sinc 函数的信号。

其时域表示为:f (t )={1,|t |≤T 20,|t |>T 2其中,T 为脉冲宽度。

矩形脉冲信号的频域表示为:F (ω)=T sinc (ωT 2) 高斯信号高斯信号是一种通过高斯函数表示的连续信号。

在时域上,高斯信号的表示为:f (t )=Ae −αt 2其中,A 表示幅度,α表示衰减系数。

高斯信号的频域表示为:F (ω)=√2α−ω24α 方波信号方波信号是一种周期为T 的信号,其时域表示为由连续的正弦信号叠加而成。

方波信号的频域表示为:F (ω)=2sin (ωT/2)ω三角脉冲信号三角脉冲信号是一种周期为T 的信号,其时域表示为:f (t )=4A T2(t −T/2), 0≤t ≤T 三角脉冲信号的频域表示为:F (ω)=(2A T )2sin 2(ωT/2)ω2指数衰减信号指数衰减信号是一种在时间上随指数衰减的信号,其表示为:f (t )=Ae −αt其中,A 表示幅度,α表示衰减系数。

常用傅立叶变换表完整版

常用傅立叶变换表完整版

常用傅立叶变换表
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
18
δ(ω) 代表分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换
19 变换23的频域对应
20 由变换3和24得到.
21
由变换1和25得到,应用了:
时域信号
弧频率表示的 傅里叶变换
注释
1线性
2 时域平移
3 频域平移, 变换2的频域对应
4
如果
值较大,则
会收缩到
原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta 函数。

5 傅里叶变换的二元性性质。

通过交换时域变量 和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示 和 的卷积 — 这就是 9
和归一化的 10 变换10的频域对应。

矩形函数是理想的低通滤波器,是这类滤波器对冲击的响应。

11
tri 是 12 变换12的频域对应 13 exp( αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。

14
15
16 a>0
17
变换本身就是一个公式。

常用信号的傅里叶变换

常用信号的傅里叶变换

常用信号的傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的数学工具。

对于任意一个周期信号,傅里叶变换可以将其表示成一系列正弦波的叠加形式,从而更好地理解和处理信号。

在实际应用中,有很多信号都需要进行傅里叶变换。

下面介绍一些常用信号的傅里叶变换。

1. 正弦信号正弦信号是一种最基本的周期信号,其函数形式为y=sin(wt),其中w为角频率。

通过傅里叶变换,可以将正弦信号表示为一组频率为w的正弦波的叠加形式,即:y(t) = A1*sin(wt) + A2*sin(2wt) + A3*sin(3wt) + …其中,An为振幅,表示第n个正弦波的幅度。

2. 方波信号方波信号是一种由周期为T的矩形波形组成的信号,其函数形式为:y(t) = sgn(sin(wt))其中,sgn表示符号函数,即当sin(wt)>0时,sgn(sin(wt))=1,否则sgn(sin(wt))=-1。

通过傅里叶变换,可以将方波信号表示为一组频率为w的正弦波的叠加形式,即:y(t) = (4/pi)*[sin(wt) + (1/3)*sin(3wt) + (1/5)*sin(5wt) + …]3. 带限信号带限信号是指信号的频率范围有限,通常是指截止频率为一定值的信号。

通过傅里叶变换,可以将带限信号表示为一组频率在一定范围内的正弦波的叠加形式,即:y(t) = (1/2*pi)*Int[-w0,w0]{F(w)*e^(jwt)dw}其中,F(w)为信号的频谱,w0为信号的截止频率,Int表示积分运算。

以上三种信号只是常用信号中的一部分,实际应用中还有很多其他类型的信号需要进行傅里叶变换。

傅里叶变换不仅可以分析信号的频域特性,还可以用于信号的滤波、压缩、编码等方面,具有广泛的应用价值。

傅里叶变换性质及常见函数傅里叶变换总结,表格打印版

傅里叶变换性质及常见函数傅里叶变换总结,表格打印版
(实偶函数)
(为虚、奇函数)
7
奇偶性
(为实、偶函数)
(为实、偶函数)
(为实、奇函数)
(为虚、奇函数)
8
尺度展缩

9
时域延迟

10
频移
▲初值:
(条件:)
(条件:)
(条件: )
11
时域微分
▲ 函数的性质
·
·


·
·
* ;

·
·


·
12
时域积分
பைடு நூலகம்13
频域微分
14
频域积分
15
时域卷积
16
频域卷积
17
时域抽烟
序号
性质名称
▲信号功率:
(直流分量+各次谐波分量)
▲能量信号:
1.一个信号只能是功率信号或
能量信号二者之一,但也可
以两者都不是。
2.直流信号与周期信号为功率
信号;收敛和有界的非周期
信号为能量信号。
3.功率信号能量为∞,能量信
号功率为0.
1
唯一性
2
齐次性
3
叠加性
4
线性
5
折叠性
6
对称性
(一般函数)
(为实、偶函数)
18
频域抽样
常用时间信号傅里叶变换
常用非周期信号的傅里叶变换
周期信号的傅里叶变换
序号

1
1

2

3
单位直流信号1

4
5
6
一般周期信号

其中
或,
或 ,

常见的傅里叶变换+定理+各种变换的规律(推荐)

常见的傅里叶变换+定理+各种变换的规律(推荐)
= exp[- πu2]
= Gaus(u)
结论:
Gaus(x) F.T. Gaus(u)
7
五、余弦函数的傅里叶变换
F [cos(2πu0x) ] 其中 u0 = 1 / Τ Τ 为周期 ∞
= ∫ [cos2πu0 x ]• exp[− j2πux]dx
−∞
∫ =
∞ −∞
1 2
[exp(
j
2πu0
x)
x a

= a sin(πau) πau
= a sinc(au)
证明:根据相似性定理
6
四、高斯函数的傅里叶变换
Gaus(x) = exp[- πx2]
推导一维情况
F [Gaus(x) ]= F { exp[- πx2]}

= ∫ exp[-πx2 ]• exp[− j2πux]dx −∞
−∞ 1/ 2
= ∫ exp(− j2πux)dx
rect
x a

=
1, 0,
−1/ 2
=1
1/2
exp(− j2πux)
− j2πu

-1/2
= sin(πu) πu
结论:
x ≤a 2
其它
= sinc(u) rect(x) F.T. sinc(u)
5
普遍型
F
rect
˄অ㕍㹽ሴˈ㕍ゴ㹽ሴਈᇭ˅
˄˅ս〫ᇊ⨶˖ྲ᷌ F^g x ` G fx
ࡉᴹ F^g x a ` G fx exp j2Sfxa
࠭ᮠ൘オฏѝⲴᒣ〫ˈᑖᶕ仁ฏѝⲴ⴨〫
਼ᰦ F^g x exp j2Sfax ` G fx fa ࠭ᮠ൘オฏѝⲴ⴨〫ˈᑖᶕ仁ฏѝⲴᒣ〫

常用函数的傅里叶变换

常用函数的傅里叶变换

常用函数的傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的方法,常用于信号处理、通信、图像处理等领域。

在实际应用中,有很多常用的函数需要进行傅里叶变换,本文将介绍一些常用函数的傅里叶变换公式。

1. 正弦函数和余弦函数正弦函数和余弦函数是最基本的周期函数,它们的傅里叶变换公式如下:$$begin{aligned}mathcal{F}(sin(omega_0t)) &= frac{j}{2}[delta(omega-omega_0)-delta(omega+omega_0)]mathcal{F}(cos(omega_0t)) &= frac{1}{2}[delta(omega-omega_0)+delta(omega+omega_0)]end{aligned}$$其中,$omega_0$表示正弦函数和余弦函数的基频,$delta(omega)$表示狄拉克脉冲函数,$j$表示虚数单位。

2. 矩形函数矩形函数是一个限制在有限区间的常数函数,它的傅里叶变换公式如下:$$mathcal{F}(mathrm{rect}(t/T)) = Tmathrm{sinc}(omega T) $$其中,$mathrm{sinc}(x)=frac{sin(pi x)}{pi x}$为正弦积分函数。

3. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们的傅里叶变换公式如下:$$begin{aligned}mathcal{F}(sin^2(omega_0t)) &= frac{j}{4}[delta(omega-2omega_0)-delta(omega)-delta(omega+2omega_0)]mathcal{F}(cos^2(omega_0t)) &= frac{1}{4}[delta(omega-2omega_0)+2delta(omega)+delta(omega+2omega_0)]mathcal{F}(tan(omega_0t)) &= -jfrac{pi}{2}mathrm{sgn}(omega-omega_0)-jfrac{pi}{2}mathrm{sgn}(omega+omega_0)end{aligned}$$其中,$mathrm{sgn}(x)$为符号函数。

傅里叶变换公式】

傅里叶变换公式】

傅里叶变换公式
傅里叶变换(Fourier Transform)是一种数学运算,用于将一个函数从时域(时间域)转换到频域。

傅里叶变换的基本公式如下:
离散傅里叶变换(DTFT):X(k) = Σ[n=0, N-1] x(n) * e^(-j * 2π * k * n / N) 其中,X(k)表示频域中的复数值,k表示频域的离散频率,x(n)表示时域中的复数值,n表示时域的离散时间,N表示时域采样点数。

如果是连续信号,可以使用连续傅里叶变换(CTFT):
X(ω) = ∫[−∞,+∞] x(t) * e^(-j * ω * t) dt 其中,X(ω)表示频域中的复数值,ω表示频域的连续角频率,x(t)表示时域中的复数值,t表示时域的连续时间。

傅里叶变换将信号从时域变换到频域,可以揭示信号中不同频率成分的强度和相位信息,对于频谱分析、滤波、信号处理等具有重要意义。

傅里叶变换的逆变换可以将信号从频域重新转换回时域,以便还原原始信号。

需要注意的是,上述公式是傅里叶变换的基本形式,而傅里叶变换还有一些特殊形式和性质,如快速傅里叶变换(FFT)等。

这些公式和性质在信号处理、图像处理、通信等领域中有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见傅里叶变换
傅里叶变换又称法拉第变换,是一种基于叠加原理将时域信号转换成频域信号的数学
工具,一般用来描述在时间域无法用数学方法描述的复杂信号等的特性。

它把给定的信号
表示成一系列的及时频率,有助于研究信号的振幅及相位,是信号处理中最常用的工具之一。

常见的傅里叶变换包括离散傅里叶变换(DFT)、正变换、反变换、快速傅里叶变换(FFT)等。

离散傅里叶变换(DFT)是将离散时间信号T(t)变换成离散频率信号X(f)。

其定义式
为X(f)=∫T(t)*e-i2πftdt,其中T(t)表示时域信号,X(f)表示频域信号,i为虚数单位,f为频率。

它的好处是可以将一个信号分解成一组简单的正弦波,方便理解信号的特性。

正变换又称快速点变换(FPT),它是由DFT发展而来的,它的基本思想是将一个复
杂的信号分解成若干个要素,然后将它们每个要素分别变换,最后叠加得到最终的频域信号,公式为X(f)=∑_i=1^N T(ti)*e-i2πftdi,其中T(ti)表示时域信号,X(f)表示频域
信号,i为虚数单位,f为频率,N为要素个数。

这种方法可以有效利用硬件,减少计算量。

相关文档
最新文档