初中数学五种作图基本概念及技巧
初中数学五种作图基本概念及技巧

初中数学五种作图基本概念及技巧-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中数学五种作图基本概念及技巧一、基本概念1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.2.基本作图:最基本、最常用的尺规作图,通常称基本作图.3.五种常用的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)平分已知角;(4)作线段的垂直平分线.(5)经过一点作已知直线的垂线4.掌握以下几何作图语句:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径作圆(或弧);(5)以点×为圆心,××为半径作弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;(7)延长××到点×,或延长××到点×,使××=××.5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了。
如:(1)作线段××=××;(2)作∠×××=∠×××;(3)作××(射线)平分∠×××;(4)过点×作××⊥××,垂足为×;(5)作线段××的垂直平分线××.二、尺规作图基本步骤和作图语言1、作线段等于已知线段已知:线段a 求作:线段AB,使AB=a 作法:(1)作射线AC (2)在射线AC上截取AB=a ,则线段AB就是所要求作的线段2、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.3、作角的平分线已知:∠AOB, 求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于1/2DE的长为半径作弧,在∠AOB内,两弧交于点C.(3)作射线OC.OC就是所求作的射线.4、作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB的垂直平分线作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点。
课时49_总复习_初中数学总复习第二十八讲:尺规作图-教案

初中数学总复习第28 讲尺规作图【教学目标】通过复习,能掌握五种基本作图,并利用这些基本作图灵活解决与三角形、圆有关的作图。
【教学重难点】教学重点是能利用五种基本作图,灵活解决与三角形、圆有关的作图。
教学难点是能利用五种基本作图,灵活解决与三角形、圆有关的作图。
【教学过程】教学环节教学内容设计意图一、复习引入通过动画的演示,让学生回忆起这五种基本作图。
知识点一:五种基本尺规作图例1:如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠BB.∠EAC=∠CC. AE//BCD.∠DAE=∠EAC分析:尺规作图→作一个角等于已知角→∠DAE=∠B→AE//BC→∠EAC=∠C,从而答案是 D。
方法点拨:审题→析图(基本作图)→解图(平行线性质与判定)例2:已知△ABC(AC<BC),用尺规作图的方法在BC 上确定一点P,使 PA+PC=BC,则符合要求的作图痕迹是()分析:可得方法点拨:审题→析图(基本作图)→解图例 3:(1)按如下步骤作图:①分别以点 A,C 为圆心,大于1/2 AC 的长为半径在 AC 两边作弧,交于两点 M,N;②连接 MN,分别交 AB,AC 于点D,O;③过点 C 画CE∥AB交MN 于点 E,连接 AE,CD.(2)求证:四边形 ADCE 是菱形;(3)当∠ACB=90°,BC=6,△ADC的周长为 18 时,求四边形 ADCE 的面积.分析:由“分别以点 A,C 为圆心,大于 1/2 AC 的长为半径在 AC 两边作弧,交于两点 M,N”这个条件可知作 AC 的中垂线,再按照以下的思路就可以解决问题了。
解:(2)证明:由(1)可知直线DE是线段AC的垂直平分线AC ⊥DE,即∠AOD=∠COE=90︒, AO=COCE// A B,∴∠1=∠2,∴在∆AOD和∆COE中⎧∠AOD=∠COE⎪AO=CO⎨ ⎪∠1=∠2⎩∴∆AOD≌∆COE(ASA)∴OD=OE,AC ⊥DE, AO=CO∴四边形ADCE是菱形.方法点拨:审题→析图(基本作图)→作图→解图(菱形性质与判定及全等)思想方法审题:转化思想注意:1.一定要保留作图痕迹;2.注意不要漏了作图结论。
初中数学速记笔记:15.尺规作图

在几何里,用无刻度的直尺和圆规作图,就是尺规作图.最基本、最常用的尺规作图通常称为基本作图.已知:线段a(如图所示).求作:一条线段长度等于a.作法:(1)任作一条射线OA;(2)在射线OA上截取OB=a (以O为圆心,以a的长为半径画弧,交OA于点B),则OB即为所求作的线段.已知:∠AOB(如图所示).(一)尺规作图的概念(二)基本作图求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)以点O为圆心,以任意长为半径画弧,分别交OA,OB 于点C,D;(2)作射线O′A′,以点O′为圆心,以OC长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,以CD长为半径画弧,交前弧于点D′;(4)过点D′作射线O′B′,则∠A′O′B′=∠AOB.已知:∠AOB(如图所示).求作:∠AOB内的射线OC,使∠AOC=∠BOC.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E;(2)分别以点D,E为圆心,大于12DE长为半径画弧,两弧在∠AOB内相交于点C;(3)画射线OC,则OC就是所求作的射线.已知:线段AB(如图所示).求作:直线CD,使CD垂直平分线段AB.作法:(1)分别以点A,B为圆心,大于12AB的长为半径画弧,两弧相交于点C,D;(2)过点C,D作直线CD,则直线CD就是线段AB的垂直平分线.(1)经过直线上一点作这条直线的垂线.已知:直线AB和AB上的一点C(如图所示).求作:AB的垂线,使它经过点C.作法:①以点C为圆心,以任意长为半径画弧,交直线AB于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径画弧,两弧交于点F ;③作直线CF ,则直线CF 就是所求作的垂线.(2)经过已知直线外一点作已知直线的垂线.已知:直线AB 和AB 外一点C (如图所示).求作:AB 的垂线,使它经过点C.作法:①任取一点K ,使点K 和点C 在AB 的两侧;②以点C 为圆心,CK 的长为半径画弧,交AB 于点D ,E ;③分别以D ,E 为圆心,以大于12DE 的长为半径画弧,两弧交于点F ;④作直线CF ,则直线CF 就是所求作的垂线.(1)已知:写出已知的线段和角,画出图形.(2)求作:求作什么图形,它符合什么条件,一一具体化.(3)作法:应用“五种基本作图”(作一条线段等于已知线段,作一个角等于已知角,作已知角的平分线,经过一点作已知直线的垂线,作线段的垂直平分线),叙述时不需重述基本作图的过程,但图中必须保留基本作图的痕迹.(4)结论:对所作图形下结论. (三) 尺规作图的基本步骤。
初中尺规作图详细讲解(含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种。
限用直尺和圆规来完成的作图方法,叫做尺规作图法。
最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法。
用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点。
一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。
历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题"。
直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意。
数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形。
初中数学知识点总结:掌握五种基本作图

初中数学知识点总结:掌握五种基本作图知识点总结
一、基本作图的有关概念:
1.尺规作图:用没有刻度的直尺和圆规来作图的方法,叫做尺规作图。
2.五种基本作图:五种基本作图是尺规作图的基础,数学中的五种基本作图是指作一条线段等于已知线段、作一个角等于已知角、作一个角的角平分线、过定点作已知直线的垂线、作线段的垂直平分线。
二、基本作图的原理和步骤:
1.原理:边边边公理
2.步骤:作图题的方法与证明题解法不相同,对于作图题首先将文字叙述转化为数学语言,即要写出题目的已知、求作、作法、证明。
三、尺规作图的优点:尺规作图只能使用圆规和无刻度的直尺这两种工具。
工具虽少但能正确地画出的图形,比度量法画出的图形更精确。
常见考法
(1)考查五种基本作图中的一种,要求写出已知、求证、作法、证明过程。
有时考题不要求写作法,但要求保留作图痕迹;(2)利用尺规作图和勾股定理画出数轴上的无理
数点;(3)利用尺规作图作一些正多边形(如正三角形、正六
边形等)。
误区提醒。
初中几何尺规作图总结归纳

初中几何尺规作图总结归纳在初中数学学习中,几何部分是一个复杂而又有趣的内容。
其中,几何尺规作图是一个重要的知识点,通过使用尺规和直尺进行各种图形的构建和分析。
在本文中,我将对初中几何尺规作图进行总结和归纳,从理论到实践,为大家提供一个全面的了解。
理论基础几何尺规作图的基础是尺规和直尺。
在进行尺规作图时,我们需要使用一支尺子和一根没有刻度的直尺。
尺规的长度一般为15cm或30cm,在作图时要注意尺规的摆放和固定,以确保精确度和准确性。
作图步骤尺规作图的步骤一般分为三个部分:已知条件、构图、证明。
已知条件:根据题目给出的已知条件,我们首先要明确图形的特征和要求。
这是解决问题的起点,只有明确了已知条件,我们才能正确地进行后续的构图和证明。
构图:根据已知条件,我们需要使用尺规和直尺进行图形的构建。
构图时,要注意使用正确的工具和技巧,例如画垂线、平行线等。
同时,要保持手的稳定和准确的测量,以确保最终的作图结果正确无误。
证明:在完成构图后,我们需要对所得图形进行证明。
证明的过程中,需要运用尺规作图的基本原理和性质,进行推理和论证。
通过合理的推导过程,我们可以得出图形的性质和结论,进一步巩固和应用几何知识。
基本作图方法1. 作点:通过特定的条件,我们可以通过尺规作图的方式,在平面上标出一个点。
常见的作点方法有:作单位线段、作等分线段、作垂直平分线等。
2. 作线段:通过已知条件,我们可以使用尺规和直尺作出特定长度的线段。
作线段的方法包括:作单位线段的倍数、作等线段、作半线段等。
3. 作角:在几何尺规作图中,我们可以通过作线段和作弧的方式来构建特定的角度。
常见的作角方法有:作等角、作垂直角、作等分角等。
4. 作垂线和平行线:作垂线和平行线是几何尺规作图中常用的方法之一。
通过作垂线和平行线,我们可以解决很多与角度和线段有关的问题。
几何尺规作图的应用几何尺规作图在实际生活中有着广泛的应用。
例如,在建筑设计中,我们可以通过几何尺规作图来绘制房屋的平面图和立体图。
初中数学总复习尺规作图(2021年整理)
(完整)初中数学总复习尺规作图(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)初中数学总复习尺规作图(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)初中数学总复习尺规作图(word版可编辑修改)的全部内容。
尺规作图尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。
已知:如图,线段a 。
求作:线段AB,使AB = a .作法:①作射线AP;②在射线AP上截取AB=a .则线段AB就是所求作的图形。
题目二:作已知线段的中点。
已知:如图,线段MN。
求作:点O,使MO=NO(即O是MN的中点)。
作法:①分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧相交于P,Q;②连接PQ交MN于O.则点O就是所求作的MN的中点.(试问:PQ与MN有何关系?)题目三:作已知角的角平分线。
已知:如图,∠AOB,求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。
作法:①以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;②分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧交∠AOB内于P;③作射线OP。
则射线OP就是∠AOB的角平分线。
题目四:作一个角等于已知角。
(请自己写出“已知"“求作"并作出图形,不写作法)题目五:已知三边作三角形。
已知:如图,线段a,b,c。
尺规作图资料(完整)
1:尺规作出正三角形2尺规作出正方形3:尺规作出正六边形4:尺规作出正十边形5:尺规作出正十六边形6:尺规作出正十七边形7:尺规作出正十五边形8:尺规作出正五边形9:单尺作出正八边形10:单尺作出正方形11:单尺作出正六边形12:单尺作出正五边形13:单规找出两点间的三等分点14:单规找出两点间的中点15:单规作出等边三角形16:单规作出正八边形17:单规作出正方形18:单规作出正六边形19:单规作出正十边形20:单规作出正十二边形21:单规作出正十六边形22:单规作出正十五边形23单规作出正五边形24:只有两个刻度的直尺作出正三角形25:只有两个刻度的直尺作出正方形初中数学尺规作图专题讲解张远波尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。
平面几何作图,限制只能用直尺、圆规.在历史上最先明确提出尺规限制的是伊诺皮迪斯.他发现以下作图法:在已知直线的已知点上作一角与已知角相等。
这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题.在这以前,许多作图题是不限工具的.伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中。
初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种。
限用直尺和圆规来完成的作图方法,叫做尺规作图法。
最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。
初中数学中的尺规作图
尺规作图是一种古老而神奇的工具,能够用简单的工具和技巧绘制出精确的几何图形。
在初中数学中,尺规作图是一个必修的内容,对于学生来说,掌握它是非常重要的。
本文将详细介绍尺规作图的基础知识、步骤和实践技巧。
一、什么是尺规作图?尺规作图,又称欧氏几何作图,是一种利用尺子和圆规进行的几何作图方法。
它的基本原理是:利用尺子测量长度,用圆规画出圆和弧,然后通过将这些线段和圆弧相交、平移、旋转等操作,得到所需的几何图形。
尺规作图是欧几里得几何的基础,也是很多复杂几何问题的解决方法之一。
二、尺规作图的基本步骤1. 给定图形尺规作图的第一步是给定一个几何图形,通常是已知几条线段或者角度的大小关系。
例如,给定一个直角三角形,其中两条直角边的长度分别为3cm和4cm,要求作出这个三角形。
2. 作出基础线段根据给定的条件,用尺子和圆规作出基础线段。
例如,在一个纸上画一条长度为3cm的线段AB,再画一条长度为4cm的线段AC,其中∠BAC为直角。
3. 作出辅助线段根据需要,作出一些辅助线段,以便通过相交、平移、旋转等操作得到所需的图形。
例如,可以在线段AB上取一点D,再以点C为圆心、AC为半径画一个圆,得到一个圆弧,将其与线段AB相交于点E,再连接线段AE和BE,就得到了一个直角三角形ABC。
三、尺规作图的实践技巧1. 细心测量尺规作图需要精确测量线段的长度和角度的大小,因此必须细心认真地进行测量,避免出现误差。
特别是在作大型图形时,必须使用长尺和精密测量工具,以确保准确性。
2. 多加练习尺规作图需要的是手眼协调能力和灵活性,这些技能需要通过不断地练习才能掌握。
建议初学者多做练习题,逐渐提高自己的技巧和速度。
3. 熟练运用尺规尺规作图需要灵活运用圆规和尺子,掌握不同的测量技巧和作图方法。
例如,可以利用圆规的不同刻度测量半径和角度,或者利用尺子的折叠功能作出垂线等。
四、总结归纳尺规作图是一种重要的几何工具,能够在解决复杂几何问题时提供有力的支持。
2024年浙教版八上数学初一升初二预习——1.9尺规作图(含五种基本作图)
什么叫做角平分线?
角平分线定义:把一个角分成两个相等的 角的射线,叫做这个角的平分线。
O
c
B
探索
基本作图3 "平分已知角".
(1)以O 为圆心,以适当长为半径画弧,交OA
于C 点,交OB 于D 点;
(2)分别以C、D
为圆心,以大于
1 2
CD
长为半
径画弧,两弧相交于P 点;
A
(3)作射线OP , 则:射线OP即为所求. C
点的距离相等;反过来,到线段两端点 距离相等的点在线段的垂直平分线上。
练习:A、B是两个村庄,要从灌溉总渠引 两条水渠便于灌溉,请你选择最佳方案。
A
初中数学
B 灌溉总渠
五种基本作图
(1)作一条线段等于已知线段
(2)作一个角等于已知角
(3)作一个角的平分线 (4)作已知线段的中垂线
(5)过一点作已知直线的垂线
初中数学
(1).如图,点C在直线l上,
试过点C画出直线l的垂线.
作法:
1.以C为圆心,任一线段的长为半径画弧,
交L于A、B两点.
2.分别以A、B为圆心,以大于 的长为
半径画弧,两弧相交于点D.
3.作直线CD.
则直线CD即为所求。
C
•
l
A
B
(2)的作法:
(1)任取一点M,使点M和点C在直线L的两侧;
• 在几何里,把限定用(没有刻度的)直尺和圆规来画图 的,称为尺规作图.
• 尺:没有刻度的直尺; 规:圆规 •最基本,最常用的尺规作图,通常称基本作图.
五种基本作图: 1.作一条线段等于已知线段。 2.作一个角等于已知角。 3.作已知角的平分线。 4.经过一已知点作已知直线的垂线。 5.作已知线段的垂直平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学五种作图基本概念及技巧
一、基本概念
1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图.
2.基本作图:最基本、最常用的尺规作图,通常称基本作图.
3.五种常用的基本作图:
(1)作一条线段等于已知线段;
(2)作一个角等于已知角;
(3)平分已知角;
(4)作线段的垂直平分线.
(5)经过一点作已知直线的垂线
4.掌握以下几何作图语句:
(1)过点×、点×作直线××;或作直线××,或作射线××;
(2)连结两点×、×;或连结××;
(3)在××上截取××=××;
(4)以点×为圆心,××为半径作圆(或弧);
(5)以点×为圆心,××为半径作弧,交××于点×;
(6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××;
(7)延长××到点×,或延长××到点×,使××=××.
5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了。
如:
(1)作线段××=××;
(2)作∠×××=∠×××;
(3)作××(射线)平分∠×××;
(4)过点×作××⊥××,垂足为×;
(5)作线段××的垂直平分线××.
二、尺规作图基本步骤和作图语言
1、作线段等于已知线段已知:线段a 求作:线段AB,使AB=a 作法:
(1)作射线AC (2)在射线AC上截取AB=a ,则线段AB就是所要求作的线段
2、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB 于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.
3、作角的平分线已知:∠AOB, 求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:
(1)在OA和OB上,分别截取OD、OE,使OD=OE.
(2)分别以D、E为圆心,大于1/2DE的长为半径作弧,在∠AOB内,两弧交于点C.
(3)作射线OC.OC就是所求作的射线.
4、作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB的垂直平分线作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点。
(2)经过E、F,作直线EF(作直线EF交AB于点O)直线EF就是所求作的垂直平分线(点O就是所求作的中点)。
5、过直线外一点作直线的垂线.
5-1、已知点在直线外已知:直线a、及直线a外一点A.(画出直线a、点A)求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.(2)以点C为圆心,以AD长为半径在直线另一侧画弧.(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点 B. (4)经过点A、B作直线AB.直线AB就是所画的垂线 b.(如图)
5-2、已知点在直线上已知:直线a、及直线a上一点A.求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以A为圆心,任一线段的长为半径画弧,交a于C、B两点(2)点C为圆心,以大于CB一半的长为半径画弧;(3)以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N(4)经过M、N,作直线MN直线MN就是所求作的垂线b
三、常用的作图语言
(1)过点×、×作线段或射线、直线;
(2)连结两点××;
(3)在线段××或射线××上截取××=××;
(4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×;
(5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×;
(6)延长××到点×,使××=××。
四、作图题说明
在作图中,有属于基本作图的地方,写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了。
(1)作线段××=××;
(2)作∠×××=∠×××;
(3)作××(射线)平分∠×××;
(4)过点×作××⊥××,垂足为点×;
(5)作线段××的垂直平分线××。