幂函数复习
幂函数分类专题复习

幂函数分类专题复习幂函数是数学中一种重要的函数类型,具有形如 $f(x) =ax^b$ 的特征形式,其中 $a$ 和 $b$ 是常数。
在幂函数的分类专题复中,我们将介绍几种常见的幂函数及其性质。
一次幂函数一次幂函数的形式为 $f(x) = ax$,其中 $a$ 是常数。
一次幂函数的图像是一条经过原点且斜率为 $a$ 的直线。
当 $a > 0$ 时,图像是上升的;当 $a < 0$ 时,图像是下降的。
性质:- 零点:一次幂函数的零点为 $x=0$。
- 斜率:一次幂函数的斜率恒为 $a$。
- 定义域和值域:一次幂函数的定义域和值域都是全体实数。
二次幂函数二次幂函数的形式为 $f(x) = ax^2$,其中 $a$ 是常数且 $a \neq 0$。
二次幂函数的图像是开口朝上或朝下的抛物线,具体取决于$a$ 的正负性。
性质:- 零点:二次幂函数的零点可以通过解方程 $f(x) = 0$ 来求得。
- 顶点:二次幂函数的顶点坐标为 $\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$,其中 $b$ 和 $c$ 是常数。
- 对称轴:二次幂函数的对称轴为直线 $x = -\frac{b}{2a}$。
- 定义域和值域:二次幂函数的定义域为全体实数,值域视$a$ 的正负性而定。
三次及更高次幂函数三次及更高次幂函数的形式为 $f(x) = ax^n$,其中 $a$ 是常数且 $a \neq 0$,$n$ 是大于等于3的整数。
这些函数的图像具有更复杂的曲线特征,通常会有多个极值点和拐点。
性质:- 零点:三次及更高次幂函数的零点可以通过解方程 $f(x) =0$ 来求得。
- 极值点:三次及更高次幂函数可能存在多个极值点,可以通过求导数和解方程 $f'(x) = 0$ 来找到。
- 拐点:三次及更高次幂函数的拐点是曲线的转折点,可以通过求二阶导数和解方程 $f''(x) = 0$ 来找到。
幂函数复习

三、幂函数(1)幂函数的定义:一般地,函数y=xα叫做幂函数,其中x为自变量,α是常数.(2)幂函数的图像:规律:①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高)②幂指数互为倒数时,图像关于y=x对称(3)幂函数的性质:①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限。
②过定点:所有的幂函数在(0,+∞) 都有定义(具体的定义域要根据具体幂函数决定)并且图象都通过点(1,1)③单调性:如果α>0 ,则幂函数的图象过原点,并且在[0,+∞)上为增函数.如果α<0 ,则幂函数的图象在(0,+∞) 上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当 α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.【扩展】:当α=q p (其中,pq 互质,p 和q ∈Z ),若p 为奇数q 为奇数时,则y=x q 是奇函数,若p 为奇数q 为偶数时,则y=x q 是偶函数,若p 为偶数q 为奇数时,则y=x q p 是非奇非偶函数(定义域肯定不是关于原点对称) ⑤图象特征:幂函数y=x α,当x ∈(0,+∞)当α>1时,若0<x<1,其图象在直线y=x 下方,若x>1,其图象在直线y=x 上方, 当α<1时,若0<x<1,其图象在直线y=x 上方,若x>1,其图象在直线y=x 下方。
练习:1.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是单调增函数,则m的值为________.2.在第一象限内,函数y =x 2(x ≥0)与y =x 12的图象关于________对称.3.函数f (x )=(1-x )0+(1-x )12的定义域为________.4.如图,曲线C 1与C 2分别是函数y =x m 和y =x n 在第一象限内的图象,则m ,n 与0的大小关系是________.5.函数f (x )=x 1m 2+m +1(m ∈N +)为________函数.(填“奇”,“偶”,“奇且偶”,“非奇非偶”)6.下面4个图象都是幂函数的图象,函数y =x -23的图象是________.7.写出下列四个函数:①y =x 13;②y =x -13;③y =x -1;④y =x 23.其中定义域和值域相同的是________.(写出所有满足条件的函数的序号)8.已知函数f (x )=x -m +3(m ∈N *)是偶函数,且f (3)<f (5),求m 的值,并确定f (x )的函数解析式.9.已知函数f(x)=x2+1x2.(1)判断f(x)的奇偶性;(2)求f(x)的单调区间和最小值.。
幂函数复习.

幂函数复习一、知识要点1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.二、典型例题及对应习题1、幂函数的概念、解析式、定义域、值域1.若幂函数y=f (x )的图象过点(5,),则为( ) A . B . C . D .﹣1 2.设α∈{﹣2,﹣1,,1,2,3},则使幂函数y=x a 为奇函数且在(0,+∞)上单调递减的a 个数为( )A .1B .2C .3D .43.已知函数f (x )=x k (k 为常数,k ∈Q ),在下列函数图象中,不是函数y=f (x )的图象是( )A .B .C .D . 4.已知函数f (x )=(m 2﹣m ﹣1)x﹣5m ﹣3是幂函数且是(0,+∞)上的增函数,则m 的值为( )A .2B .﹣1C .﹣1或2D .05.已知点(a ,)在幂函数f (x )=(a 2﹣6a +10)x b 的图象上,则函数f (x )是( )A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数2、幂函数的图像6.幂函数y=f (x )的图象过点(4,2),则幂函数y=f (x )的图象是( )A.B.C.D.9.幂函数y=x m,y=x n,y=x p的图象如图所示,以下结论正确的是()A.m>n>p B.m>p>n C.n>p>m D.p>n>m10.函数f(x)=﹣1的图象大致是()A.B.C.D.3、幂函数的图像及其与指数的关系11.函数y=x3和图象满足()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称12.已知点在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数13.若0<x<y<1,则()A.3y<3x B.x0.5<y0.5 C.log x3<log y3 D.log0.5x<log0.5y14.已知幂函数y=(a2﹣2a﹣2)x a在实数集R上单调,那么实数a=()A.一切实数B.3或﹣1 C.﹣1 D.315.函数y=的单调递增区间是()A.(﹣∞,1)B.(0,1)C.(1,2)D.(1,+∞)4、幂函数的性质16.幂函数f(x)=(m2﹣4m+4)x在(0,+∞)为减函数,则m的值为()A.1或3 B.1 C.3 D.217.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图,则a、b、c、d的大小关系是()A.d>c>b>a B.a>b>c>d C.d>c>a>b D.a>b>d>c18.幂函数y=(m2﹣m﹣1),当x∈(0,+∞)时为减函数,则实数m的值为()A.m=2 B.m=﹣1 C.m=﹣1或2 D.m≠19.若幂函数f(x)=(m2﹣m﹣1)x1﹣m是偶函数,则实数m=()A.﹣1 B.2 C.3 D.﹣1或25、幂函数的单调性、奇偶性及其应用20.已知﹣1<α<0,则()A.B.C.D.21.若a=0.5,b=0.5,c=0.5,则a,b,c的大小关系为()A.a>b>c B.a<b<c C.a<c<b D.a>b>c22.若,则a、b、c的大小关系是()A.a<b<c B.c<a<b C.b<c<a D.b<a<c23.函数y=在第二象限内单调递增,则m的最大负整数是()A.﹣4 B.﹣3 C.﹣2 D.﹣124.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a 的取值集合为()A.{a|1<a≤2}B.{a|a≥2}C.{a|2≤a≤3}D.{2,3}25.使不等式成立的实数a的范围是.6、幂函数的实际应用26.已知函数f(x)=(m∈Z)为偶函数,且f(3)<f(5).(1)求函数f(x)的解析式;(2)若g(x)=log a[f(x)﹣ax](a>0且a≠1)在区间[2,3]上为增函数,求实数a的取值范围.27.已知函数是幂函数且在(0,+∞)上为减函数,函数在区间[0,1]上的最大值为2,试求实数m,a的值.28.已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数.(1)求m的值;(2)求满足的a的取值范围.29.已知幂函数在区间(0,+∞)上是单调增函数,且为偶函数.(1)求函数f(x)的解析式;(2)设函数,若g(x)>0对任意x∈[﹣1,1]恒成立,求实数q 的取值范围.30.已知幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数(1)求m的值和函数f(x)的解析式(2)解关于x的不等式f(x+2)<f(1﹣2x).2017年09月15日dragon的高中数学幂函数复习参考答案与试题解析一.选择题(共24小题)1.若幂函数y=f(x)的图象过点(5,),则为()A.B.C.D.﹣1【解答】解:∵幂函数y=f(x)的图象过点(5,),设f(x)=xα,∴5α=,解得α=﹣1.∴f(x)=x﹣1.∴=f()=f()=()﹣1=,故选C.2.设α∈{﹣2,﹣1,,1,2,3},则使幂函数y=x a为奇函数且在(0,+∞)上单调递减的a个数为()A.1 B.2 C.3 D.4【解答】解:幂函数y=x﹣2为偶函数且在(0,+∞)上单调递减;幂函数y=x﹣1为奇函数且在(0,+∞)上单调递减;幂函数y=x为奇函数且在(0,+∞)上单调递增;幂函数y=x为奇函数且在(0,+∞)上单调递增;幂函数y=x2为偶函数且在(0,+∞)上单调递增;幂函数y=x3为奇函数且在(0,+∞)上单调递增.综上可得,符合条件的函数只有一个.故选:A.3.已知函数f(x)=x k(k为常数,k∈Q),在下列函数图象中,不是函数y=f(x)的图象是()A.B.C.D.【解答】解:函数f(x)=x k(k为常数,k∈Q)为幂函数,图象不过第四象限,所以C中函数图象,不是函数y=f(x)的图象.故选:C.4.已知函数f(x)=(m2﹣m﹣1)x﹣5m﹣3是幂函数且是(0,+∞)上的增函数,则m的值为()A.2 B.﹣1 C.﹣1或2 D.0【解答】解:因为函数f(x)=(m2﹣m﹣1)x﹣5m﹣3是幂函数,所以m2﹣m﹣1=1,即m2﹣m﹣2=0,解得m=2或m=﹣1.又因为幂函数在(0,+∞),所以﹣5m﹣3>0,即m<﹣,所以m=﹣1.故选B.5.已知点(a,)在幂函数f(x)=(a2﹣6a+10)x b的图象上,则函数f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数【解答】解:幂函数f(x)=(a2﹣6a+10)•x b的图象经过点(a,),∴a2﹣6a+10=1且a b=,解得a=3,b=﹣1;∴f(x)=x﹣1在定义域(﹣∞,0)∪(0,+∞)的奇函数.故选:A.6.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是()A.B.C.D.【解答】解:设幂函数的解析式为y=x a,∵幂函数y=f(x)的图象过点(4,2),∴2=4a,解得a=∴,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y=x的上方.对照选项.故选C7.函数y=的图象是()A.B. C.D.【解答】解:∵函数y=的定义域为[0,+∞)∴所求图象在第一象限,可排除A、C,再根据函数y=的图象横过(4,2),可排除B,故选D.8.函数的图象是()A. B.C. D.【解答】解:因为函数的定义域是[0,+∞),所以图象位于y轴右侧,排除选项C、D;又函数在[0,+∞)上单调递增,所以排除选项B.故选A.9.幂函数y=x m,y=x n,y=x p的图象如图所示,以下结论正确的是()A.m>n>p B.m>p>n C.n>p>m D.p>n>m 【解答】解:在第一象限作出幂函数y=x m,y=x n,y=x p的图象.在(0,1)内取同一值x0,作直线x=x0,与各图象有交点.则“点低指数大”,如图,知0<p<1,﹣1<m<0,n>1,∴n>p>m故选:C.10.函数f(x)=﹣1的图象大致是()A.B.C.D.【解答】解:因为0,所以f(x)在[0,+∞)上递增,排除B;当x=0时,f(0)=﹣1,即f(x)的图象过点(0,﹣1),排除C、D;故选A.11.函数y=x3和图象满足()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称【解答】解:由得到x=y3,所以这两个函数互为反函数,根据反函数图象的性质可知函数y=x3和的图象关于直线y=x对称.故选D.12.已知点在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数【解答】解:设幂函数为f(x)=xα,∵点在幂函数f(x)的图象上,∴f()=(),即,∴,即α=﹣1,∴f(x)=为奇函数,故选:A.13.若0<x<y<1,则()A.3y<3x B.x0.5<y0.5C.log x3<log y3 D.log0.5x<log0.5y【解答】解:因为:0<x<y<1,y=3x为增函数,则3y>3x,故A错误,因为:0<x<y<1,y=x0.5为增函数,则x0.5>x0.5,故B正确,因为:0<x<y<1则log x3>log y3,故C错误,因为:0<x<y<1,log0.5x为减函数,则log0.5x>log0.5y,故D错误,故选:D.14.已知幂函数y=(a2﹣2a﹣2)x a在实数集R上单调,那么实数a=()A.一切实数B.3或﹣1 C.﹣1 D.3【解答】解:由幂函数的定义及其单调性可得:a2﹣2a﹣2=1,a>0,解得a=3.∴a=3.故选:D.15.函数y=的单调递增区间是()A.(﹣∞,1)B.(0,1) C.(1,2) D.(1,+∞)【解答】解:设u=﹣x2﹣2x,在(﹣∞,1)上为增函数,在(1,+∞)为减函数,因为函数y=为减函数,所以f(x)的单调递增区间(1,+∞,),故选:D16.幂函数f(x)=(m2﹣4m+4)x在(0,+∞)为减函数,则m的值为()A.1或3 B.1 C.3 D.2【解答】解:∵为幂函数∴m2﹣4m+4=1,解得m=3或m=1.由当x∈(0,+∞)时为减函数,则m2﹣6m+8<0,解得2<m<4.∴m=3,故选:C.17.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图,则a、b、c、d的大小关系是()A.d>c>b>a B.a>b>c>d C.d>c>a>b D.a>b>d>c【解答】解:幂函数a=2,b=,c=﹣,d=﹣1的图象,正好和题目所给的形式相符合,在第一象限内,x=1的右侧部分的图象,图象由下至上,幂指数增大,所以a>b >c>d.故选B.18.幂函数y=(m2﹣m﹣1),当x∈(0,+∞)时为减函数,则实数m 的值为()A.m=2 B.m=﹣1 C.m=﹣1或2 D.m≠【解答】解:∵y=(m2﹣m﹣1)为幂函数,∴m2﹣m﹣1=1,即m2﹣m﹣2=0.解得:m=2或m=﹣1.当m=2时,m2﹣2m﹣3=﹣3,y=x﹣3在(0,+∞)上为减函数;当m=﹣1时,m2﹣2m﹣3=0,y=x0=1(x≠0)在(0,+∞)上为常数函数(舍去),∴使幂函数y=(m2﹣m﹣1)为(0,+∞)上的减函数的实数m的值为2.故选A.19.若幂函数f(x)=(m2﹣m﹣1)x1﹣m是偶函数,则实数m=()A.﹣1 B.2 C.3 D.﹣1或2【解答】解:∵幂函数f(x)=(m2﹣m﹣1)x1﹣m是偶函数,∴,解得m=﹣1.故选:A.20.已知﹣1<α<0,则()A.B.C.D.【解答】解:∵﹣1<α<0,故函数y=x a在(0,+∞)上是减函数,∵0.2,故,故选:A21.若a=0.5,b=0.5,c=0.5,则a,b,c的大小关系为()A.a>b>c B.a<b<c C.a<c<b D.a>b>c【解答】解:构造函数f(x)=0.5x,因为函数f(x)=0.5x,为单调递减函数.且,所以,即,所以a<b<c.故选B.22.若,则a、b、c的大小关系是()A.a<b<c B.c<a<b C.b<c<a D.b<a<c【解答】解:∵在第一象限内是增函数,∴,∵是减函数,∴,所以b<a<c.故选D.23.函数y=在第二象限内单调递增,则m的最大负整数是()A.﹣4 B.﹣3 C.﹣2 D.﹣1【解答】解:∵函数y==x m﹣1在第二象限内单调递增,当m=﹣1时,y=x﹣2在第二象限内单调递增,﹣1是最大的负整数,∴m的最大负整数是﹣1,故选:D.24.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为()A.{a|1<a≤2}B.{a|a≥2}C.{a|2≤a≤3}D.{2,3}【解答】解:由log a x+log a y=3,可得log a(xy)=3,得,在[a,2a]上单调递减,所以,故⇒a≥2故选B.二.填空题(共1小题)25.使不等式成立的实数a的范围是(﹣∞,﹣1)∪(,).【解答】解:∵函数y=为奇函数,且在(﹣∞,0)和(0,+∞)上均为减函数故不等式可化为0>a+1>3﹣2a…①或a+1<0<3﹣2a…②或a+1>3﹣2a>0…③不等式①无解解②得a<﹣1解③得<a<故实数a的范围是(﹣∞,﹣1)∪(,)故答案为:(﹣∞,﹣1)∪(,)三.解答题(共5小题)26.已知函数f(x)=(m∈Z)为偶函数,且f(3)<f(5).(1)求函数f(x)的解析式;(2)若g(x)=log a[f(x)﹣ax](a>0且a≠1)在区间[2,3]上为增函数,求实数a的取值范围.【解答】解:(1)∵f(x)为偶函数,∴﹣2m2+m+3为偶数,又f(3)<f(5),∴<,即有:<1,∴﹣2m2+m+3>0,∴﹣1<m<,又m∈Z,∴m=0或m=1.当m=0时,﹣2m2+m+3=3为奇数(舍去),当m=1时,﹣2m2+m+3=2为偶数,符合题意.∴m=1,f(x)=x2(2)由(1)知:g(x)=log a[f(x)﹣ax]=log a(x2﹣ax)(a>0且a≠1)在区间[2,3]上为增函数.令u(x)=x2﹣ax,y=log a u;①当a>1时,y=log a u为增函数,只需u(x)=x2﹣ax在区间[2,3]上为增函数.即:⇒1<a<2②当0<a<1时,y=log a u为减函数,只需u(x)=x2﹣ax在区间[2,3]上为减函数.即:⇒a∈∅,综上可知:a的取值范围为:(1,2).27.已知函数是幂函数且在(0,+∞)上为减函数,函数在区间[0,1]上的最大值为2,试求实数m,a的值.【解答】解:因为函数是幂函数且在上为减函数,所以有解得m=﹣1.∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣5’①当,[0,1]是f(x)的单调递减区间,∴∴a=﹣6<0,∴a=﹣6﹣﹣﹣﹣﹣﹣﹣﹣7’②当,,解得a=﹣2(舍)或a=3(舍)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9’③,[0,1]为f(x)的单调递增区间,∴,解得﹣﹣﹣﹣﹣﹣﹣﹣11’综合①②③可知﹣﹣﹣﹣﹣﹣﹣﹣12’28.已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数.(1)求m的值;(2)求满足的a的取值范围.【解答】解:(1)∵函数在(0,+∞)上递减,∴m2﹣2m﹣3<0即﹣1<m<3,又m∈N*∴m=1或2,又函数图象关于y轴对称,∴m2﹣2m﹣3为偶数,故m=1为所求.(2)函数在(﹣∞,0),(0,+∞)上均为减函数∴等价于a+1>3﹣2a>0或0>a+1>3﹣2a或a+1<0<3﹣2a,解得故a的取值范围为29.已知幂函数在区间(0,+∞)上是单调增函数,且为偶函数.(1)求函数f(x)的解析式;(2)设函数,若g(x)>0对任意x∈[﹣1,1]恒成立,求实数q的取值范围.【解答】解:(1)∵f(x)在区间(0,+∞)上是单调增函数,∴﹣m2+2m+3>0即m2﹣2m﹣3<0∴﹣1<m<3又∵m∈Z∴m=0,1,2而m=0,2时,f(x)=x3不是偶函数,m=1时,f(x)=x4是偶函数.∴f(x)=x4(2)由f(x)=x4知g(x)=2x2﹣8x+q﹣1,g(x)>0对任意x∈[﹣1,1]恒成立⇔g(x)min>0,x∈[﹣1,1].又g(x)=2x2﹣8x+q﹣1=2(x﹣2)2+q﹣9∴g(x)在[﹣1,1]上单调递减,于是g(x)min=g(1)=q﹣7.∴q﹣7>0,q>7故实数q的取值范围是(7,+∞).30.已知幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数(1)求m的值和函数f(x)的解析式(2)解关于x的不等式f(x+2)<f(1﹣2x).【解答】解:(1)幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数,所以,m2﹣4m<0,解得0<m<4,因为m∈Z,所以m=2;函数的解析式为:f(x)=x﹣4.(2)不等式f(x+2)<f(1﹣2x),函数是偶函数,在区间(0,+∞)为减函数,所以|1﹣2x|<|x+2|,解得,又因为1﹣2x≠0,x+2≠0所以,。
数学人教A版必修第一册3.3幂函数复习

16
)
D. b c a
题型练习三:幂函数的应用
5.已知函数 f ( x) (a a 1) x
2
a 1
为幂函数,且为奇函数;
(1)求 a 的值;
1
(2)求函数 g ( x) f ( x) 1 2 f ( x) 在 x [0, ] 的值域.
2
题型练习三:幂函数的应用
3
3
B.
2
2
C.
3
)
3
D.
2
【解答】解:根据幂函数 y x a 的图象关于 y 轴对称,函数是偶函数,排除 B 、 D 选项;
再根据幂函数 y x 的图象在第一象限内从左到右下降,是单调减函数,
a
所以 a 0 ,排除 A ,即 C 选项正确.
故选: C .
题型练习二:幂函数的图像和性质
是幂函数,且 y f ( x) 在 (0, ) 上单调递增,则 f (2)
1
B.
2
C.2
【解答】解:因为函数 f ( x) (m2 2m 2) x m1 是幂函数,
所以 m 2m 2 1 ,解得 m 1 或 m 3 .
2
又因为 y f ( x) 在 (0, ) 上单调递增,所以 m 1 0 ,
幂函数
知识梳理
1、幂函数的概念
2、幂函数的图像
3、幂函数的性质
4、应用(比较大小)
1、幂函数的概念
定义:一般地,函数 = 叫做幂函数,其中 x 是自变量, 是常数.
注意:
Байду номын сангаас
① 幂前系数必须是1
②底数是自变量 x,指数是常数
高考数学复习幂函数知识点归纳

高考数学复习幂函数知识点归纳形如y=xa(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数,以下是幂函数知识点归纳,期望对考生有关心。
幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情形如下:假如a为任意实数,则函数的定义域为大于0的所有实数;假如a为负数,则x确信不能为0,只是这时函数的定义域还必须根[据q的奇偶性来确定,即假如同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情形如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
性质:关于a的取值为非零有理数,有必要分成几种情形来讨论各自的特性:第一我们明白假如a=p/q,q和p差不多上整数,则x^(p/q)=q次根号(x 的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+)。
当指数n是负整数时,设a=-k,则x=1/(x^k),明显x0,函数的定义域是(-,0)(0,+).因此能够看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就能够明白:排除了为0与负数两种可能,即关于x0,则a能够是任意实数;排除了为0这种可能,即关于x0和x0的所有实数,q不能是偶数;排除了为负数这种可能,即关于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就能够得到当a为不同的数值时,幂函数的定义域的不同情形如下:假如a为任意实数,则函数的定义域为大于0的所有实数;假如a为负数,则x确信不能为0,只是这时函数的定义域还必须依照q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,则函数的定义域为不等于0的所有实数。
高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解3.3 幂函数【考点梳理】知识点一幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y=x;(2)y=12x;(3)y=x2;(4)y=x-1;(5)y=x3的图象如图.2.五个幂函数的性质y=x y=x2y=x312y xy=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞) 上增,增增在(0,+∞)上减,在(-∞,0] 上减在(-∞,0)上减知识点三 一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸. 3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.【题型归纳】题型一:幂函数的定义1.(2020·江苏省平潮高级中学高一月考)如果幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( ) A .1B .2C .1或2D .无解2.(2021·云南省玉溪第一中学高一月考)已知幂函数()y f x =的图象过点()33,,则该函数的解析式为( )A .2y x =B .2y x =C .3y x =D .y x =3.(2020·江苏镇江市·)已知幂函数()2()33m f x m m x =--在区间()0,∞+上是单调递增函数,则实数m 的值是( )A .-1或4B .4C .-1D .1或4题型二:幂函数的值域问题4.(2021·全国高一课时练习)已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( )A .(),0-∞B .()(),00,-∞⋃+∞C .()0,∞+D .[)0,+∞5.(2020·湖南衡阳市·高一月考)函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-6.(2018·南京市第三高级中学高一期中)以下函数12y x =,2y x =,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个 A .1B .2C .3D .4题型三:幂函数的定点和图像问题7.(2021·高邮市临泽中学高一月考)已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x b f x m m m -=->≠的图象所经过的定点,则b 的值等于( )A .12±B .22±C .2D .2± 8.(2020·南宁市银海三美学校高一月考)函数23y x =的图象是( )A .B .C .D .9.(2019·宁都县宁师中学高一月考)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2021·江西宜春市·高安中学高一月考)已知 1.13a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<11.(2020·江苏省平潮高级中学高一月考)幂函数223a a y x --=是奇函数,且在()0+∞,是减函数,则整数a 的值是( ) A .0B .0或2C .2D .0或1或212.(2020·江西鹰潭一中)已知幂函数12()f x x =,若()()132f a f a +<-,则实数a 的取值范围是( )A .[)1,3-B .21,3⎡⎫-⎪⎢⎣⎭C .[)1,0-D .21,3⎛⎤- ⎥⎝⎦题型五:幂函数的奇偶性问题13.(2020·江西南昌市·南昌十中高一月考)已知幂函数y =f (x )经过点(3,3),则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数14.(2021·吴县中学)有四个幂函数:①()2f x x -=;②()1f x x -=;③()3f x x =;④()3f x x =,某向学研究了其中的一个函数,并给出这个函数的三个性质:(1)()f x 为偶函数;(2)()f x 的值域为()(),00,-∞⋃+∞;(3)()f x 在(),0-∞上是增函数.如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .①B .②C .③D .④15.(2020·乌苏市第一中学高一月考)已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则a =( ) A .1-,12-B .1,3C .2-D .12,2【双基达标】一、单选题16.(2021·镇远县文德民族中学校高一月考)已知幂函数()()21f x m x =-,则实数m 等于( )A .2B .1C .0D .任意实数17.(2020·南京市第十三中学高一月考)函数 85y x =的图象是( )A .B .C .D .18.(2021·全国高一课时练习)下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当α=-1时,幂函数y =x α在其整个定义域上是减函数19.(2021·全国高一单元测试)已知幂函数()f x 的图象过点1(2,)2,则f (4)的值是( ) A .64B .42C .24D .1420.(2021·全国高一专题练习)函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭21.(2021·全国高一课前预习)已知幂函数()3m f x x -=(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于( ) A .1B .2C .1或2D .322.(2021·全国)幂函数()f x 满足:对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,则(1)(0)(1)f f f -++=( ). A .1-B .0C .1D .223.(2021·全国)下列比较大小中正确的是( ).A .0.50.532()()23<B .1123()()35---<-C .3377( 2.1)( 2.2)--<-D .443311()()23-<24.(2019·云南昭通市第一中学高一月考)已知函数()f x x =,若(1)(102)f a f a+<-,则a 的取值范围是( )A .(0,5)B .(5,)+∞C .[1,3)-D .(3,5)25.(2021·全国)幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限: I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是( )A .IV,VII B . IV,VIII C . III, VIII D . III, VII 【高分突破】一:单选题26.(2021·全国高一课前预习)幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,则m的值为( ) A .1B .2C .3D .1或227.(2021·浙江)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .()y x x R =-∈B .3()y x x x R =--∈ C .1()()2x y x R =∈D .1y x=-(x R ∈,且0)x ≠28.(2021·全国高一课时练习)点(,8)m 在幂函数()(1)n f x m x =-的图象上,则函数()g x n x x m =-+-的值域为( )A .0,2⎡⎤⎣⎦B .1,2⎡⎤⎣⎦C .2,2⎡⎤⎣⎦D .[]2,329.(2021·全国高一课时练习)如图,①②③④对应四个幂函数的图像,其中②对应的幂函数是( )A .3y x =B .2y x =C .y x =D .y x =30.(2021·全国高一课时练习)已知幂函数()()2133m f x m m x +=-+的图象关于原点对称,则满足()()132m ma a +>-成立的实数a 的取值范围为( )A .22,33⎛⎫- ⎪⎝⎭B .22,3⎛⎫-- ⎪⎝⎭C .22,3⎛⎫- ⎪⎝⎭D .2,43⎛⎫ ⎪⎝⎭31.(2021·全国高一课时练习)设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭则“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的( )A .充分不必要件B .必要不充分条件C .充要条件D .既不充分也不必要条件32.(2021·浙江高一期末)已知实数a ,b 满足等式35a b =,给出下列五个关系式:①1b a <<;②1a b <<-;③01b a <<<;④10a b -<<<;⑤a b =,其中,可能成立的关系式有( ) A .1个B .2个C .3个D .5个33.(2021·全国高一单元测试)已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是( ) A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题34.(2021·全国高一课时练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数D .当3α=时函数在其定义域上是增函数35.(2021·全国高一课时练习)已知函数()21m m y m x -=-为幂函数,则该函数为( ) A .奇函数B .偶函数C .区间()0,∞+上的增函数D .区间()0,∞+上的减函数36.(2021·全国高一课时练习)已知幂函数223()(1)m m f x m m x +-=--,对任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,若,a b ∈R 且()()0f a f b +<,则下列结论可能成立的有( )A .0a b +> 且0ab <B .0a b +< 且0ab <C .0a b +< 且0ab >D .以上都可能37.(2021·全国高一专题练习)已知幂函数9()5m f x m x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的有( )A .()13216f -=B .()f x 的定义域是RC .()f x 是偶函数D .不等式()()12f x f -≥的解集是[)(]1,11,3-38.(2020·江苏常州市·常州高级中学高一期中)若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义城上的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-,则称函数()f x 为“理想函数”.下列四个函数中,能被称为“理想函数”的有( ) A .()2121x f x x -=+B .()3f x x =-C .()f x x =-D .()22,0,,0x x f x x x ⎧-≥=⎨<⎩三、填空题39.(2021·湖南邵阳市·高一期末)已知幂函数()y f x =的图象过点()2,2,则()5f =______.40.(2021·雄县第二高级中学高一期末)已知幂函数()f x 过定点18,2⎛⎫ ⎪⎝⎭,且满足()()2150f a f ++->,则a 的范围为________.41.(2021·全国高一课时练习)不等式()()1133312a a -<+的解集为______42.(2021·上海上外浦东附中高一期末)已知幂函数()223()m m f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________.43.(2021·全国高一单元测试)已知112,1,,1,,2,322k ⎧⎫∈---⎨⎬⎩⎭,若幂函数()kf x x =为奇函数,且在()0,∞+上单调递减,则k =______.四、解答题44.(2021·全国高一课时练习)已知函数()()21212223m f x m m xn -=+-+-是幂函数,求2m n -的值.45.(2021·全国高一课时练习)已知函数()()()()1221a a f x a a x -+=--是幂函数()a R ∈,且()()12f f <.(1)求函数()f x 的解析式;(2)试判断是否存在实数b ,使得函数()()32g x f x bx =-+在区间[]1,1-上的最大值为6,若存在,求出b 的值;若不存在,请说明理由.46.(2021·全国高一专题练习)已知幂函数()()1222mf x m m x =--在()0,∞+上单调递减.(1)求实数m 的值.(2)若实数a 满足条件()()132f a f a ->+,求a 的取值范围.47.(2021·江西省乐平中学高一开学考试)已知幂函数()()()22322k k f x m m x k -=-+∈Z 是偶函数,且在()0,∞+上单调递增. (1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围: (3)若实数()*,,a b a b ∈R 满足237a b m +=,求3211a b +++的最小值.【答案详解】1.C 【详解】由幂函数的定义得m 2-3m +3=1,解得m =1或m =2;当m =1时,m 2-m -2=-2,函数为y =x -2,其图象不过原点,满足条件; 当m =2时,m 2-m -2=0,函数为y =x 0,其图象不过原点,满足条件. 综上所述,m =1或m =2. 故选:C. 2.D 【详解】设()f x x α=,依题意()13332f αα==⇒=,所以()f x x =. 故选:D 3.B 【详解】幂函数()2()33mf x m m x =--在(0,)+∞上是增函数则2331m m m ⎧--=⎨>⎩ ,解得4m = 故选:B 4.D【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,2332(0)f x x x ∴==≥,∴()f x 的值域是[)0,+∞. 故选:D. 5.A 【详解】∵函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,∴2min 124y -==, 故选:A. 6.C 【详解】函数12y x x ==,其定义域为[0,)+∞,值域为[0,)+∞; 函数2y x =的定义域为R ,值域为[0,)+∞; 函数2323y x x ==,20x ≥Q ,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选:C. 7.B 【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =; 函数1()(0,1)2x b f x m m m -=->≠,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b ⎛⎫ ⎪⎝⎭, 所以1()2g b =,即212b =,解得:22b =±, 故选:B. 8.C 【详解】首先由分数指数幂运算公式可知()21233x x ⎛⎫=⎪⎝⎭,则()()23y f x x ==,()()f x f x -=,且函数的定义域为R ,所以函数是偶函数,关于y 轴对称,故排除AD ,因为2013<<,所以23y x =在第一象限的增加比较缓慢,故排除B , 故选:C 9.A试题:由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 10.A 【详解】由题意,构造函数 1.13,x y y x ==,由指数函数和幂函数的性质, 可知两个函数在(0,)+∞单调递增;由于0.9 1.10.9 1.133c a <∴<∴<;由于 1.1 1.13434a b <∴<∴<;综上:c a b << 故选:A 11.B由于幂函数223a a y x --=是奇函数,且在(0,)+∞是减函数,故2230a a --<,且223a a --是奇数,且a 是整数,13a -<<∴,a Z ∈,当0a =时,2233a a --=-,是奇数,; 当1a =时,2234a a --=-,不是奇数; 当2a =时,2233a a --=-,是奇数; 故0a =或2. 故答选:B 12.B 【详解】因为幂函数()12f x x =是增函数,且定义域为[)0,+∞,由()()132f a f a +<-得13210320a aa a +<-⎧⎪+≥⎨⎪-≥⎩,解得213a -≤<.所以实数a 的取值范围是21,3⎡⎫-⎪⎢⎣⎭故选:B 13.D 【详解】设幂函数的解析式为y x α=, 将点()3,3的坐标代入解析式得33α=,解得12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数,14.A 【详解】对于①,函数()2f x x -=为偶函数,且()2210f x x x -==>,该函数的值域为()0,∞+, 函数()2f x x -=在()0,∞+上为减函数,该函数在(),0-∞上为增函数,①满足条件;对于②,函数()11x x f x -==为奇函数,且()10f x x=≠,该函数的值域为()(),00,-∞⋃+∞, 函数()f x 在(),0-∞上为减函数,②不满足条件;对于③,函数()3f x x =的定义域为R ,且()()33f x x x f x -=-=-=-,该函数为奇函数, 当0x ≥时,()30f x x =≥;当0x <时,()30f x x =<,则函数()f x 的值域为R , 函数()3f x x =在()0,∞+上为增函数,该函数在(),0-∞上也为增函数,③不满足条件;对于④,函数()3f x x =为奇函数,且函数()3f x x =的值域为R ,该函数在(),0-∞上为增函数,④不满足条件. 故选:A. 15.C 【详解】112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则0α<且2,k k Z α=∈, 所以2a =-. 故选:C 16.A因为函数()()21f x m x =-为幂函数,所以m -1=1,则m =2.故选:A. 17.A 【详解】由幂函数85y x =可知: 85y x =是定义域为R 的偶函数,在(0,+∞)上单调递增,且当x >1时,函数值增长的比较快. 故选:A 18.C 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R)>0,所以幂函数的图象不可能出现在第四象限,故B 错误; 当α>0时,y =x α是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C. 19.D 【详解】幂函数()a f x x =的图象过点1(2,)2,122a ∴=,解得1a =-,1()f x x∴=, f ∴(4)14=, 故选:D . 20.B 【详解】因为()()()()121121211f x x x x x-=-+-=+--, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:B. 21.B 【详解】因为()3m f x x -=在(0,+∞)上是减函数,所以m -3<0,所以m <3. 又因为m ∈N *,所以1m =或2.又因为()3m f x x -=是奇函数,所以m -3是奇数, 所以m =2. 故选:B. 22.B 【详解】设()a f x x =,由已知,函数()f x 的定义域为R ,∴0a >,又∵对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,即y 与x 一一对应,()f x 必定不是偶函数,∴必定为奇函数,∴答案为0,故选:B. 23.C 【详解】A 选项,0.5y x =在[0)+∞,上是递增函数,0.50.523()()32<,错, B 选项,1y x -=在()0-∞,上是递减函数,1123()()35--->-,错, C 选项,37y x =在()0-∞,上是递增函数, 337721( 2.1)()10-=-,33775( 2.2)()11--=-,3377( 2.1)( 2.2)--<-,对,D 选项,43y x =在[0)+∞,上是递增函数, 443311()()22-=,443311()()23>,443311()()23->,错,故选:C . 24.C 【详解】()f x x =的定义域为[)0,+∞,且在[)0,+∞单调递增,所以(1)(102)f a f a +<-可化为:1010201102a a a a +≥⎧⎪-≥⎨⎪+<-⎩,解得:13x -≤<. 故a 的取值范围是[1,3)-. 故选:C 25.B【详解】对于幂函数13y x -=,因为103-< ,所以13y x -=在第一象限单调递减, 根据幂函数的性质可知:在直线1x =的左侧,幂函数的指数越大越接近y 轴 ,因为113->-,所以13y x -=的图象比1y x -=的图象更接近y 轴 ,所以进过第IV 卦限, 在直线1x =的右侧,幂函数的指数越小越接近x 轴,因为1103-<-<, 所以13y x -=的图象位于1y x -=和1y =之间,所以经过VIII 卦限,所有函数13y x -=的图象在第一象限中经过的“卦限”是IV,VIII , 故选:B 26.A 【详解】解:幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,2331m m ∴-+=,且2660m m -+>,解2331m m -+=得1m =或2m =,当1m =时26610m m -+=>符合题意; 当2m =时26620m m -+=-<不符合题意; 故选:A . 27.B 【详解】解:对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确; 对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误.故选:B28.B【详解】解:因为点(,8)m 在幂函数()(1)n f x m x =-的图象上,所以11m -=,即2m =,()()228n f m f ===,所以3n =, 故()32g x x x =-+-,[]2,3x ∈, ()()22()12321256g x x x x x =+--=+-+-, 因为[]2,3x ∈,所以21560,4x x ⎡⎤-+-∈⎢⎥⎣⎦, 所以[]2()1,2g x ∈, 所以函数()g x n x x m =-+-的值域为1,2⎡⎤⎣⎦.故选:B.29.C【详解】 解:由图知:①表示y x =,②表示y x =,③表示2y x =,④表示3y x =.故选:C.30.D【详解】由题意得:2331m m -+=,得1m =或2m =当1m =时,2()f x x =图象关于y 轴对称,不成立;当2m =时,3()f x x =是奇函数,成立;所以不等式转化为22(1)(32)a a +>-,即231480a a -+<,解得243a <<.故选:D31.C【详解】 由11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,由()f x x α=的图像经过()1,1--,则α的值为11,3-,,此时()f x x α=为奇函数. 又当()f x x α=为奇函数时,则α的值为11,3-,,此时()f x x α=的图象经过()1,1--. 所以“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的充要条件故选:C32.C【详解】在同一坐标系中画出函数3y x =和5y x =的图像,如图所示:数形结合可知,在(1)处1a b <<-;在(2)处10b a -<<<;在(3)处01a b <<<; 在(4)处1b a <<;在1a b ==或1a b ==-也满足,故①②⑤对故选:C.33.D【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<, ∴11(,3)13n m +∈+. 故选:D.34.CD【详解】对于A 选项,1y x =,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误. 对于C 选项,2y x =,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD35.BC【详解】由()21m m y m x -=-为幂函数,得11m -=,即m =2,则该函数为2y x =,故该函数为偶函数,且在区间()0,∞+上是增函数,故选:BC .36.BC【详解】因为223()(1)m m f x m m x +-=--为幂函数,所以211m m --=,解得:m =2或m =-1.因为任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-, 不妨设12x x >,则有12())0(f x f x ->,所以()y f x =为增函数,所以m =2,此时3()f x x =因为()33()()f x x x f x -=-=-=-,所以3()f x x =为奇函数.因为,a b ∈R 且()()0f a f b +<,所以()()f a f b <-.因为()y f x =为增函数,所以a b <-,所以0a b +<.故BC 正确.故选:BC37.ACD【详解】 因为函数是幂函数,所以915m +=,得45m =-,即()45f x x -=, ()()()45451322216f --⎡⎤-=-=-=⎣⎦,故A 正确;函数的定义域是{}0x x ≠,故B 不正确; ()()f x f x -=,所以函数是偶函数,故C 正确;函数()45f x x -=在()0,∞+是减函数,不等式()()12f x f -≥等价于12x -≤,解得:212x -≤-≤,且10x -≠,得13x -≤≤,且1x ≠,即不等式的解集是[)(]1,11,3-,故D 正确.故选:ACD38.BCD【详解】对于①对于定义域内的任意x ,恒有()()0f x f x +-=,即()()f x f x -=-,所以()f x 是奇函数;对于②对于定义域内的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-, ()f x 在定义域内是减函数; 对于A :()2121x f x x -=+,()113f =,()13f -=,故不是奇函数,所以不是“理想函数”; 对于 B :()3f x x =-是奇函数,且是减函数,所以是“理想函数”;对于C :()f x x =-是奇函数,并且在R 上是减函数,所以是“理想函数”;对于D :()22,0,0x x f x x x x x ⎧-≥==-⎨<⎩,()||()f x x x f x -==-, 所以()22,0,0x x f x x x ⎧-≥=⎨<⎩是奇函数; 根据二次函数的单调性,()f x 在(,0)-∞,(0,)+∞都是减函数,且在0x =处连续,所以()22,0,0x x f x x x ⎧-≥=⎨<⎩在R 上是减函数, 所以是“理想函数”.故选:BCD.39.5【详解】设()f x x α=,则()12222f αα==⇒=, 所以()(),55f x x f ==. 故答案为:540.()22-,【详解】设幂函数()y f x x α==,其图象过点18,2⎛⎫ ⎪⎝⎭, 所以182α=,即3122α-=,解得:13α=-,所以()13f x x -=, 因为()()()13f x x f x --=-=-,所以()13f x x -=为奇函数,且在()0-∞,和()0+∞,上单调递减, 所以()()2150f a f ++->可化为()()()2155f a f f +>--=, 可得215a +<,解得:22a -<<,所以a 的范围为()22-,, 故答案为:()22-,. 41.()4,-+∞【详解】 解:因为幂函数13y x =在R 上为增函数,()()1133312a a -<+, 所以312a a -<+,解得4a >-,所以不等式的解集为()4,-+∞,故答案为:()4,-+∞42.{}1,1,3-【详解】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤,又m Z ∈,即{}1,0,1,2,3m ∈-,()223()m m f x x m Z --=∈的图像关于y 轴对称, 即函数为偶函数,故223m m --为偶数, 所以{}1,1,3m ∈-,故答案为:{}1,1,3-.43.1-【详解】由题意知,幂函数()k f x x =在(0)+∞,上单调递减, 则k 为负数,则k =-2,-1,12-,又由函数()k f x x =为奇函数,则k =-1,故答案为:-144.-6【详解】因为()()21212223m f x m m x n -=+-+-是幂函数,所以22221,10,230,m m m n ⎧+-=⎪-≠⎨⎪-=⎩,解得3,3,2m n =-⎧⎪⎨=⎪⎩, 所以323262m n -=--⨯=-.45.(1)()2f x x =;(2)存在,2b =±. 解:因为函数()()()()1221a a f x a a x -+=--是幂函数,所以211a a --=,解得2a =或1a =-,当2a =时,()4f x x -=,则()()12f f >,故不符题意,当1a =-时,()2f x x =,则()()12f f <,符合题意,所以()2f x x =;(2)由(1)得 ()()()22232233g x f x bx x bx x b b =-+=-++=--++, 函数图像开口向下,对称轴为:x b =,当1b ≤-时,函数()g x 在区间[]1,1-上递减,则()()11236max g x g b =-=--+=,解得2b =-,符合题意; 当1b ≥时,函数()g x 在区间[]1,1-上递增,则()()11236max g x g b ==-++=,解得2b =,符合题意;当11b -<<时,()()22236max g x g b b b ==-++=,解得3b =±,不符题意, 综上所述,存在实数2b =±满足题意.46.(1)1m =-;(2)32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 【详解】解:(1)()f x 是幂函数,2221m m ∴--=,解得:3m =或1m =-, 3m =时,()13f x x =在(0,)+∞上单调递增,1m =-时,()1f x x=在(0,)+∞递减, 故1m =-;(2)若实数a 满足条件()()132f a f a ->+,则10320a a ->⎧⎨+<⎩或10320132a a a a ->⎧⎪+>⎨⎪-<+⎩或10320132a a a a-<⎧⎪+<⎨⎪-<+⎩,解得:32a <-或213a -<<,故a 的取值范围是32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 47.(1)2()f x x =;(2)(1,1)-;(3)2.【详解】(1)()f x 是幂函数,则2221m m -+=,1m =,又()f x 是偶函数,所以23(3)k k k k -=-是偶数,()f x 在(0,)+∞上单调递增,则230k k ->,03k <<,所以1k =或2. 所以2()f x x =;(2)由(1)偶函数()f x 在[0,)+∞上递增, (21)(2)f x f x -<-22(21)(2)212f x f x x x ⇔-<-⇔-<-11x ⇔-<<. 所以x 的范围是(1,1)-.(3)由(1)237a b +=,2(1)3(1)12a b +++=,0,0a b >>, []3213219(1)2(1)2(1)3(1)121112111211b a a b a b a b a b ++⎛⎫⎛⎫+=++++=++ ⎪ ⎪++++++⎝⎭⎝⎭ 19(1)4(1)12221211b a a b ⎛⎫++≥+⨯= ⎪ ⎪++⎝⎭,当且仅当9(1)4(1)11b a a b ++=++,即2,1a b ==时等号成立. 所以3211a b +++的最小值是2.。
幂函数高考知识点总结

幂函数高考知识点总结幂函数是高中数学中非常重要的一部分内容,也是高考中经常出现的知识点之一。
幂函数在数学中具有广泛的应用,不仅仅体现在纵坐标的数值关系上,更是涉及到图像特征、函数性质以及解题方法等方面。
下面我将对幂函数的相关知识进行总结和梳理,希望对大家复习和备考有所帮助。
1、幂函数的定义和性质幂函数的一般形式可以表示为:f(x) = ax^b,其中a和b是常数,而x是变量。
其中,a称为幂函数的系数,b称为幂函数的指数。
幂函数的定义域由指数b的正负决定,若b为正整数,则定义域是全体实数;若b为负整数,则定义域是x ≠ 0的一切实数;若b为0,则幂函数的定义域是x > 0的一切实数。
当只考虑幂函数f(x)在正数定义域上的取值时,幂函数的图像可以分为两种情况:当a > 1时,图像呈现递增趋势;当0 < a < 1时,图像则呈现递减趋势。
2、幂函数的图像特征通过观察幂函数的图像,我们可以得出一些重要的结论。
首先,当幂函数的系数a为正数时,图像都经过第一象限的点(1, a)。
其次,当幂函数的指数b为奇数时,幂函数的图像对称于y轴;当幂函数的指数b为偶数时,幂函数的图像具有原点对称性。
除此之外,我们还可以通过改变系数a和指数b的值,来改变幂函数图像的特征,如峰值的高低、函数图像的陡峭程度等。
3、幂函数的运算与应用幂函数的求导是高中数学中的重要内容之一。
对于幂函数f(x) =ax^b,其中a为常数,b为实数,我们可以通过求导的方法来确定幂函数的导函数形式。
具体来说,当指数为整数时,我们可以利用幂函数的定义进行求导;当指数为实数且不为整数时,我们则需要利用对数函数的性质来求导。
此外,由于幂函数具有多种性质和特点,在解决实际问题时也能够提供很多启示和方法。
4、幂函数的解题技巧和例题分析在高考中,幂函数常常出现在各种数学题目中,因此熟练掌握幂函数的解题方法是非常重要的。
对于幂函数的解题技巧,我们可以利用以下几点进行分析和总结:首先,要熟悉幂函数的性质和特点,了解其图像形态和函数性质;其次,要能够根据题目给出的条件和要求,建立幂函数方程或不等式;最后,要善于运用数学方法和思维工具,进行合理的推导和计算。
幂函数复习课

yx
p2 3 p 2 2
( p Z)
1 2 3 p p 0 2 2
yx
2
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”
1 -2 -1 1 2 -1
1/
1/3 3
幂函数的指数小于0的情况
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数复习幂函数复习一、知识要点1、幂函数定义:一般地,形如αxy=)a∈的(R函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当1<α0<时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于∞+时,图象在x轴上方无限地逼近x轴正半轴.二、典型例题及对应习题1、幂函数的概念、解析式、定义域、值域1.若幂函数y=f(x)的图象过点(5,),则为()A.B.C.D.﹣12.设α∈{﹣2,﹣1,,1,2,3},则使幂函数y=x a为奇函数且在(0,+∞)上单调递减的a 个数为()A.1 B.2 C.3 D.43.已知函数f(x)=x k(k为常数,k∈Q),在下列函数图象中,不是函数y=f(x)的图象是()A.B.C.D.4.已知函数f(x)=(m2﹣m﹣1)x﹣5m﹣3是幂函数且是(0,+∞)上的增函数,则m的值为()A.2 B.﹣1 C.﹣1或2 D.0 5.已知点(a,)在幂函数f(x)=(a2﹣6a+10)x b的图象上,则函数f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数2、幂函数的图像6.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是()A. B. C.D.9.幂函数y=x m,y=x n,y=x p的图象如图所示,以下结论正确的是()A.m>n>p B.m>p>n C.n>p>m D.p>n>m 10.函数f(x)=﹣1的图象大致是()A.B.C.D.3、幂函数的图像及其与指数的关系11.函数y=x3和图象满足()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称12.已知点在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数13.若0<x<y<1,则()A.3y<3x B.x0.5<y0.5 C.logx 3<logy3 D.log0.5x<log0.5y14.已知幂函数y=(a2﹣2a﹣2)x a在实数集R 上单调,那么实数a=()A.一切实数B.3或﹣1 C.﹣1 D.3 15.函数y=的单调递增区间是()A.(﹣∞,1)B.(0,1)C.(1,2)D.(1,+∞)4、幂函数的性质16.幂函数f(x)=(m2﹣4m+4)x在(0,+∞)为减函数,则m的值为()A.1或3 B.1 C.3 D.217.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图,则a、b、c、d的大小关系是()A.d>c>b>a B.a>b>c>d C.d>c>a>b D.a>b>d>c18.幂函数y=(m2﹣m﹣1),当x∈(0,+∞)时为减函数,则实数m的值为()A.m=2 B.m=﹣1 C.m=﹣1或2 D.m≠19.若幂函数f(x)=(m2﹣m﹣1)x1﹣m是偶函数,则实数m=()A.﹣1 B.2 C.3 D.﹣1或25、幂函数的单调性、奇偶性及其应用20.已知﹣1<α<0,则()A.B.C.D.21.若a=0.5,b=0.5,c=0.5,则a,b,c 的大小关系为()A.a>b>c B.a<b<c C.a<c<b D.a>b>c 22.若,则a、b、c的大小关系是()A.a<b<c B.c<a<b C.b<c<a D.b<a<c 23.函数y=在第二象限内单调递增,则m的最大负整数是()A.﹣4 B.﹣3 C.﹣2 D.﹣124.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程loga x+logay=3,这时a的取值集合为()A.{a|1<a≤2} B.{a|a≥2} C.{a|2≤a≤3} D.{2,3}25.使不等式成立的实数a的范围是.6、幂函数的实际应用26.已知函数f(x)=(m∈Z)为偶函数,且f(3)<f(5).(1)求函数f(x)的解析式;(2)若g(x)=loga[f(x)﹣ax](a>0且a ≠1)在区间[2,3]上为增函数,求实数a的取值范围.27.已知函数是幂函数且在(0,+∞)上为减函数,函数在区间[0,1]上的最大值为2,试求实数m,a的值.28.已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数.(1)求m的值;(2)求满足的a的取值范围.29.已知幂函数在区间(0,+∞)上是单调增函数,且为偶函数.(1)求函数f(x)的解析式;(2)设函数,若g(x)>0对任意x∈[﹣1,1]恒成立,求实数q的取值范围.30.已知幂函数(m∈Z)的图象关于y 轴对称,且在区间(0,+∞)为减函数(1)求m的值和函数f(x)的解析式(2)解关于x的不等式f(x+2)<f(1﹣2x).2017年09月15日dragon的高中数学幂函数复习参考答案与试题解析一.选择题(共24小题)1.若幂函数y=f(x)的图象过点(5,),则为()A.B.C.D.﹣1【解答】解:∵幂函数y=f(x)的图象过点(5,),设 f(x)=xα,∴5α=,解得α=﹣1.∴f(x)=x﹣1.∴=f()=f()=()﹣1=,故选C.2.设α∈{﹣2,﹣1,,1,2,3},则使幂函数y=x a为奇函数且在(0,+∞)上单调递减的a个数为()A.1 B.2 C.3 D.4【解答】解:幂函数y=x﹣2为偶函数且在(0,+∞)上单调递减;幂函数y=x﹣1为奇函数且在(0,+∞)上单调递减;幂函数y=x为奇函数且在(0,+∞)上单调递增;幂函数y=x为奇函数且在(0,+∞)上单调递增;幂函数y=x2为偶函数且在(0,+∞)上单调递增;幂函数y=x3为奇函数且在(0,+∞)上单调递增.综上可得,符合条件的函数只有一个.故选:A.3.已知函数f(x)=x k(k为常数,k∈Q),在下列函数图象中,不是函数y=f (x)的图象是()A.B.C. D.【解答】解:函数f(x)=x k(k为常数,k∈Q)为幂函数,图象不过第四象限,所以C中函数图象,不是函数y=f(x)的图象.故选:C.4.已知函数f(x)=(m2﹣m﹣1)x﹣5m﹣3是幂函数且是(0,+∞)上的增函数,则m的值为()A.2 B.﹣1 C.﹣1或2 D.0【解答】解:因为函数f(x)=(m2﹣m﹣1)x﹣5m﹣3是幂函数,所以m2﹣m﹣1=1,即m2﹣m﹣2=0,解得m=2或m=﹣1.又因为幂函数在(0,+∞),所以﹣5m﹣3>0,即m<﹣,所以m=﹣1.故选B.5.已知点(a,)在幂函数f(x)=(a2﹣6a+10)x b的图象上,则函数f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数【解答】解:幂函数f(x)=(a2﹣6a+10)•x b的图象经过点(a,),∴a2﹣6a+10=1且a b=,解得a=3,b=﹣1;∴f(x)=x﹣1在定义域(﹣∞,0)∪(0,+∞)的奇函数.故选:A.6.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是()A.B.C.D.【解答】解:设幂函数的解析式为y=x a,∵幂函数y=f(x)的图象过点(4,2),∴2=4a,解得a=∴,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y=x的上方.对照选项.故选C7.函数y=的图象是()A.B.C.D.【解答】解:∵函数y=的定义域为[0,+∞)∴所求图象在第一象限,可排除A、C,再根据函数y=的图象横过(4,2),可排除B,故选D.8.函数的图象是()A.B.C.D.【解答】解:因为函数的定义域是[0,+∞),所以图象位于y轴右侧,排除选项C、D;又函数在[0,+∞)上单调递增,所以排除选项B.故选A.9.幂函数y=x m,y=x n,y=x p的图象如图所示,以下结论正确的是()A.m>n>p B.m>p>n C.n>p>m D.p>n>m【解答】解:在第一象限作出幂函数y=x m,y=x n,y=x p的图象.,在(0,1)内取同一值x,与各图象有交点.作直线x=x则“点低指数大”,如图,知0<p<1,﹣1<m<0,n>1,∴n>p>m故选:C.10.函数f(x)=﹣1的图象大致是()A.B.C.D.【解答】解:因为0,所以f(x)在[0,+∞)上递增,排除B;当x=0时,f(0)=﹣1,即f(x)的图象过点(0,﹣1),排除C、D;故选A.11.函数y=x3和图象满足()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称【解答】解:由得到x=y3,所以这两个函数互为反函数,根据反函数图象的性质可知函数y=x3和的图象关于直线 y=x对称.故选D.12.已知点在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数【解答】解:设幂函数为f(x)=xα,∵点在幂函数f(x)的图象上,∴f()=(),即,∴,即α=﹣1,∴f(x)=为奇函数,故选:A.13.若0<x<y<1,则()A.3y<3x B.x0.5<y0.5C.logx 3<logy3 D.log0.5x<log0.5y【解答】解:因为:0<x<y<1,y=3x为增函数,则3y>3x,故A错误,因为:0<x<y<1,y=x0.5为增函数,则x0.5>x0.5,故B正确,因为:0<x<y<1则logx 3>logy3,故C错误,因为:0<x<y<1,log0.5x为减函数,则log0.5x>log0.5y,故D错误,故选:D.14.已知幂函数y=(a2﹣2a﹣2)x a在实数集R上单调,那么实数a=()A.一切实数B.3或﹣1 C.﹣1 D.3【解答】解:由幂函数的定义及其单调性可得:a2﹣2a﹣2=1,a>0,解得a=3.∴a=3.故选:D.15.函数y=的单调递增区间是()A.(﹣∞,1) B.(0,1)C.(1,2)D.(1,+∞)【解答】解:设u=﹣x2﹣2x,在(﹣∞,1)上为增函数,在(1,+∞)为减函数,因为函数y=为减函数,所以f(x)的单调递增区间(1,+∞,),故选:D16.幂函数f(x)=(m2﹣4m+4)x在(0,+∞)为减函数,则m的值为()A.1或3 B.1 C.3 D.2【解答】解:∵为幂函数∴m2﹣4m+4=1,解得m=3或m=1.由当x∈(0,+∞)时为减函数,则m2﹣6m+8<0,解得2<m<4.∴m=3,故选:C.17.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图,则a、b、c、d的大小关系是()A.d>c>b>a B.a>b>c>d C.d>c>a>b D.a>b>d>c【解答】解:幂函数a=2,b=,c=﹣,d=﹣1的图象,正好和题目所给的形式相符合,在第一象限内,x=1的右侧部分的图象,图象由下至上,幂指数增大,所以a>b>c>d.故选B.18.幂函数y=(m2﹣m﹣1),当x∈(0,+∞)时为减函数,则实数m 的值为()A.m=2 B.m=﹣1 C.m=﹣1或2 D.m≠【解答】解:∵y=(m2﹣m﹣1)为幂函数,∴m2﹣m﹣1=1,即m2﹣m﹣2=0.解得:m=2或m=﹣1.当m=2时,m2﹣2m﹣3=﹣3,y=x﹣3在(0,+∞)上为减函数;当m=﹣1时,m2﹣2m﹣3=0,y=x0=1(x≠0)在(0,+∞)上为常数函数(舍去),∴使幂函数y=(m2﹣m﹣1)为(0,+∞)上的减函数的实数m的值为2.故选A.19.若幂函数f(x)=(m2﹣m﹣1)x1﹣m是偶函数,则实数m=()A.﹣1 B.2 C.3 D.﹣1或2【解答】解:∵幂函数f(x)=(m2﹣m﹣1)x1﹣m是偶函数,∴,解得m=﹣1.故选:A.20.已知﹣1<α<0,则()A.B.C.D.【解答】解:∵﹣1<α<0,故函数y=x a在(0,+∞)上是减函数,∵0.2,故,故选:A21.若a=0.5,b=0.5,c=0.5,则a,b,c的大小关系为()A.a>b>c B.a<b<c C.a<c<b D.a>b>c【解答】解:构造函数f(x)=0.5x,因为函数f(x)=0.5x,为单调递减函数.且,所以,即,所以a<b<c.故选B.22.若,则a、b、c的大小关系是()A.a<b<c B.c<a<b C.b<c<a D.b<a<c【解答】解:∵在第一象限内是增函数,∴,∵是减函数,∴,所以b<a<c.故选D.23.函数y=在第二象限内单调递增,则m的最大负整数是()A.﹣4 B.﹣3 C.﹣2 D.﹣1【解答】解:∵函数y==x m﹣1在第二象限内单调递增,当m=﹣1时,y=x﹣2在第二象限内单调递增,﹣1是最大的负整数,∴m的最大负整数是﹣1,故选:D.24.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程loga x+logay=3,这时a的取值集合为()A.{a|1<a≤2} B.{a|a≥2} C.{a|2≤a≤3} D.{2,3}【解答】解:由loga x+logay=3,可得loga(xy)=3,得,在[a,2a]上单调递减,所以,故⇒a≥2故选B.二.填空题(共1小题)25.使不等式成立的实数a的范围是(﹣∞,﹣1)∪(,).【解答】解:∵函数y=为奇函数,且在(﹣∞,0)和(0,+∞)上均为减函数故不等式可化为0>a+1>3﹣2a…①或a+1<0<3﹣2a…②或a+1>3﹣2a>0…③不等式①无解解②得a<﹣1解③得<a<故实数a的范围是(﹣∞,﹣1)∪(,)故答案为:(﹣∞,﹣1)∪(,)三.解答题(共5小题)26.已知函数f(x)=(m∈Z)为偶函数,且f(3)<f(5).(1)求函数f(x)的解析式;(2)若g(x)=loga[f(x)﹣ax](a>0且a≠1)在区间[2,3]上为增函数,求实数a的取值范围.【解答】解:(1)∵f(x)为偶函数,∴﹣2m2+m+3为偶数,又f(3)<f(5),∴<,即有:<1,∴﹣2m2+m+3>0,∴﹣1<m<,又m∈Z,∴m=0或m=1.当m=0时,﹣2m2+m+3=3为奇数(舍去),当m=1时,﹣2m2+m+3=2为偶数,符合题意.∴m=1,f(x)=x2(2)由(1)知:g(x)=loga [f(x)﹣ax]=loga(x2﹣ax)(a>0且a≠1)在区间[2,3]上为增函数.令u(x)=x2﹣ax,y=logau;①当a>1时,y=logau为增函数,只需u(x)=x2﹣ax在区间[2,3]上为增函数.即:⇒1<a<2②当0<a<1时,y=logau为减函数,只需u(x)=x2﹣ax在区间[2,3]上为减函数.即:⇒a∈∅,综上可知:a的取值范围为:(1,2).27.已知函数是幂函数且在(0,+∞)上为减函数,函数在区间[0,1]上的最大值为2,试求实数m,a的值.【解答】解:因为函数是幂函数且在上为减函数,所以有解得m=﹣1.∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣5’①当,[0,1]是f(x)的单调递减区间,∴∴a=﹣6<0,∴a=﹣6﹣﹣﹣﹣﹣﹣﹣﹣7’②当,,解得a=﹣2(舍)或a=3(舍)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9’③,[0,1]为f(x)的单调递增区间,∴,解得﹣﹣﹣﹣﹣﹣﹣﹣11’综合①②③可知﹣﹣﹣﹣﹣﹣﹣﹣12’28.已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数.(1)求m的值;(2)求满足的a的取值范围.【解答】解:(1)∵函数在(0,+∞)上递减,∴m2﹣2m﹣3<0即﹣1<m<3,又m∈N*∴m=1或2,又函数图象关于y轴对称,∴m2﹣2m﹣3为偶数,故m=1为所求.(2)函数在(﹣∞,0),(0,+∞)上均为减函数∴等价于a+1>3﹣2a>0或0>a+1>3﹣2a或a+1<0<3﹣2a,解得故a的取值范围为29.已知幂函数在区间(0,+∞)上是单调增函数,且为偶函数.(1)求函数f(x)的解析式;(2)设函数,若g(x)>0对任意x∈[﹣1,1]恒成立,求实数q的取值范围.【解答】解:(1)∵f(x)在区间(0,+∞)上是单调增函数,∴﹣m2+2m+3>0即m2﹣2m﹣3<0∴﹣1<m<3又∵m∈Z∴m=0,1,2而m=0,2时,f(x)=x3不是偶函数,m=1时,f(x)=x4是偶函数.∴f(x)=x4(2)由f(x)=x4知g(x)=2x2﹣8x+q﹣1,g(x)>0对任意x∈[﹣1,1]恒>0,x∈[﹣1,1].成立⇔g(x)min又g(x)=2x2﹣8x+q﹣1=2(x﹣2)2+q﹣9=g(1)=q﹣7.∴g(x)在[﹣1,1]上单调递减,于是g(x)min∴q﹣7>0,q>7故实数q的取值范围是(7,+∞).30.已知幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数(1)求m的值和函数f(x)的解析式(2)解关于x的不等式f(x+2)<f(1﹣2x).【解答】解:(1)幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数,所以,m2﹣4m<0,解得0<m<4,因为m∈Z,所以m=2;函数的解析式为:f(x)=x﹣4.(2)不等式f(x+2)<f(1﹣2x),函数是偶函数,在区间(0,+∞)为减函数,所以|1﹣2x|<|x+2|,解得,又因为1﹣2x≠0,x+2≠0所以,。