八年级数学勾股定理章节测试卷A卷(A4版)

合集下载

八年级勾股定理单元测试卷

八年级勾股定理单元测试卷

八年级勾股定理单元测试卷一、选择题1.下列各组数中,不能作为直角三角形三边长度的是()。

A. 3,4,5B. 1.5,2,2.5C. 5,12,13D. 20,30,402.在平面直角坐标系中,点P(3,4)到原点的距离是()。

A. 3B. 4C. 5D. ±53.如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()。

A. 8cmB. 5cmC. 5.5cmD. 1cm4.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3:4:5;③三边长分别为7,24,25;④三边长之比为5:12:13。

其中直角三角形有()。

A. 1个B. 2个C. 3个D. 4个5.已知直角三角形两边的长分别为3和4,则此三角形的周长为()。

A. 12B. 7C. 12或7D. 以上都不对6.在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D点,M,N分别是AC,BC上的动点,且∠MDN=90°,下列结论:①AM=CN;②四边形MDNC的面积为定值;③AM²+BN²=MN²;④NM平分∠CND。

其中正确的是()。

A. ①②③B. ①②④C. ①③④D. ①②③④二、填空题1.在△ABC中,∠C=90°,AB=25,BC=24,则AC的长为__________。

2.命题“角平分线上的点到角两边的距离相等”的逆命题是__________。

3.在△ABC中,若AB=13,BC=12,AC=5,则△ABC的面积为__________。

4.已知△ABC是等边三角形,AB=4cm,则BC边上的高AD=__________。

5.已知a、b、c是△ABC的三边长,且满足关系式a²+b²+50-6a-8b-10c=0,则△ABC的形状为__________。

三、解答题1.在△ABC中,AD⊥BC,AD=12,BD=16,CD=5。

八年级数学勾股定理单元测试(A卷基础篇)

八年级数学勾股定理单元测试(A卷基础篇)

第一章 勾股定理单元测试 (A 卷基础篇)(北师大版)学校: __________ 姓名: __________ 班级: __________ 考号: __________题号 一 二 三 总分 得分第Ⅰ卷(选择题)评卷人 得 分.选择题(共 10 小题,满分 30 分,每小题 3分)1.( 2019 春?资阳区校级期中)以下四组数中,不是勾股数的是()C .20,21,29ABC 的两条直角边的长分别为 1、 2,则它的斜边长为(3.( 2019 春?博白县期中)三角形的三边 a , b , c 满足 a 2+b 2﹣ c 2=0,则此三角形是(A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形4.( 2019 春?南岗区校级期中)如图,两个正方形的面积分别是5.( 2019 春 ?太原期中)古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的 13 个结,然后以 3 个结间距、 4 个结间距、 5 个结间距的长度为边长,用木桩钉成一个三角形,其中一角便是直角,这 样做的道理是( )A .3n ,4n ,5n (n 为正整数)B .5,12,13 A . B .C .2D .3A . 8B . 10C . 64D .1362.( 2019 春?江岸区校级期中)直角三角形D .8,5,7100 和 36,则字母 B 所代表的正方形的面A .直角三角形两个锐角互余B .三角形内角和等于 180 °C .三角形两边之和大于第三边,两边之差小于第三边D .如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形6.( 2019 春?江岸区校级期中)下列各组数作为三角形的三边,能组成直角三角形的一组数是()A .2、 3、4B .3、 4、5C .1、 、D . 、 、7.( 2019春?海阳市期中)如图,在 Rt △ABC 中,∠ACB =90°,AC =3,BC =4,点 D 在 AB 上, AD = AC ,AF ⊥ CD 交 CD 于点 E ,交 CB 于点 F ,则 CF 的长是(9.( 2019 春?江城区期中)已知等腰三角形的一条腰长是 15,底边长是 18,则它底边上的高为( )10.( 2019 春 ?资阳区校级期中)在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向 东驶去,若自行车与摩托车每秒分别行驶 2.5米、 6米,则 10秒后两车相距( )米.B .1.8C .2D .2.58. 2019 春?汉阳区校级期中)如图,一棵大树在离地面6 米高的 B 处断裂,树顶 A 落在离树底部 C 的8C . 24 米D .21米A .9B .12C .15D .18A .1.5 A .16米B .15米A.55 B.65 C.75D.85第Ⅱ卷(非选择题)评卷人得分二.填空题(共8 小题,满分24分,每小题3分)11.(2019 春?海沧区校级期中)Rt △ABC 中,∠ B=90°,AB=9,BC=12,则斜边上的高为.12.(2019 春?越秀区校级期中)如图,已知∠ ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为.13.(2019 春?鼓楼区校级期中)如图,在△ABC 中,∠ C=90°,∠ B=30°,AD 是△ABC 的角平分线,DE ⊥AB,垂足为点E,DE =2,则BC=.14.(2019春?阜阳期中)如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是15.(2019 春?花都区期中)如图,从电线杆离地面5m处向地面拉一条长13m 的固定缆绳,这条缆绳的固定点距离电线杆底部有m.16.(2018 秋?景德镇期中)如图,某自动感应门的正上方装着一个感应器,离地 2.5 米,当物体进入感应器的感应范围内时,感应门就会自动打开.一个身高 1.6 米的学生正对门,缓慢走到离门 1.2 米的地方时,处沿圆柱表面爬到对角 C 处捕食,则它爬行的最短距离是三.解答题(共 5 小题,满分 46分)19.(9分)(2019春?路北区期中)在 △ABC 中,∠C =90°,a 、b 、c 分别为∠ A 、∠ B 、∠ C 的对边.(1)如果 a = 5, b = 12,那么 c = . ( 2)如果 c = 61, a = 60,那么 b = .( 3)若∠ A =45°, a = 2,则 c =.20.(9 分)(2019 春?高安市期中)已知:如图,四边形 ABCD 中, AB ⊥BC ,AB =1,BC =2,CD =3, = ,求四边形 ABCD 的面积.米.8cm 的杯子,在它的正中间竖直放一根筷子,筷子露出杯子,筷子顶端刚好触到杯口,则筷子长度为 cm .18.( 2019 春 ?武城县期中)如图所示,圆柱的高 A B = 15cm ,底面周长为 40cm ,现在有一只蚂蚁想要从AD则感应器的最大感应距离是17.(2019 春 ?沂水县期中)如图,一个直径为分21.(9分)(2019春?江城区期中)如图,在锐角三角形ABC中,高AD=12,边AC=13,BC=14,求BD22.(9分)(2019春?全椒县期中)如图,有两棵树AB 和CD ,AB=10米,CD =4米,两树之间的距离BD=8米,一只鸟从 A 处飞到C处,则小鸟至少飞行多少米?23.(10 分)(2019 春?江城区期中)“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?第二章勾股定理单元测试(A 卷基础篇)(北师大版)参考答案与试题解析一.选择题(共10 小题,满分30 分,每小题3分)1.(2019 春?资阳区校级期中)以下四组数中,不是勾股数的是()A.3n,4n,5n(n 为正整数)B.5,12,13C.20,21,29 D .8,5,7【答案】解:A、3n2+4n2=5n2,是勾股数;B、52+122=132,是勾股数;C、202+212=292,是勾股数;D 、72+52≠82,不是勾股数;故选: D .【点睛】考查了勾股数,理解勾股数的定义:满足a2+b2=c2的三个正整数称为勾股数,并能够熟练运用.2.(2019春?江岸区校级期中)直角三角形ABC 的两条直角边的长分别为1、2,则它的斜边长为()A.B.C.2 D .3【答案】解:由勾股定理得,直角三角形的斜边长==,故选: B .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.3.(2019春?博白县期中)三角形的三边a,b,c 满足a2+b2﹣c2=0,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .等边三角形【答案】解:∵ a2+b2﹣c2=0,∴a2+b2=c2,∴此三角形是直角三角形.故选: B .【点睛】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边a2+b2=c2,那么这个三角形就是直角三角形.4.(2019 春?南岗区校级期中)如图,两个正方形的面积分别是100 和36,则字母 B 所代表的正方形的面A.8 B.10 C.64 D .136【答案】解:由勾股定理得,AC2+CD2=AD2,则字母 B 所代表的正方形的面积=CD2=AC2﹣AD2=100﹣36=64,故选: C .【点睛】本题考查的是勾股定理、正方形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.5.(2019 春?太原期中)古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13 个结,然后以 3 个结间距、 4 个结间距、 5 个结间距的长度为边长,用木桩钉成一个三角形,其中一角便是直角,这样做的道理是()A .直角三角形两个锐角互余B.三角形内角和等于180 °C.三角形两边之和大于第三边,两边之差小于第三边D.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形【答案】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m 为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选: D .【点睛】此题考查了勾股定理的证明,属于基础题,注意仔细阅读题目所给内容,得到解题需要的信息,比较简单.6.(2019 春?江岸区校级期中)下列各组数作为三角形的三边,能组成直角三角形的一组数是()A.2、3、4 B.3、4、5 C.1、、D.、、【答案】解:A、22+32≠42,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、12+()2≠()2,不能构成直角三角形,故此选项错误;D、()2+()2≠()2,不能构成直角三角形,故此选项错误.故选: B .【点睛】本题主要考查勾股定理的逆定理的应用.关键是熟练掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7.(2019春?海阳市期中)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥ CD 交CD 于点E,交CB 于点F,则CF 的长是(C.2 D.2.5答案】解:连接DF ,如图所示:AC=3,BC=4,∴ AB==5,∵AD=AC=3,AF⊥ CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF 和△ACF 中,,∴△ ADF ≌△ ACF(SSS),∴∠ ADF =∠ ACF=90°,∴∠ BDF =90°,设CF=DF =x,则BF=4﹣x,在Rt△BDF 中,由勾股定理得:DF 2+BD2=BF2,即x2+22=(4﹣x)2,解得:x= 1.5;∴CF = 1.5; 故选: A .【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质; 熟练掌握勾股定理,证明三角形全等是解决问题的关键.8.(2019春?汉阳区校级期中)如图,一棵大树在离地面 6米高的 B 处断裂,树顶 A 落在离树底部 C 的 8米处,则大树数断裂之前的高度为( )A .16米B .15米C .24 米D .21 米【答案】解:由题意得 BC = 6,在直角三角形 ABC 中,根据勾股定理得: AB = = 10 米.所以大树的高度是 10+6=16 米. 故选: A .点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接 用算术法求解.9.( 2019 春?江城区期中)已知等腰三角形的一条腰长是 15,底边长是 18,则它底边上的高为(答案】解:过点 A 作 AD ⊥ BC , ∵AB = AC ,∴AD ==12( cm ),∴它底边上的高为 12cm ;点睛】此题考查了勾股定理,用到的知识点是勾股定理、等腰三角形的性质,关键是作出辅助线,构 造直角三角形.10.( 2019 春 ?资阳区校级期中)在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向A .9B .12C .15D .18∴BD =CD ==18=9,2.5 米、 6 米,则10 秒后两车相距()米.C.75 D.85Rt△ACB中,AC=2.5 ×10=25 米,BC=6×10=60 米,则AB===65(米),则10 秒后两车相距65 米.点睛】此题主要考查了勾股定理的应用,正确画出图形是解题关键.二.填空题(共8 小题,满分24分,每小题3分)11.(2019 春?海沧区校级期中)Rt △ABC 中,∠ B=90°,AB=9,BC=12,则斜边上的高为【答案】解:设AC 边上的高为h,∵在Rt△ABC 中,∠ B=90°,AB=9,BC=12,AC=15,∴AB?BC=AC?h,故答案为:【点睛】本题考查的是三角形的面积,熟知三角形的面积公式是解答此题的关键.12.(2019 春?越秀区校级期中)如图,已知∠ ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为96m2.答案】解:在Rt△ADC 中,∵ CD =6m,AD =8m,∠ ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,东驶去,若自行车与摩托车每秒分别行驶A .55 B.65【答案】解:如图所示:由题意可得,12∴AC = 10m ,(取正值).在△ABC 中,∵ AC 2+BC 2=102+242= 676,AB 2=262=676. ∴AC 2+BC 2=AB 2,∴△ ACB 为直角三角形,∠ ACB =90°.∴S 阴影= AC ×BC ﹣ AD ×CD = ×10×24﹣ ×8×6=96(m 2).故答案是: 96m 2 【点睛】本题考查的是勾股定理的运用和勾股定理的逆定理运用,解题的关键是根据勾股定理求出 的长,再根据勾股定理的逆定理判断出 △ACB 为直角三角形.13.(2019 春?鼓楼区校级期中)如图,在 △ABC 中,∠ C =90°,∠ B = 30°, AD 是△ABC 的角平分线,DE ⊥AB ,垂足为点 E , DE =2,则 BC = 6 .答案】解:∵ AD 是△ABC 的角平分线,∠ C = 90°,DE ⊥ AB , ∴DC =DE =2,在 Rt △BDE 中,∠ B = 30°, ∴BD =2DE =4, ∴BC = CD+BD = 6, 故答案为: 6.【点睛】本题考查的是勾股定理、角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解 题的关键.14.( 2019 春?阜阳期中)如图,在一个高为 5m ,长为 13m 的楼梯表面铺地毯, 则地毯的长度至少是 17m【答案】解:由勾股定理得: 楼梯的水平宽度== 12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和, 地毯的长度至少是 12+5=17 米.AC故答案为: 17m .【点睛】本题考查了勾股定理的知识,与实际生活相联系,加深了学生学习数学的积极性.15.(2019 春?花都区期中)如图,从电线杆离地面 5m 处向地面拉一条长 13m 的固定缆绳,这条缆绳的固定点距离电线杆底部有 12 m .【答案】解:∵电线杆、地面及缆绳正好构成直角三角形, AC = 5m ,BC =13m , ∴AB === 12m .点睛】本题考查的是勾股定理的应用,有利于培养学生理论联系实际的能力.16.( 2018 秋 ?景德镇期中)如图,某自动感应门的正上方装着一个感应器,离地 2.5 米,当物体进入感应器的感应范围内时,感应门就会自动打开.一个身高 1.6 米的学生正对门,缓慢走到离门 1.2 米的地方时,1.5 米.答案】解:如图,过点 B 作 BC ⊥ AD 于点 C ,依题意知, BE =CD =1.6米,ED =BC =1.2 米, AD =2.5 米,则 AC =AD ﹣CD =AD ﹣ BE = 2.5﹣ 1.6= 0.9 米).在 Rt △ABC 中,由勾股定理得到: AB = ==1.5(米)故答案是: 1.5.则感应器的最大感应距离是【点睛】考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AB 的长度.8cm 的杯子,在它的正中间竖直放一根筷子,筷子露出杯子答案】解:设杯子的高度是 xcm ,那么筷子的高度是( x+1) cm ,由题意: x 2+4 2=( x+1)216= 2x+1, x = 7.5,∴ x+1 = 8.5∴筷长 8.5cm ,杯高 7.5cm . 故答案为 8.5.【点睛】本题考查勾股定理的应用,解题的关键是理解题意,学会利用参数构建方程解决问题.18.(2019 春?武城县期中)如图所示,圆柱的高 AB = 15cm ,底面周长为 40cm ,现在有一只蚂蚁想要从 A故答案为: 25cm .,筷子顶端刚好触到杯口,则筷子长度为 8.5 cm .C 处捕食,则它爬行的最短距离是 25cm答案】解:把圆柱侧面展开,展开图如右图所示,点 A 、C 的最短距离为线段 AC 的长.在 Rt △ADC 中,∠ ADC =90°,CD =AB =15,AD 为底面半圆弧长, AD 40=20,所以 AC = == 25,17.(2019 春 ?沂水县期中)如图,一个直径为【点睛】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.三.解答题(共 5 小题,满分46分)19.(9分)(2019春?路北区期中)在△ABC中,∠C=90°,a、b、c分别为∠ A、∠ B、∠ C的对边.(1)如果a=5,b=12,那么c=13 .(2)如果c=61,a=60,那么b=11 .(3)若∠ A=45°,a=2,则c= 2 .【答案】解:(1)∵在△ABC 中,∠C=90°,a=5,b=12,∴ c===13.故答案为13;(2)∵在△ABC 中,∠ C=90°,c=61,a=60,∴ b===11.故答案为11;(3)∵在△ABC 中,∠ C=90°,∠ A=45°,∴∠ B=90°﹣∠ A=45°,∴∠B=∠ A,∴b=a=2,∴ c=== 2 .故答案为 2 .【点睛】本题考查了勾股定理,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.20.(9 分)(2019 春?高安市期中)已知:如图,四边形ABCD 中,AB⊥BC,AB=1,BC=2,CD=3,AD【答案】解:连接AC.∵∠ ABC =90°,AB=1,BC =2,∴ AC===.在△ACD 中,AC2+CD 2=5+9=14=AD2,∴△ ACD 是直角三角形,∴S四边形ABCD=AB?BC+ AC?CD ,=×1×2+ × ×3=1+ .【点睛】本题考查的是勾股定理及其逆定理,三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.21.(9分)(2019春?江城区期中)如图,在锐角三角形A BC中,高AD=12,边AC=13,BC=14,求BD【答案】解:∵ AD⊥ BC,∴∠ ADC =90°,在Rt△ACD 中,CD===5,∵BC=14,∴BD=BC﹣CD=9.【点睛】本题考查了勾股定理的运用.关键是利用垂直的条件构造直角三角形,利用勾股定理求解.22.(9分)(2019春?全椒县期中)如图,有两棵树AB 和CD ,AB=10米,CD =4米,两树之间的距离BD =8米,一只鸟从 A 处飞到C处,则小鸟至少飞行多少米?【答案】解:连接AC,作CE⊥AB 于E,则AE=10﹣4=6(米),CE=BD=8 米.所以AC===10(米)即:小鸟至少飞行10 米.【点睛】本题考查勾股定理的应用.善于观察题目的信息是解题以及学好数学的关键.23.(10 分)(2019 春?江城区期中)“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?【答案】解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).∵242+182=302,即PQ2+PR2=QR2,∴∠ QPR=90°.由“远航号”沿东北方向航行可知,∠ QPS=45°,则∠ SPR=45°,即“海天”号沿西北或东南方向航行.。

(完整版)八年级数学勾股定理单元测试题(含答案)

(完整版)八年级数学勾股定理单元测试题(含答案)

勾股定理单元测试(时间:100分钟 总分:120分)姓名 得分一、相信你一定能选对!(每小题4分,共32分)1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n );④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( )A . ①②B . ②③C . ①③D . ③④3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a :b :c =13∶5∶12 4. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5B .25C .7D .5或76.已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是( )A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm 27.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( ) A .600米 B . 800米 C . 1000米 D. 不能确定 二、你能填得又快又对吗?(每小题4分,共32分)9. 在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.10.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和于.11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.12.直角三角形的三边长为连续偶数,则这三个数分别为__________.13.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米. 14.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为.15.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3米,同时梯子的顶端B下降至B’,那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.16.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .三、认真解答,一定要细心哟!(共72分)17.(5分)右图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.(6分)已知a、b、c是三角形的三边长,a=2n2+2n,b=2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△ABC为直角三角形.60121406BAC第10题图第13题图第14题图第15题图19.(6分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?20.(6分)如图所示,某人到岛上去探宝,从A处登陆后先往东走到4.5km处往东一拐,仅走0.5km就找到宝藏。

八年级初二数学第二学期勾股定理单元测试基础卷试卷

八年级初二数学第二学期勾股定理单元测试基础卷试卷

一、选择题1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )①∠ACD=2∠FAB ②27ACD S ∆= ③272CF =- ④ AC=AFA .①②③B .①②③④C .②③④D .①③④2.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为( ) A .10B .410C .13D .2133.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .94.如图,菱形ABCD 的对角线AC ,BD 的长分别为6cm ,8cm ,则这个菱形的周长为( )A .5cmB .10cmC .14cmD .20cm5.如图,在△ABC 中,∠A =90°,P 是BC 上一点,且DB =DC ,过BC 上一点P ,作PE ⊥AB 于E ,PF ⊥DC 于F ,已知:AD :DB =1:3,BC =46,则PE+PF 的长是( )A .6B .6C .42D .266.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )A .0B .1C .3D .27.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个8.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( ) A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =9.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).A .36B .1013C .60D .121310.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,BD =4,CF =6,设正方形ADOF 的边长为x ,则210x x +=( )A .12B .16C .20D .24二、填空题11.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.12.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.13.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.14.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.15.如图,已知△DBC 是等腰直角三角形,BE 与CD 交于点O ,∠BDC=∠BEC=90°,BF=CF ,若BC=8,OD=2,则OF=______.16.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.17.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2. 18.四边形ABCD 中AB =8,BC =6,∠B =90°,AD =CD =52,四边形ABCD 的面积是_______.19.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM =7EF ,则正方形ABCD 的面积为_______.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米. (1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE , (1)求证:ABD ACE ≅; (2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明; ②若3BD =,4CF =,求AD 的长,23.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.24.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =; (2)延长BD 与EF 交于点G . ①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.25.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E . (1)根据题意用尺规作图补全图形(保留作图痕迹); (2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由. ②若线段2AD EC =,求mn的值.26.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .(1)若OA =52,求点B 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若点A 的坐标为(2,2),射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由. ②在(3)①的条件下,在平面内另有三点P 1(2,2),P 2(2,22),P 3(2+2,2﹣2),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)27.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM . (1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.29.菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.(1)如图1,求∠BGD的度数;(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=43,求菱形ABCD的面积.30.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B 【分析】过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的. 【详解】解:如图,过点C 作CH AB ⊥于点H ,∵AC CD =,∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠, ∵AF CD ⊥, ∴90AGD ∠=︒, ∴90FAB CDA ∠=︒-∠, ∴2ACD FAB ∠=∠,故①正确; ∵3CG =,1DG =, ∴314CD CG DG =+=+=, ∴4AC CD ==, 在Rt ACG 中,221697AG AC CG =--=,∴1272ACDSAG CD =⋅= ∵90CHB ∠=︒,45B ∠=︒, ∴45HCB ∠=︒,∵AC CD =,CH AD ⊥, ∴12ACH HCD ACD ∠=∠=∠, ∵45AFC B FAB FAB ∠=∠+∠=︒+∠,45ACF ACH HCB ACH ∠=∠+∠=∠+︒,12ACH ACD FAB ∠=∠=∠,∴AFC ACF ∠=∠,∴4AC AF ==,故④正确;∴47GF AF AG =-=-,在Rt CGF 中,()2222347272CF CG GF =+=+-=-,故③正确.故选:B . 【点睛】本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理.2.D解析:D 【分析】根据已知设AC =x ,BC =y ,在Rt △ACD 和Rt △BCE 中,根据勾股定理分别列等式,从而求得AC ,BC 的长,最后根据勾股定理即可求得AB 的长. 【详解】如图,在△ABC 中,∠C =90°,AD 、BE 为△ABC 的两条中线,且AD =210,BE =5,求AB 的长. 设AC =x ,BC =y , 根据勾股定理得: 在Rt △ACD 中,x 2+(12y )2=(210)2, 在Rt △BCE 中,(12x )2+y 2=52, 解之得,x =6,y =4,∴在Rt △ABC 中,2264213AB =+= , 故选:D .【点睛】此题考查勾股定理的运用,在直角三角形中,已知两条边长时,可利用勾股定理求第三条边的长度.3.D解析:D 【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 4.D解析:D【解析】【分析】根据菱形的对角线互相垂直平分可得AC ⊥BD ,12OA AC =,12OB BD =,再利用勾股定理列式求出AB ,然后根据菱形的四条边都相等列式计算即可得解.【详解】 解:∵四边形ABCD 是菱形,∴AC ⊥BD ,11622OA AC ==⨯=3cm , 118422OB BD cm ==⨯=根据勾股定理得,5cm AB == ,所以,这个菱形的周长=4×5=20cm.故选:D.【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.解析:C【解析】【分析】根据三角形的面积判断出PE+PF的长等于AC的长,这样就变成了求AC的长;在Rt△ACD 和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的长,再利用勾股定理就可以求出AC的长,也就是PE+PF的长.【详解】∵△DCB为等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,∴S△BCD=12BD•PE+12CD•PF=12BD•AC,∴PE+PF=AC,设AD=x,BD=CD=3x,AB=4x,∵AC2=CD2-AD2=(3x)2-x2=8x2,∵AC2=BC2-AB2=()2-(4x)2,∴x=2,∴,∴故选C【点睛】本题考查勾股定理、等腰三角形的性质等知识,解题的关键是学会利用面积法证明线段之间的关系,灵活运用勾股定理解决问题,属于中考常考题型.6.D解析:D【分析】先确定黑、白两个甲壳虫各爬行完第2017条棱分别停止的点,再根据停止点确定它们之间的距离.【详解】根据题意可知黑甲壳虫爬行一圈的路线是AA1→A1D1→D1C1→C1C→CB→BA,回到起点.乙甲壳虫爬行一圈的路线是AB→BB1→B1C1→C1D1→D1A1→A1A.因此可以判断两个甲壳虫爬行一圈都是6条棱,因为2017÷6=336…1,所以黑、白两个甲壳虫各爬行完第2017条棱分别停止的点都是A1,B.,故选D.【点睛】此题考查了立体图形的有关知识.注意找到规律:黑、白甲壳虫每爬行6条边后又重复原来的路径是解此题的关键.解析:D【解析】分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.详解:①∵四边形ABCD和EFGC都为正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.8.C解析:C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.9.A解析:A【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=∴(()22221012x x -=-- ∴8x =∴6AD ===∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.10.D解析:D【分析】设正方形ADOF 的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,整理方程即可.【详解】解:设正方形ADOF 的边长为x ,由题意得:BE =BD =4,CE =CF =6,∴BC =BE +CE =BD +CF =10,在Rt △ABC 中,AC 2+AB 2=BC 2,即(6+x )2+(x +4)2=102,整理得,x 2+10x ﹣24=0,∴x 2+10x =24,故选:D .【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.二、填空题11.9625【分析】将△B´CF 的面积转化为求△BCF 的面积,由折叠的性质可得CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´CF ,CE ⊥AB ,可证得△ECF 是等腰直角三角形,EF =CE ,∠EFC =45°,由等面积法可求CE 的长,由勾股定理可求AE 的长,进而求得BF 的长,即可求解.【详解】根据折叠的性质可知,CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´CF ,CE ⊥AB , ∴∠DCE +∠B´CF =∠ACE +∠BCF , ∵∠ACB =90°,∴∠ECF =45°,且CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF =CE ,∠EFC =45°,∵S △ABC =12AC•BC =12AB•CE , ∴AC•BC =AB•CE ,∵根据勾股定理求得AB =10,∴CE =245, ∴EF =245,∵AE 185, ∴BF =AB−AE−EF =10-185-245=85, ∴S △CBF =12×BF ×CE =12×85×245=9625, ∴S △CB´F =9625, 故填:9625. 【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.12.48【分析】用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积.【详解】解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,则()221S AB a b ==+,2222S HE a b ==+,()223S TM a b ==-, ∵123144S S S ++=,∴()()2222144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=2233144a b+=2248a b+=,∴248S=.故答案是:48.【点睛】本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.13..(3,4)或(2,4)或(8,4).【分析】题中没有指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【详解】解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=22OP OC-=2254-=3,则P的坐标是(3,4).②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM=22PD DM-=3,当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).【点睛】本题考查了等腰三角形的性质和勾股定理的运用等知识,注意正确地进行分类,考虑到所有可能的情况并进行分析求解是解题的关键.14.75或6或9 4【分析】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP 时,分别求出BP的长度,继而可求得t值.【详解】在Rt △ABC 中,BC 2=AB 2﹣AC 2=7.52﹣4.52=36,∴BC =6(cm );①当AB =BP =7.5cm 时,如图1,t =7.52=3.75(秒); ②当AB =AP =7.5cm 时,如图2,BP =2BC =12cm ,t =6(秒);③当BP =AP 时,如图3,AP =BP =2tcm ,CP =(4.5﹣2t )cm ,AC =4.5cm , 在Rt △ACP 中,AP 2=AC 2+CP 2,所以4t 2=4.52+(4.5﹣2t )2,解得:t =94, 综上所述:当△ABP 为等腰三角形时,t =3.75或t =6或t =94. 故答案为:3.75或6或94.【点睛】此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.15.10【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC =∴422DC DB ===∵OD =∴OC DC OD =-=∴OB =设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+∴OE =∴17EC ==∵BF CF =,FG ⊥BE ,∠BEC=90°∴1217FG EC ==∴17BE BO OE =+=∴12GO GE OE BE OE =-=-=∴OF =【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.16.258【分析】 先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴=5;∵DE 垂直平分AC ,垂足为F ,∴FA=12AC=52,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C ,∴△AFD ∽△CBA , ∴AD AC =FA BC ,即AD 5=2.54,解得AD=258;故答案为258. 【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17.8或10或12或25 3【详解】解:①如图1:当BC=CD=3m时,AB=AD=5m,AC⊥BD,此时等腰三角形绿地的面积:12×6×4=12(m2);②如图2:当AC=CD=4m时,AC⊥CB,此时等腰三角形绿地的面积:12×4×4=8(m2);③如图3:当AD=BD时,设AD=BD=xm,在Rt△ACD中,CD=(x-3)m,AC=4m,由勾股定理,得AD2=DC2+CA2,即(x-3)2+42=x2,解得x=256,此时等腰三角形绿地的面积:12BD·AC=12×256×4=253(m2);④如图4,延长BC 到D ,使BD=AB=5m ,故CD=2m , 此时等腰三角形绿地的面积:12BD·AC=12×5×4=10(m 2); 综上所述,扩充后等腰三角形绿地的面积为8m 2或12m 2或10m 2或253m 2. 点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.18.49【解析】连接AC ,在Rt △ABC 中,∵AB =8,BC =6,∠B =90°,∴AC =22AB BC =10. 在△ADC 中,∵AD =CD =52,∴AD 2+CD 2=(52)2+(52)2=100.∵AC 2=102=100,∴AD 2+CD 2=AC 2,∴∠ADC =90°,∴S 四边形ABCD =S △ABC +S △ACD =12AB •BC +12AD •DC =12×8×6+12×52×52=24+25=49.点睛:本题考查的是勾股定理及勾股定理的逆定理,不规则几何图形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM 7EF ,2,,2a a∴==∵正方形EFGH的面积为4,∴24b=,∴正方形ABCD的面积=2224+832.a b b==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.20.【分析】根据三角形等面积法求出32ACBC=,在Rt△ACD中根据勾股定理得出AC2=14BC2+36,依据这两个式子求出AC、BC的值.【详解】∵AD是BC边上的高,BE是AC边上的高,∴12AC•BE=12BC•AD,∵AD=6,BE=4,∴ACBC=32,∴22ACBC=94,∵AB=AC,AD⊥BC,∴BD=DC=12BC,∵AC2﹣CD2=AD2,∴AC2=14BC2+36,∴221364BCBC+=94,整理得,BC2=3648⨯,解得:BC=∴△ABC的面积为12×cm2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.22.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,AD ===故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.23.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2, ∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.24.(1)见解析;(2)①见解析;②2.【分析】(1)当D 、E 两点重合时,则AD=CD ,然后由等边三角形的性质可得∠CBD 的度数,根据等腰三角形的性质和三角形的外角性质可得∠F 的度数,于是可得∠CBD 与∠F 的关系,进而可得结论;(2)①过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则易得△AHE 是等边三角形,根据等边三角形的性质和已知条件可得EH=CF ,∠BHE =∠ECF =120°,BH =EC ,于是可根据SAS 证明△BHE ≌△ECF ,可得∠EBH =∠FEC ,易证△BAE ≌△BCD ,可得∠ABE =∠CBD ,从而有∠FEC =∠CBD ,然后根据三角形的内角和定理可得∠BGE =∠BCD ,进而可得结论; ②易得∠BEG =90°,于是可知△BEF 是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE 和BF 的长,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM 、MC 、CF 、FN 、CN 、GN 的长,进而可得△GCN 也是等腰直角三角形,于是有∠BCG =90°,故所求的△BCG 的面积=12BC CG ⋅,而BC 和CG 可得,问题即得解决. 【详解】 解:(1)∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,当D 、E 两点重合时,则AD=CD ,∴1302DBC ABC ∠=∠=︒, ∵CF CD =,∴∠F =∠CDF ,∵∠F +∠CDF =∠ACB =60°,∴∠F =30°,∴∠CBD =∠F ,∴BD DF =;(2)①∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB=AC ,过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则∠AHE =∠ABC =60°,∠AEH =∠ACB =60°,∴△AHE 是等边三角形,∴AH=AE=HE ,∴BH =EC ,∵AE CD =,CD=CF ,∴EH=CF ,又∵∠BHE =∠ECF =120°,∴△BHE ≌△ECF (SAS ),∴∠EBH =∠FEC ,EB=EF ,∵BA=BC ,∠A =∠ACB =60°,AE=CD ,∴△BAE ≌△BCD (SAS ),∴∠ABE =∠CBD ,∴∠FEC =∠CBD ,∵∠EDG =∠BDC ,∴∠BGE =∠BCD =60°;②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,∵EB=EF ,∴∠F =∠EBF =45°,∵∠EBG =30°,BG =4,∴EG =2,BE 3∴BF 226BE =232GF =,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形, ∴6BM ME MF ===∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =266262CF ==∴262312CN FN ===, ∴)2323131GN GF FN CN =-=-==, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB , ∴62CG CF ==∴△BCG 的面积=116262222BC CG ⋅==. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.25.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案; ②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ====2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.26.(1)(5,0);(2)见解析;(3)①P (4,2),②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.理由见解析【分析】(1)由题意可以假设A (a ,a )(a >0),根据AB 2+OB 2=OA 2,构建方程即可解决问题; (2)由角平分线的性质定理证明CH=CF ,CG=CF 即可解决问题;(3)①如图3中,在BC 的延长线上取点P ,使得CP=DB ,连接AP .只要证明△ACP ≌△CDB (SAS ),△ABP 是等腰直角三角形即可解决问题;②根据SAS 即可判断满足△ACP 与△BDC 全等的点是P 1、P 2,P 3;【详解】解:(1)∵点A 在射线y =x (x ≥0)上,故可以假设A (a ,a )(a >0), ∵AB ⊥x 轴,∴AB =OB =a ,即△ABO 是等腰直角三角形,∴AB 2+OB 2=OA 2,∴a 2+a 2=()2,解得a =5,∴点B 坐标为(5,0).(2)如图2中,作CF ⊥x 轴于F .∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP1=BD,AC=CD,∠CAP1=∠CDB,根据SAS可得△CAP1≌△CDB;AP2=BD,AC=CD,∠CAP2=∠CDB,根据SAS可得△CAP2≌△CDB;AC=CD,∠ACP3=∠BDC,BD=CP3根据SAS可得△CAP3≌△DCB;故答案为P1、P2,P3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.27.(1)45°;(2)GF=AG+CF,证明见解析;(3)①6;②s ab=,理由见解析.【解析】【分析】(1)如图1中,连接BE.利用全等三角形的性质证明EB=ED,再利用等角对等边证明EB=EF即可解决问题.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,证明△GDH≌△GDF(SAS)即可解决问题.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,利用勾股定理构建方程求出x即可.②设正方形边长为x,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE.∵四边形ABCD是正方形,∴CD=CB,∠ECD=∠ECB=45°,∵EC=EC,∴△ECB≌△ECD(SAS),∴EB=ED,∠EBC=∠EDC,∵∠DEF=∠DCF=90°,∴∠EFC+∠EDC=180°,∵∠EFB+∠EFC=180°,∴∠EFB=∠EDC,∴∠EBF=∠EFB,∴EB=EF,∴DE=EF,∵∠DEF=90°,∴∠EDF=45°故答案为45°.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,∵∠DAC=90°,∴∠DAC+∠DAH=180°,∴H、A、G三点共线,∴GH=AG+AH=AG+CF,∵∠EDF=45°,∴∠CDF+∠ADG=45°,∴∠ADH+∠ADG=45°∴∠GDH=∠EDF=45°又∵DG=DG∴△GDH ≌△GDF (SAS )∴GH=GF ,∴GF=AG+CF .(3)①设CF=x ,则AH=x ,BF=6-x ,GF=3+x ,则有(3+x )2=(6-x )2+32,解得x=2∴S △BFG =12•BF•BG=6. ②设正方形边长为x ,∵AG=a ,CF=b ,∴BF=x-b ,BG=x-a ,GF=a+b ,则有(x-a )2+(x-b )2=(a+b )2,化简得到:x 2-ax-bx=ab ,∴S=12(x-a )(x-b )=12(x 2-ax-bx+ab )=12×2ab=ab . 【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.28.(1),CM ME CM EM =⊥;(2)见解析;(3)CM =【解析】【分析】(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.【详解】解:(1)结论:CM =ME ,CM ⊥EM .理由:∵AD ∥EF ,AD ∥BC ,∴BC ∥EF ,∴∠EFM =∠HBM ,在△FME 和△BMH 中,EFM MBH FM BMFME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△FME ≌△BMH (ASA ),。

(完整版)初二数学_勾股定理_单元测试题及答案_2,推荐文档

(完整版)初二数学_勾股定理_单元测试题及答案_2,推荐文档

24 31《勾股定理》单元模拟试题一、选择题:本大题共 12 小题,每小题选对得 3 分.1.已知三角形的两边长分别为 4cm 和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm2.能将三角形面积平分的是三角形的()A、角平分线B、高C、中线D、外角平分线3.三角形一个外角小于与它相邻的内角,这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定4.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE第4 题第5 题图第6 第7 题图5.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A、900B、1200C、1600D、18006.如图所示,点B、C、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是()A. △ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA7.要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是()A.边角边B.角边角C.边边边D.边边角8.已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A 与∠D 互为余角B.∠A=∠2C.△ABC≌△CED D.∠1=∠2 9.如图,在直角三角形ABC 中,AC≠AB,AD 是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A、3 个B、4 个C、5 个D、6 个第8 题图11 题第 12题、 10. 一个多边形内角和是 10800,则这个多边形的边数为( )A 、 6B 、 7C 、 8D 、 911. 小冬不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块), 你认为将其中的哪一块带去,能配一块与原来一样大小的三角形?应该带 ( )A. 第1块B.第2块C.第3块D. 第4块12. 如图,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线 BD ,CE 相交于 O 点,且 BD 交 AC 于点 D ,CE 交 AB 于点 E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌△ BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③B.②③④C.①③⑤D.①③④ 非选择题 (共 84 分)二、填空题:本大题共 5 小题,共 20 分,只要求填写最后结果,每小题填对得 4 分. 13. 为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是.14. 如图,已知∠1=∠2,请你添加一个条件: ,使△ABD≌△ACD.第 13 题图第 16 题图15、如图,小华从点 A 出发向前走 10m ,向右转 15°,然后继续向前走 10m ,再向右转 15°, 他以同样的方法继续走下去,当他第一次回到点 A 时共走了 m 。

初二勾股定理测试题及答案

初二勾股定理测试题及答案

初二勾股定理测试题及答案一、选择题1. 在直角三角形中,如果直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 82. 已知一个三角形的两边长分别为5和12,且这两边构成直角,那么第三边的长度是多少?A. 10B. 13C. 15D. 17二、填空题3. 如果一个直角三角形的直角边长分别为6和8,那么斜边的长度是_________。

4. 直角三角形的斜边长为13,一条直角边长为5,另一条直角边的长度是_________。

三、计算题5. 在一个直角三角形中,如果已知斜边长为10,一条直角边长为6,求另一条直角边的长度。

6. 一个直角三角形的两条直角边长分别为x和y,斜边长为z。

已知x=9,y=12,求z的值。

四、解答题7. 一个梯形的两底边长分别为3和5,高为4,求梯形的对角线长度。

8. 一个长方体的长、宽、高分别为3米、4米和5米,求这个长方体的对角线长度。

答案:一、选择题1. A(根据勾股定理:3² + 4² = 5²)2. B(根据勾股定理:5² + 12² = 13²)二、填空题3. 10(根据勾股定理:6² + 8² = 10²)4. 12(根据勾股定理:5² + 12² = 13²)三、计算题5. 另一条直角边的长度为8(根据勾股定理:6² + 8² = 10²)6. z的值为15(根据勾股定理:9² + 12² = 15²)四、解答题7. 梯形的对角线长度为5(根据勾股定理:(3+5)² + 4² = 5²)8. 长方体的对角线长度为5(根据勾股定理:3² + 4² + 5² = 50,再开方得5)结束语:通过本次测试,我们复习了勾股定理的应用,希望同学们能够熟练掌握并灵活运用勾股定理解决实际问题。

第一章 勾股定理 章节测试2022-2023学年北师大版八年级数学上册

北师大版八上勾股定理章节测试一、选择题(共11小题)1. 一个直角三角形的三边长分别为3,4,x,则x2为( )A. 5B. 25C. 7D. 7或252. 如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )A. 0.4B. 0.6C. 0.7D. 0.83. 如图所示,正方体的棱长为1,一只蜘蛛从正方体的一个顶点A爬行到另一个顶点B,则蜘蛛爬行的最短距离的平方是( )A. 2B. 3C. 4D. 54. 【例4】下列结论中,错误的有( )①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90∘;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形.A. 0个B. 1个C. 2个D. 3个5. 如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )A. 3cmB. 4cmC. 5cmD. 6cm6. 如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的Bʹ.则这根芦苇的长度是( )A. 10尺B. 11尺C. 12尺D. 13尺7. 如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A. 16cmB. 18cmC. 20cmD. 24cm8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是( )A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长为( )A. a+bB. a−bC. √a2+b22D. √a2−b2210. 如图 所示,矩形纸片 ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点 C 与点 A重合,则 AF 的长为 ( )A. 258 cmB. 254 cmC. 252 cmD. 8 cm11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为 0.7 米,顶端距离地面 2.4 米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面 2 米,则小巷的宽度为 ( )A. 2.2 米B. 2.3 米C. 2.4 米D. 2.5 米二、填空题(共10小题)12. 如图所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则 AE = .13. 如图,有一块直角三角形纸片 ABC ,两直角边 AC =6,BC =8,现将直角边 AC 沿直线 AD 折叠,使它落在斜边 AB 上,点 C 与点 E 重合,则 CD 长为 .14. 如图,在一个长为 2 米,宽为 1 米的纸板上有一长方体木块,它的长和纸板宽 AD 平行且大于AD ,木块的正面是边长为 0.2 米的正方形,一只蚂蚁从 A 处爬行到 C 处需要走的最短路程是 米.15. 已知三角形的三边长分别为AB=2cm,BC=2√3cm,CA=4cm,则此三角形面积是.16. 如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在Rt△ABC中,∠ABC=90∘,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点Bʹ处,则BE的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在△ABC中,∠ABC=90∘,分别以BC,AB,AC为边向外作正方形,面积分别记为S1,S2,S3,若S2=4,S3=6,则S1=.20. 阅读下列题目的解题过程:已知a,b,c为△ABC的三边,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.解:∵a2c2−b2c2=a4−b4,(A)∴c2(a2−b2)=(a2+b2)(a2−b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为;(3)本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索AC的长为x尺,木柱AB的长用含x的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长.23. 如图,有一只小鸟在一棵高4m的小树的树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,该小鸟立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,∠ABC=90∘,AB=12厘米,点P从A点开始沿AB边向B点移动,P的速度为2厘米/秒.点Q同时从点B开始沿BC边向C移动,Q的速度为3厘米/秒.几秒后,两点相距10厘米?25. 如图所示,若OA=3,OB=4,AB=5,OC=5,OD=12,CD=13,则∠BOC+∠AOD的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为1,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图1中画一条线段AB,使AB=√17,并标出AB的中点M;(2)在图2中画一条线段CD,使CD=2√13,并标出CD的中点N.27. 如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EBʹF,连接BʹD,求BʹD的最小值.28. 如图,某学校(A点)到公路(直线D)的距离为300m,到公交站(D点)的距离为500m,现要在公路边上建一个商店(C点),使之到学校A及到车站D的距离相等,求商店C与车站D之间的距离.答案1. D2. D【解析】∵AB=2.5米,AC=0.7米,∴BC=√AB2−AC2=2.4(米),∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC−0.4=2米,∴DC=√DE2−EC2=1.5米.∴梯子的底部向外滑出AD=1.5−0.7=0.8(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接AB,如图所示,爬行的最短路径为线段AB.由勾股定理得,AB2=(1+1)2+12=5,故选D.4. C【解析】①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或√7,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90∘,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.5. A【解析】在Rt△ABC中,由勾股定理可知:AB=√BC2+AC2=√82+62=10,由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90∘,∴BE=AB−AE=10−6=4,∠DEB=90∘,设DC=x,则BD=8−x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8−x)2,解得:x=3,∴CD=3.6. D 【解析】设芦苇长AB=ABʹ=x尺,则水深AC=(x−1)尺,因为边长为10尺的正方形,所以BʹC=5尺.在Rt△ABʹC中,52+(x−1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.7. C 【解析】如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=12×24=12cm,EF=18−1−1=16cm,在Rt△FES中,由勾股定理得:SF=√SE2+EF2=√122+162=20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.8. C【解析】A.正面向上的可能性为12;B.正面不向上的可能性为12;C.正面或反面向上的可能性为1;D.正面和反面都不向上的可能性为0.9. C【解析】设CD=x,则DE=a−x,∵HG=b,∴AH=CD=AG−HG=DE−HG=a−x−b=x,∴x=a−b2,∴BC=DE=a−a−b2=a+b2,∴BD2=BC2+CD2=(a+b2)2+(a−b2)2=a2+b22,∴BD=√a2+b22.10. B【解析】设AF=x cm,则DF=(8−x)cm .∵矩形纸片ABCD中,AB=6,BC=8,现将其沿EF对折,使得点C与点A重合,∴DF=DʹF.在Rt△ADʹF中,∵AF2=ADʹ2+DʹF2,∴x2=62+(8−x)2 .解得x=25.411. A 【解析】如图,在Rt△ACB中.∵∠ACB=90∘,BC=0.7米,AC=2.4米,AB2=AC2+BC2,∴AB2=0.72+2.42=6.25.在Rt△AʹBD中,∵∠AʹBD=90∘,AʹD=2米,BD2+AʹD2=AʹB2,∴BD2+22=6.25.∴BD2=2.25.∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.即小巷的宽度为2.2米,故答案选A.12. 2【解析】∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC=√AB2+BC2=√12+12=√2;AD=√AC2+CD2=√(√2)2+12=√3;AE=√AD2+DE2=√(√3)2+12=2.13. 314. 2.6【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接AC,AB=2+0.2×2=2.4米,BC=1米,∴AC2=2.42+12=6.76=2.62,∴AC=2.6米,∴妈蚁从A处爬行到C处需要走的最短路程为2.6米.15. 2√3cm216. 9【解析】在Rt△ABC中:∵∠CAB=90∘,BC=17米,AC=8米,∴AB=√BC2−AC2=√172−82=15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17−1×7=10(米),∴AD=√CD2−AC2=√102−82=6(米),∴BD=AB−AD=15−6=9(米),答:船向岸边移动了9米.17. 3218. 2米【解析】若假设竹竿长x米,则水深(x−0.5)米,由题意得,x2=1.5x+(x−0.5)2,解之得,x=2.5.所以水深2.5−0.5=2米.19. 2【解析】∵△ABC中,∠ABC=90∘,∴AB2+BC2=AC2,∴BC2=AC2−AB2.∵BC2=S1,AB2=S2=4,AC2=S3=6,∴S1=S3−S2=6−4=2.20. C,没有考虑a=b的情况,△ABC是等腰三角形或直角三角形21. x−3,(x−3)2+82=x2【解析】x−3;由题意可知AB⊥BC,由勾股定理可得(x−3)2+82=x2.22. 由题意得DB=AD;设CD=xcm,则AD=DB=(8−x)cm,∵∠C=90∘,∴在Rt△ACD中,根据勾股定理得:AD2−CD2=AC2,即(8−x)2−x2=36,解得x=7;4cm.即CD=7423. 这只小鸟至少经过5s才能到达大树和伙伴在一起.秒或2秒24. 221325. 在△AOB中,OA=3,OB=4,AB=5,所以OA2+OB2=AB2,所以△AOB是直角三角形,且∠AOB=90∘,在△COD中,OC=5,OD=12,CD=13,所以OC2+OD2=CD2,所以△COD是直角三角形,且∠COD=90∘,所以∠BOC+∠AOD=∠AOB+∠COD=90∘+90∘=180∘.26. (1)如图1,AB=√17,点M为线段AB的中点.(2)如图2,CD=2√13,点N为线段CD的中点.27. 如图,当∠BEF=∠DEF,点Bʹ在DE上时,BʹD的值最小.根据折叠的性质,得△EBF≌△EBʹF,所以EBʹ⊥FBʹ,EBʹ=EB .因为E是AB边的中点,AB=4,所以AE=EBʹ=2 .因为AD=6,所以DE=√62+22=2√10,所以BʹD=2√10−2 .28. 过点A作AB⊥l于点B,AD=500,AB=300,∴BD=400,设CD=AC=x,则BC=400−x,在Rt△ABC中,x2=(400−x)2+3002,x=312.5,∴CD=312.5m.。

八年级数学《勾股定理》单元测试题(A卷)

八年级数学《勾股定理》单元测试题(A 卷)一.选择题(共10小题)1.满足下列条件中的△ABC ,不是直角三角形的是( )A .a 2=b 2﹣c 2B .∠A ﹣∠B =∠C C .∠A :∠B :∠C =3:4:5D .a :b :c =7:24:252.下列给出的三条线段中,不能构成直角三角形的是( )A .4,8,4√3B .4,8,4√5C .7,24,25D .7,14,153.一直角三角形的两直角边长为6和8,则斜边长为( )A .10B .13C .7D .144.如图,由六个边长为1的小正方形构成一个大长方形,连接小正方形的三个顶点,可得到△ABC ,则△ABC 中BC 边上的高是( )A .25√10B .√2C .2√2D .35√105.下列几组数,不能作为直角三角形的三边长的是( )A .5,12,13B .2,3,4C .3,4,5D .7,24,256.如图,数轴上的点A 表示的数是﹣1,点B 表示的数是1,CB ⊥AB 于点B ,且BC =2,以点A 为圆心,AC 的长为半径画弧交数轴正半轴于点D ,则点D 表示的数为( )A .√2B .2√2C .2√2−1D .2√2+17.如图,在四边形ABCD 中,AD =5,CD =3,∠ABC =∠ACB =∠ADC =45°,则BD 的长为( )A.√34B.√41C.√43D.√598.下列各组数中,能作为直角三角形边长的是()A.1,2,3B.6,7,8C.1,1,√3D.5,12,13 9.以2,3为直角边的直角三角形斜边长为()A.√5B.√13C.4D.510.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A﹣∠B=∠C B.∠A:∠B:∠C=3:4:5C.(b+c)(b﹣c)=a2D.a=7,b=24,c=25二.填空题(共5小题)11.已知三角形三边长分别是6,8,10,则此三角形的面积为.12.如图,图中所有四边形都是正方形,三角形是直角三角形,若正方形A,B的面积分别为10,18,则正方形C的面积是.13.如图,在△ABC中,∠ABC=90°,AB=2BC=4,在AC上截取CD=CB.在AB上截取AP=AD,则AP=.14.如图是一株美丽的勾股树,所有四边形都是正方形,所有三角形是直角三角形,若正方形A、B、C面积为2、8、5,则正方形D的面积为.15.小明在小区放风筝时,风筝意外挂在了树的顶端,热爱思考的他制定了一个测量树高的方案.如图,在地面A处测得手中剩下的风筝线为4米.后退6米后,在地面B处风筝线恰好用完(点N在点M的正下方,A、B、N在同一条直线上).已知风筝线总长为8米.则这棵树的高度MN为.三.解答题(共8小题)16.如图,在笔直的公路AB旁有一座山,从山另一边的C处到公路上的停靠站A的距离为AC=15km,与公路上另一停靠站B的距离为BC=20km,停靠站A、B之间的距离为AB =25km,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,且CD ⊥AB.(1)请判断△ABC的形状?(2)求修建的公路CD的长.17.面积、体积探究.如图,三角形ABC为直角三角形,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大19平方厘米,求BC的长.(取π=3)18.如图,每个小正方形的边长都是1,△ABC的三个顶点分别在正方形网格的格点上,试判断△ABC的形状,并说明理由.19.八年级二班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:(1)测得BD的长度为15米.(注:BD⊥CE)(2)根据手中剩余线的长度计算出风筝线BC的长为25米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.20.如图,在△ABC中,AD⊥BC,垂足为D,且AB=15,AD=12,CD=16.求证:△ABC是直角三角形.21.如图,Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边长,且a+b=7,c=5,求Rt△ABC的面积.22.已知:如图,△ABC中,D是AB中点,若AC=12,BC=5,CD=6.5,求证:△ABC 是直角三角形.23.已知:如图,四边形ABCD中,∠ACB=90°,AB=15,BC=9,AD=5,DC=13.求证:△ACD是直角三角形.。

八年级数学(上)第一章《勾股定理》测试题及答案

八年级数学(上)第一章《勾股定理》测试题及答案选择题
1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()
A.4
B.8
C.10
D.12
2.小丰的妈妈买了一部29英寸(74m)的电视机,下列对29英寸的说法中正确的是()
A.小丰认为指的是屏幕的长度
B.小丰的妈妈认为指的是屏幕的宽度
C.小丰的爸爸认为指的是屏幕的周长
D.售货员认为指的是屏幕对角线的长度
3.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()
A.钝角三角形
B.锐角三角形
C.直角三角形
D. 等腰三角形
4.一直角三角形的一条直角边长是 7cm,另一条直角边与斜边长的和是 49cm,则斜边的长()
A.18cm
B.20 cm
C.24 cm
D.25cm
填空题
1. 小华和小红都从同一点0出发,小华向北走了9米到 A 点,小红向东走了12米到了B点,则AB=_____米。

2.一个三角形三边满足(a+b)2-c2=2ab,则这个三角形是_____三角形。

3.木工做一个长方形桌面,量得桌面的长为 60cm,宽为
32cm,对角线为 68cm,这个桌面______(填“合格”或“不合格”)。

4.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为_______。

参考答案:
选择题:CDCD
填空题:1.15;2.直角;3.合格;4.30。

2024~2025学年八年级数学上册第一章勾股定理单元检测[含答案]

1.下列不能构成直角三角形三边长的是 ( )A .1、2、3B .6、8、10C .3、4、5D .5、12、132.下列长度的三条线段能组成锐角三角形的是( )A .6,8,8B .6,8,10C .6,8,12D .6,8,143.在Rt ABC △中,90C Ð=°,12AC =,9BC =,则正方形ABDE 的面积为( )A .81B .144C .225D .1694.在Rt ABC △中,90C Ð=°,若6cm 10cm BC AB ==,,则ABC V 的面积是( )A .24cm²B .36cm²C .48cm²D .60cm²5.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要( ).A .3米B .4米C .5米D .7米6.如图,在33´的正方形网格中标出了1Ð和2Ð,则12Ð+Ð=( )A .45°B .30°C .60°D .90°7.如图,一根竖直生长的竹子,原高一丈(一丈=10尺),折断后,其竹稍恰好抵地(地面水平),抵地处离竹子底端6尺远,则折断处离地面的高度是( )A .8尺B .345尺C .165尺D .8.分别以Rt ABC △的三条边向外作三个正方形,连接EC ,BG ,若设1EBC S S =△,2BCG S S =△,3BCIH S S =正方形,则1S ,2S ,3S 之间的关系为( )A .12322S S S +=B .12333S S S +=C .123S S S +=D .123223S S S +=9.如图,一个底面为正六边形的六棱柱,在六棱柱的侧面上,从顶点A 到顶点B 镶有一圈金属丝,已知此六棱柱的高为5cm ,底面边长为2cm ,则这圈金属丝的长度至少为( )A .8cmB .13cmC .12cmD .15cm10.下列各组数据的三个数,是勾股数的有( )①23,24,25 ②6,8,10 ③7,24,25 ④13,14,15⑤1.5,2,2.5A .1个B .2个C .3个D .4个11.如图,90ABC Ð=°,3CB =,5AC =,则阴影部分的面积是 .12.如图,在四边形ABCD 中,90A Ð=°,4cm AB =,2cm AD =,BC CD =,E 是AB 上的一点.若沿CE 折叠,使B ,D 两点重合,则AED △的面积为 .13.我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦.如图1所示,数学家刘徽(约公元225年—公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理.如图2所示的长方形,是由两个完全相同的“勾股形”拼接而成,若3a =,1b =,则长方形的面积为 .14.如图(1),在某居民小区内有一块近似长方形的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,仅仅少走了几步路,却踩伤了花草,如图(2),经过测量3m AC =,4m AB =,计算仅仅少走了 步.(假设1米为2步)15.如图,一根长16cm 的牙刷置于底面直径为6cm 、高8cm 的圆柱形水杯中,牙刷露在杯子外面的长度为hcm ,则h 的取值范围是 .16.在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲乙两艘巡逻艇立即从相距13海里的A 、B 两基地前去拦截,6分钟后同时到达C 地成功将其拦截,已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,则甲巡逻艇航向为北偏东 °17.如图,在直线l 上依次摆放着7个正方形,斜放置的三个正方形的面积分别是4,6,8,正放置的四个正方形的面积分别是1234,,,S S S S ,则1234S S S S +++= .18.如图,ABC V 的顶点都在边长为1的正方形网格上.BD AC ^于点D ,则BD = .19.如图,在ΔABC 中,50cm AB =,30cm BC =,90C Ð=°,点P 从点A 开始沿AC 边向点C 以2cm/s 的速度移动,则几秒后,PCB D 的面积等于2450cm ?20.如图,在Rt ABC △中,90C Ð=°,5cm AB =,3cm BC =,D 为AC 上的一点,将BCD △沿BD 折叠,使点C 恰好落在AB 上的点E 处.(1)求AC 的长.(2)求AD 的长.21.如图,90ACB Ð=°,AD CE ^,BE CE ^,垂足分别为D ,E ,5BE CD ==,13AC =.(1)求ABC Ð的度数;(2)求线段DE 的长度.22.如图,两条公路1l 、2l 交于点O ,在公路2l 旁有一学校A ,与O 点的距离为170m ,点A (学校)到公路1l 的距离AM 为80m .一大货车从O 点出发,行驶在公路1l 上,汽车周围100m 范围内有噪音影响.(1)货车开过学校是否受噪音影响?为什么?(2)若汽车速度为180/km h ,则学校受噪音影响多少秒钟?23.勾股定理是初等几何中最重要的定理之一,它的证明方法很多,如图1是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,通过对图形的切割、拼接,巧妙的利用面积关系证明了勾股定理.(1)定理证明:图1是由四个全等的直角三角形围成的一个大正方形,中间的部分是一个小正方形(阴影).如果直角三角形较小的直角边长为a,较大的直角边长为b,斜边长为c,请你根据图1证明勾股定理;(2)问题解决:p,蚂蚁在圆柱表面爬行,从点A爬到点B的如图2,圆柱的底面半径为40cm,高为30cm最短路程是多少厘米?(结果保留π)1.A【分析】本题考查了勾股定理的逆定理,根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、222123+¹,不符合勾股定理的逆定理,不能作为直角三角形三边长,故该选项符合题意;B 、2226810+=,符合勾股定理的逆定理,能作为直角三角形三边长,故该选项不符合题意;C 、222345+=,符合勾股定理的逆定理,能作为直角三角形三边长,故该选项不符合题意;D 、22251213+=,符合勾股定理的逆定理,能作为直角三角形三边长,故该选项不符合题意.故选:A .2.A【分析】根据勾股定理求出以较短的两条边为直角边的三角形的斜边的长度,然后与较长边进行比较作出判断即可.【详解】解:A 、108=>,688+>,∴能组成锐角三角形;B 、10=是直角三角形,∴不能组成锐角三角形;C 1012=<,6812+>,∴不能组成锐角三角形;D 、∵6814+=,∴不能组成三角形.故选:A .【点睛】本题考查勾股定理的逆定理,利用勾股定理求出直角三角形的斜边是解题的关键.3.C【分析】此题主要考查了勾股定理以及正方形的面积求法,得出2AB 的值是解题关键.【详解】解:因为90,12,9C AC BC Ð=°==,所以正方形ABDE 的面积为22222912225AB BC AC =+=+=,故选C .4.A【分析】本题主要考查了勾股定理,三角形的面积等知识,熟练掌握勾股定理是解题的关键.利用勾股定理求出AC 的长,再代入直角三角形的面积公式即可.【详解】解:由勾股定理得,8(cm)AC ==,Rt ABC \V 的面积为2118624(cm )22AC BC ´´=´´=,故选:A5.D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度4==(米),Q 地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,\地毯的长度至少是347+=(米).故选:D .【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.6.A【分析】连接,CD DE ,先根据勾股定理的逆定理证明CDE V 是直角三角形,再根据CD DE ==45DCE DEC Ð=Ð=°,进而可得1345Ð+Ð=°,然后利用平行线的性质可得23ÐÐ=,再利用等量代换即可解答.【详解】解:如图:连接,CD DE ,由题意得:222125CD =+=,2221310CE =+=,222125ED =+=,∴222CD DE CE +=,∴CDE V 是直角三角形,∵CD DE ==∴45DCE DEC Ð=Ð=°,∴139045DCE Ð+Ð=°-Ð=°,∵AB CD ∥,∴23ÐÐ=,∴1245Ð+Ð=°.故选:A .【点睛】本题考查了勾股定理的逆定理、等腰直角三角形等知识点,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.7.C【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(10-x )尺,利用勾股定理解题即可.【详解】解:设竹子折断处离地面x 尺,则斜边为(10-x )尺,根据勾股定理得:x 2+62=(10-x )2.解得165x =∴折断处离地面的高度为165尺.故选:C .【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.8.A【分析】本题考查勾股定理;根据勾股定理可得222AB AC BC +=,再由正方形、三角形面积公式可得2ABED S AB =正方形,2ACGF S AC =正方形,23BCIH S S BC ==正方形,212AB S =,222AC S = ,即可得出答案.【详解】解:如图,过点A 作AK ⊥HI 于点K ,交BC 于点J ,Q Rt ABC △中,90BAC Ð=°,\222AB AC BC +=,Q 四边形ABED 、四边形ACGF 、四边形BCIH 均为正方形,\2223ABED ACGF BCIH S AB S AC S S BC ====正方形正方形正方形,,,Q 正方形ABED 与EBC V 同底等高,\122EBC ABED S S S ==正方形V ,\212AB S =,Q 正方形ACGF 与EBC V 同底等高,\222BCG ACGF S S S ==正方形V ,\222AC S =,Q 3BCIH S S =正方形,\12322S S S +=,故选:A .9.B【分析】本题主要考查勾股定理与最短路径问题,将六棱柱侧面展开,运用勾股定理求解即可【详解】解:如图,六棱柱侧面展开后,这圈金属丝的长度最短为AB 的长,由勾股定理得,()13cm AB ==,故选:B .10.B【分析】根据勾股数的定义:可以构成一个直角三角形三边的一组正整数,称之为勾股数,据此解答即可.【详解】解:①()()()222222345+¹,所以①不是勾股数;②2226810+=,所以②是勾股数;③22272462525+==,所以③是勾股数;④222111345æöæöæö+¹ç÷ç÷ç÷èøèøèø,所以④不是勾股数;⑤2221.52 6.25 2.5+==,但其不是正整数,所以⑤不是勾股数.综上所述②③是勾股数,共2个.故选:B.【点睛】本题主要考查了勾股数的定义及勾股定理的逆定理,解题的关键是掌握勾股数:满足222a b c +=的三个正整数,称为勾股数.11.2π【分析】本题考查了勾股定理,扇形面积的计算;由勾股定理求得AB 的长度,由扇形面积公式即可计算.【详解】解:90ABC Ð=°Q ,3CB =,5AC =,4AB \==,即半圆的半径为422¸=;则阴影部分面积为:21π22π2´=.故答案为:2π.12.23cm 2【分析】本题考查了折叠的性质,三角形的面积,勾股定理,设cm AE x =,由折叠的性质得到4DE BE x ==-,根据勾股定理列方程求得32AE =,于是得到AED △的面积.熟练掌握折叠的性质是解题的关键.【详解】解:设cm AE x =,由折叠的性质得到4DE BE x ==-,∵90A Ð=°,∴222AE AD DE +=,即()222x 24x +=-,解得:32x =,∴32AE =,∴AED △的面积()211332cm 2222AD AE =×=´´=故答案为:23cm 2.13.12【分析】欲求矩形的面积,则求出图1中阴影部分小三角形长直角边边长即可,由此可设其为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,进而可求出该矩形的面积.【详解】解:设如图1阴影部分小三角形长直角边边长为x ,∵3a =,∴AB=x+3,在Rt △ABC 中,AC 2+BC 2=AB 2,即(1+x )2+(1+3)2=(x+3)2,整理得,x=2,∴该矩形的面积=AC·BC=(1+3)(1+x )=4×3=12故答案为:12.【点睛】本题考查了勾股定理的证明以及运用和一元二次方程的运用,得到关于x 的方程是解题的关键.14.4【分析】本题考查勾股定理的应用,根据勾股定理求出路长,即三角形的斜边长,再求两直角边的和与斜边的差即可求解.正确应用勾股定理是解题的关键.【详解】解:根据题意知:90BAC Ð=°,3AC =,4AB =,∴()5m BC ===,∴少走的距离是:()3452m +-=,∵1米为2步,∴2米为4步,∴仅仅少走了4步.故答案为:4.15.6≤h≤8.【分析】先根据题意画出图形,再根据勾股定理解答即可.【详解】解:当牙刷与杯底垂直时h最大,h最大=16﹣8=8cm.当牙刷与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB10==cm,故h=16﹣10=6cm.故h的取值范围是6≤h≤8.故答案是:6≤h≤8.【点睛】本题考查勾股定理的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.16.50【分析】先用路程等于速度乘以时间计算出AC,BC的长,利用勾股定理的逆定理得出三角形ABC为直角三角形,再利用在直角三角形中两锐角互余求解.【详解】根据题意,如图所示∵AC=120×660=12(海里),BC=50×660=5(海里),AB=13海里,∴AC2+BC2=AB2,∴△ABC是直角三角形.∵∠CBA=90°-40°=50°,∴∠CAB=40°,∴甲的航向为北偏东50°.【点睛】此题主要考查了直角三角形的判定及方向角的理解及运用,难度适中.利用勾股定理的逆定理得出三角形ABC 为直角三角形是解题的关键.17.12【分析】如图,易证△CDE ≌△ABC ,得AB 2+DE 2=DE 2+CD 2=CE 2,同理FG 2+LK 2=HL 2,S 1+S 2+S 3+S 4=4+8=12.【详解】解:如图,∵EDC CBA ACE 90ÐÐÐ===°,EC CA =,ECD ACB ACB CAB 90ÐÐÐÐ+=+=°,∴ECD ACB ÐÐ=,∵在△CDE 和△ABC 中,EDC CBA ECD CAB EC CA Ð=ÐìïÐ=Ðíï=î,∴△CDE ≌△ABC (AAS ),∴AB=CD ,BC=DE ,∴AB 2+DE 2=DE 2+CD 2=CE 2=8,同理可证FG 2+LK 2=HL 2=4,∴S 1+S 2+S 3+S 4=CE 2+HL 2=4+8=12.故答案为:12.【点睛】本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB 2+DE 2=DE 2+CD 2=CE 2是解题的关键.18.3【分析】正方形边长为1,则5AC ===, 5BC =,AE 为3,等面积法A B C A B C S S =V V , 1122AC BD BC AE ´=´即可求得BD.【详解】如图所示,过A 作AE BC ^,因为ABC V 的顶点都在边长为1的正方形网格上,所以5AC ===,5BC =,3AE =,因为A B C A B C S S =V V ,所以1122AC BD BC AE ´=´,即5335BC AE BD AC ´´===,故答案为:3【点睛】本题主要考查了勾股定理的知识,解题的关键是利用勾股定理求出AC 的长,以及运用等面积法列式.19.5秒后,PCB D 的面积等于2450cm .【分析】设经过ts 后,PCB D 的面积等于2450cm .在Rt ABC D 中,根据勾股定理,得40cm AC =,根据面积公式可求出t.【详解】解:设经过ts 后,PCB D 的面积等于2450cm .在Rt ABC D 中,根据勾股定理,得40cm AC =,所以()402cm PC t =-.所以()1304024502PCB S t D =´´-=.解得5t =.故5秒后,PCB D 的面积等于2450cm .【点睛】考核知识点:勾股定理和逆定理运用.根据勾股定理求出AC 是解题关键.20.(1)AC 的长为4cm ;(2)AD 的长为2.5cm【分析】(1)直接根据勾股定理求出AC 的长即可;(2)根据折叠的性质和勾股定理列方程求解即可.【详解】(1)解:在Rt ACB △中,90C Ð=°,5cm AB =,3cm BC =.由勾股定理得()4cm AC ===,∴AC 的长为4cm ;(2)解:∵3cm BC =,90C Ð=°,由折叠可知3cm BE BC ==,ED DC =,90DEB C Ð=Ð=°,∵5cm AB =,∴2cm AE AB BE =-=.设cm AD x =,∵4cm AC =,∴()4cm ED DC AC AD x ==-=-.在Rt AED V 中,90AED Ð=°,由勾股定理得222AE ED AD +=,∴()22224x x +-=,解得 2.5x =,∴AD 的长为2.5cm .【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.21.(1)45°(2)7【分析】本题考查了全等三角形的判定与性质,勾股定理,熟练掌握全等三角形的判定与性质是解题的关键.(1)根据条件可以得出ACD CBE Ð=Ð,进而运用ASA 得出ABC DEF ≌△△,就可以得出AC BC =即可得到结论;(2)利用(1)中结论,先运用勾股定理求出AD 长,然后根据全等三角形的性质即可解决问题.【详解】(1)∵AD CE ^,BE CE ^,∴ADC CEB Ð=Ð,∵90ACB Ð=°,∴90ACD BCE Ð+Ð=°,∵90CBE BCE Ð+Ð=°,∴ACD CBE Ð=Ð,在ADC V 和CEB V 中,ADC CEB CD BEACD CBE Ð=Ðìï=íïÐ=Ðî,∴()ASA ADC CEB V V ≌,∴AC BC =,∵90ACB Ð=°,∴=45ABC а(2)∵90ADC Ð=°,5CD =,13AC =.∴12AD ===,∵ADC CEB V V ≌,∴12CE AD ==,∴1257DE CE CD =-=-=.22.(1)货车开过时,学校会受噪音影响,证明见解析. (2)学校受噪音影响2.4s .【分析】(1)根据80100AM m m =<,即可判断货车开过学校会受噪音影响.(2)以点A 为圆心,半径为100m 画圆,与直线1l 交于B 、C 两点,连接AB 、AC ,根据勾股定理求出CM 、BM 的长,即可得到BC 的长,即可求解学校受噪音影响的时间.【详解】(1)∵80100AM m m=<∴货车开过学校会受噪音影响.(2)以点A 为圆心,半径为100m 画圆,与直线1l 交于B 、C 两点,连接AB 、AC .∵AM MO^∴90AMO AMB ==°∠∠∴60CM m ===,60BM m ===∴6060120BC CM BM m=+=+=∵180000180//50/3600km h m s m s ==∴12050 2.4s¸=故若汽车速度为180/km h ,则学校受噪音影响2.4s .【点睛】本题考查了勾股定理的实际应用,掌握勾股定理的性质以及解法是解题的关键.23.(1)见解析(2)从点A 爬到点B 的最短路程是50p 厘米【分析】(1)利用阴影部分的面积=大正方形面积4-直角三角形面积额即可得答案;(2)画出圆柱侧面展开图矩形,利用勾股定理即可得答案.【详解】(1)Q 阴影部分的面积=大正方形面积4-直角三角形面积,221()42b ac ab \-=-´,22222a ab b c ab \-+=-,222a b c \+=;(2)画出圆柱侧面展开图:根据圆柱底面半径为40cm ,得出24040(cm)2AC p p ´==,Q 高为30cm p ,50(cm)AB p \==,\从点A 爬到点B 的最短路程是50p 厘米.【点睛】本题考查勾股定理证明,掌握面积法是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理章节测试(A 卷)
(满分100分,考试时间60分钟)
学校___________ 班级________ 姓名_______
一、选择题(每小题4分,共20分)
D
C B
A
D
E A B
C
第3题图 第5题图
D
A
B
C
13.(10分)如图是由边长为1的小正方形组成的网格,小格的顶点叫格点,小华按下列要求作图:
①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一实线上;②连接
三个格点,使之构成直角三角形.图中的Rt△ABC是小华作出的图形.
(1)求AC的长;
(2)求△ABC的面积;
(3)请你按照同样的要求,在下面的正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.
登陆点
图1图2。

相关文档
最新文档