多元函数的极值及其-求法
第八节多元函数的极值及其求法

f (x, y)在点( 3, 0 )没有极值
在点( 3 , 2 )处, A fxx( 3 , 2 ) 12
B fxy ( 3 , 2 ) 0 C f yy (3,2 ) 6
(12) (6) 02 = 72 > 0 又 A 0
f (x, y)在点( 3 , 2 )有极大值 f (3 , 2 ) 31
(极小值) 的某个去心邻域内必有:
f(x,y)<f(x0,y0) 所以,在点(x0 ,y0)的某个邻域内,点(x0 ,y0 , f(x0 ,y0)) 为曲面的最高点.
(最低点)
定理1 (必要条件) 设函数z=f(x,y)在点(x0 ,y0)处具 有偏导数,且在点(x0 ,y0)有极值,则有:
f x ( x0 , y0 ) 0, f y ( x0 , y0 ) 0
fx (x0, y0) = [ f (x, y0) ]'|xx0 = 0
同理可证: f y (x0, y0) 0
说明
(1) 几何上,定理1意味着: 在曲面 z f (x, y) 上, 极值点 (x0, y0)所对应的点 (x0, y0, f (x0, y0)) 处的
切平面平行于 xoy 坐标平面.
(2) 定理1的逆命题不成立. 反例: f (x, y) xy, 经计算得: fx (0,0) 0, f y (0,0) 0 但 点 (0,0)不是 f (x, y) 的极值点.
(3) 使 fx (x, y) 0, f y (x, y) 0 同时成立的点
(x0, y0) 称为函数 z f (x, y) 的驻点.
z a2 2xy 2(x y)
代入V 的表达式,得
V xy a2 2xy 2(x y)
多元函数的极值及其求法

定理 设A是一个n n对称矩阵,
A正定 所有顺序主子式大于0
a11 a12 L a1k
a21 a22 L a2k
MM
M
所有特征值大于0 .
ak1 ak 2 L akk
(即特征方程 | E - A | 0的根大于0)
以 2 2 矩阵为例: A a11 a12 a21 a22
证: 由二元函数的泰勒公式, 并注意
则有
若 H f (P0 )正定, 则由引理知存在m 0使得
(h, k)H f (P0)(h, k)' m2.
故对充分小的U(P0), 只要(x, y) x0 h, y0 k U(P0), 就有
f (x, y)
f ( x0 ,
y0
)
(
m 2
o(1))
设函数z f ( x, y)在点 P0 ( x0 , y0 )的某邻域U(P0 )内 有一阶及二阶连续偏导数,且 P0是 f 的驻点,
则当H f (P0 )是正定矩阵时, f 在 P0取得极小值;
当H f (P0 )是负定矩阵时, f 在 P0取得极大值; 当H f (P0 )是不定矩阵时, f 在 P0不取极值.
极大值和极小值
x
例1. 已知函数
A 则( )
的某个邻域内连续, 且
(D) 根据条件无法判断点(0, 0)是否为f (x,y) 的极值点. 提示: 由题设
(2003 考研)
定理1 (必要条件) 函数
存在
偏导数, 且在该点取得极值 ,
则有
证:
取得极值 ,
故
取得极值 取得极值
据一元函数极值的必要条件可知定理结论成立.
(h2
多元函数的极值与最值的求法

2.5柯西不等式法………………………………………………………………21
2.6向量法………………………………………………………………………22
2.7 利用极值求最值……………………………………………………………23
小结…………………………………………………………………………………25
1.2利用拉格朗日(Lagrange)乘数法求极值………………………………2
1.3利用几何模型法求解极值…………………………………………………3
1.4 通过雅可比(Jacobi)矩阵求条件极值…………………………………5
1.5利用参数方程求解条件极值………………………………………………11
1.6 利用方向导数判别多元函数的极值………………………………………12
1.7 用梯度法求极值……………………………………………………………15
2多元函数最值的求法……………………………………………………………17
2.1消元法………………………………………………………………………18
2.2均值不等式法………………………………………………………………18
2.3换元法………………………………………………………………………19
又方程(1)对x求偏导: ,得 , .
方程(1)对y求偏导: ,得 .
方程(2)对y求偏导: ,得 ,
在点(1,-1,6)有 ,且A<0,所以 是极大值。
在点(1,-1,2)处有 ,且A>0,所以 是极小值。
综上所述,知由方程 在点(1,-1,6)的某邻域内确定的函数, 是极大值;在点(1,-1,2)的某邻域内确定的函数, 是极小值.
多元函数的极值与条件极值

多元函数的极值与条件极值一、引言在数学中,多元函数是指依赖于多个变量的函数。
研究多元函数的极值和条件极值是优化理论和实际问题求解的基础。
本文将介绍多元函数的极值和条件极值的概念、求解方法以及应用案例。
二、多元函数的极值多元函数的极值指的是函数取得的最大值和最小值。
对于二元函数f(x, y),当f(x, y)在一定范围内取得最大值或最小值时,称之为极值。
同样地,对于n元函数f(x1, x2, ..., xn),当f(x1, x2, ..., xn)在一定范围内取得最大值或最小值时,也称之为极值。
确定多元函数的极值有以下几种常用方法:1. 梯度法:通过计算函数的梯度向量,找到函数的驻点,再通过二阶导数的判别方法来确定驻点处的极值。
2. 拉格朗日乘子法:求解约束条件下的最优解,通过引入拉格朗日乘子,将多元函数的极值问题转化为无约束极值问题。
3. 二次型判别法:对于二元二次函数,可以使用二次型的正负来判定极值。
4. 图像法:对于二元函数,可以通过画出等高线图或三维曲面图来观察极值点的位置。
三、多元函数的条件极值条件极值是指在一定约束条件下,函数取得的最大值和最小值。
常见的条件极值问题可以表示为:在约束条件g(x, y) = 0的条件下,求多元函数f(x, y)的最大值和最小值。
求解条件极值的常用方法是拉格朗日乘子法。
假设函数f(x, y)和约束条件g(x, y)具有连续的一阶和二阶偏导数,而且约束条件g(x, y)在解集上的梯度不为零,那么存在实数λ,使得∇f(x, y) = λ∇g(x, y)。
通过求解λ和对应的x、y可以得到函数f(x, y)的条件极值点。
四、应用案例多元函数的极值和条件极值在实际问题中具有广泛的应用。
以下是几个应用案例的简要介绍:1. 优化问题:如生产过程中的成本最小化、利润最大化等,可以通过求解函数的极值来得到最优解。
2. 建模问题:如平面上点到曲线的最短距离、材料的最优分配等问题,可以通过多元函数的条件极值来建立数学模型并求解。
多元函数的极值与条件极值的求解方法

多元函数的极值与条件极值的求解方法一、引言多元函数在数学和应用领域中扮演着重要的角色。
求解多元函数的极值是一个常见的数学问题,而条件极值则进一步考虑了多个约束条件下的最优解。
本文将介绍多元函数极值和条件极值的求解方法。
二、多元函数极值的求解方法要求解多元函数的极值,需要判断函数在特定点的局部极值,并进一步确定全局极值。
常用的方法包括二阶条件、梯度以及拉格朗日乘子法。
1. 二阶条件法对于一个二次可导函数,可以通过计算其二阶偏导数来确定函数的极值。
具体步骤如下:a. 计算函数的一阶偏导数,并令其等于零,得到临界点;b. 计算函数的二阶偏导数,并检查其正负性;c. 若二阶偏导数为正,则临界点是局部极小值;若二阶偏导数为负,则临界点是局部极大值。
2. 梯度法梯度法可以用于求解多元函数的极值,其思想是在梯度的指引下,逐步迭代寻找函数的最优解。
具体步骤如下:a. 计算函数的梯度向量,并初始化变量值;b. 根据梯度向量的反方向更新变量的取值;c. 重复步骤b,直到满足收敛条件。
3. 拉格朗日乘子法拉格朗日乘子法用于求解多元函数在一组约束条件下的极值。
通过构建拉格朗日函数,并利用约束条件和拉格朗日乘子进行求解,得到函数的条件极值。
三、条件极值的求解方法在现实问题中,多元函数的极值求解往往伴随着条件限制。
求解条件极值需要考虑约束条件,并结合优化理论中的拉格朗日乘子法。
1. 求解过程a. 构建拉格朗日函数,将约束条件引入目标函数中,得到增广拉格朗日函数;b. 求解增广拉格朗日函数的临界点,即通过求解方程组来确定目标函数的条件极值点。
c. 验证求得的临界点是否满足约束条件,并通过比较确定全局的条件极值。
2. 案例分析假设有一个三角形,其面积为目标函数,而周长为约束条件。
通过使用拉格朗日乘子法,可以求解出在给定周长下,使得三角形面积最大的顶点。
四、总结本文介绍了多元函数极值和条件极值的求解方法。
对于多元函数极值的求解,可以使用二阶条件法、梯度法和拉格朗日乘子法来确定函数的极值点。
06第六节多元函数的极值及其求法.docx

第六节多元函数的极值及其求法在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题.与一元两数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系.下面我们以二元函数为例来讨论多元函数的极值问题.分布图示★引例★二元函数极值的概念例1・3★极值的必要条件★极值的充分条件★求二元函数极值的一般步骤★例4★例5★求最值的一般步骤★例6★例7★例8★例9★例10★例11★条件极值的概念★拉格郎H乘数法★例12★例13★例14★例15★例16*数学建模举例★线性冋归问题★线性规划问题★内容小结★课堂练习★习题6-6内容提要:一、二元函数极值的概念定义1设函数z = /(兀刃在点(勺,北)的某一邻域内有定义,对于该邻域内异于(兀°,%)的任意一点(兀,刃,如果/(兀,刃 </(兀0,%),则称函数在(兀(),儿)有极大值;如果/(兀,刃>/(兀0,%),则称函数在(心,北)有极小值;极大值、极小值统称为极值.使函数取得极值的点称为极值点.定理1(必要条件)设函数z = /(X, y)在点(兀0,北)具有偏导数,.目.在点(兀0,);0)处有极值,则它在该点的偏导数必然为零,即f x(无),y())= 0, f y(心,y()) = 0. (6.1)与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点.定理2 (充分条件)设函数z二f(x,y)在点(兀,儿)的某邻域内有直到二阶的连续偏导数,又人(心儿)"'人(兀0』0)=。
•令f xx(x Q,y Q) = A, 4(x0,j0) = B, /,v(x0,y0) = C.(1)当AC-B2> 0时,函数/(x,y)在(兀°,%)处有极值,且当A >0时有极小值/(x0,y0);A < 0时有极大值/(勺,儿);(2)当AC-B2< 0时,函数f(x,y)在(兀(),儿)处没有极值;(3)当AC-B2= 0时,函数f(x,y)在(兀0,凡)处可能有极值,也可能没有极值.根据定理1与定理2,如果函数/(x,y)具有二阶连续偏导数,则求z = /(兀』)的极值的一般步骤为:第一步解方程组久(兀,〉,)=0,人(兀,刃=0,求出/(x,y)的所有驻点;第二步求出函数/(x,y)的二阶偏导数,依次确定各驻点处A、B、C的值,并根据AC-B2的符号判定驻点是否为极值点.最后求出函数/(x, j)在极值点处的极值.二、二元函数的最大值与最小值求函数/(兀,刃的最大值和最小值的一般步骤为:(1)求函数/(X, y)在D内所有驻点处的函数值;(2)求/(x, y)在£>的边界上的最大值和最小值;(3)将前两步得到的所有函数值进行比较,其屮最大者即为最大值,最小者即为最小值. 在通常遇到的实际问题中,如杲根据问题的性质,可以判断出函数/(x, y)的最大值(最小值)一定在D的内部取得,而函数/(x,y)在D内只有一个驻点,则可以肯定该驻点处的函数值就是函数f (x, y)在D上的最大值(最小值).三、条件极值拉格朗日乘数法前面所讨论的极值问题,对于函数的自变量一般只要求落在定义域内,并无其它限制条件,这类极值我们称为无条件极值.但在实际问题中,常会遇到对函数的自变量还有附加条件的的极值问题.对自变量有附加条件的极值称为条件极值.拉格朗日乘数法设二元函数f(x, y)和0(x,y)在区域D内有一阶连续偏导数,则求z = fg刃在D内满足条件gy) = 0的极值问题,可以转化为求拉格朗H函数L(x, y, 2) = f (x, y) + A(p(x, y)(其中2为某一常数)的无条件极值问题.于是,求函数z = /(兀』)在条件°(九刃=0的极值的拉格朗日乘数法的基本步骤为:(1)构造拉格朗H函数L(x, y, A) = f(x, y) + y)其屮2为某一常数;(2)由方程组L x = f x (兀,y)+九<Px (兀,y) =0, < L y = f y (x, y) + A(p y (兀,y) =0,L 入—0(兀,y) = 0解出x,y,A,其中x』就是所求条件极值的可能的极值点.注:拉格朗tl乘数法只给出函数取极值的必要条件,因此按照这种方法求出来的点是否为极值点,还需要加以讨论.不过在实际问题中,往往可以根据问题本身的性质来判定所求的点是不是极值点.拉格朗日乘数法可推广到自变量多于两个而条件多于一个的情形:四、数学建模举例例题选讲:二元函数极值的概念例1 (E01)函数z = 2x2 +3y2在点(0, 0)处有极小值.从几何上看,z = lx1 + 3y2表示一开口向上的椭圆抛物而,点(0,0,0)是它的顶点.(图7-6-1).例2 (E02)函数z二-+ >,2在点(0,0)处有极大值.从几何上看,z二-+ >,2表示一开口向下的半圆锥面,点(0,0,0)是它的顶点.(图7-6-2).例3 (E03)函数z = /-x2在点(0,0)处无极值.从儿何上看,它表示双曲抛物面(马鞍面)(图7-6-3)例 4 (E04)求函数/(x, y) = ? - y3 + 3x2 + 3y2 - 9x的极值.解先解方程组解得驻点为(1,0), (1, 2), (-3,0), (-3, 2).再求出二阶偏导数(x,y) = 6x + 6, f xy(x,y) = 0, f yy Xx,y) =-6y + 6.亠一 9 [ fXx,y) = 3x 2 +6x-9 = 0在点(1,0)处,AC — B 2=12・6>0,又彳 9, A>0,厶a )2-3),2+6)=0故函数在该点处有极小值/(1,0) = -5; 在点(1,2)处,(-3,0)处,AC-B 2=-12-6<0,故函数在这两点处没有极值;在点(-3, 2)处,AC-B 2=-U-(-6) >0,又A v0,故函数在该点处有极大值/(-3,2) = 31.例5证明函数z = (1 + e y )cosx-ye y 有无穷多个极大值而无一极小值.又 A = z :. =-(l + o' )cos 七 B = z xy =-e y sinx, C = z ;. =e y (cosx-2-y). 在点(2砸,0)g z)处,4 = 一2, B = 0, C = -l, AC-B 2=2>0t又A v 0,所以函数z 取得极大值;在点(⑵2 +1)龙,一2)仇w Z )处,A = 1 + 0-2, B = 0, C = —0-2, AC-B 2 = -e~2-e _4<0,此时函数无 极值.证毕.二元函数的最大值与最小值例6求函数/(兀,刃=兀2-2兀y + 2y 在矩形域D = {(x, y) | 0 < x < 3,0 < y < 2}上的最大值和最小值.解 先求函数f(x,y)在D 内驻点.由f x = 2x-2y = 0, f y =-2x + 2 = 0求得/在D 内部 的唯一驻点(1, 1),且/(1J) = 1.其次求函数/(兀,刃在D 的边界上的最大值和最小值.如图所示.区域D 的边界包含四条直线段厶 —在厶上y = 0, /(x,()) = /,()5x53.这是x 的单调增加函数,故在厶上f 的最大值为 /(3,0) = 9,最小值为 /(0,0) = 0.同样在厶2和厶4上/也是单调的一元函数,易得最大值、最小值分别为/(3, ()) = 9, /(3,2) = 1 (在厶2 上),/(0,2) = 4, /(0,0) = 0(在厶4 上),而在厶上〉,=2, /(x, 2) = X 2-4X + 4, 05兀5 3,易求出/在厶上的最大值/(0,2) = 4,最小值= -(l + e v )sinx = 0= e?v (cosx-l-y) = 0 x = k 兀 尸(_护_1伙wZ )・/(2, 2) = 0.将/在驻点上的值/(1,1)与厶,厶2上3,厶4上的最大值和最小值比较,最后得到/在D上的最大值/(3,0) = 9,最小值/(0,0) = /(2,2) = 0.例7求二元函数z = /(x, y) = x2y(4 -x- y)在直线x + y = 6 , x轴和y轴所围成的闭区域D上的最大值与最小值.解先求函数在D内的驻点,解方程组/;(兀,y) = 2xy(4-x-y)-x2y = 0f;(x, y) = x2 (4-x- y) - x2 y = O'得唯一驻点(2,1),且/(2,1) = 4,再求/(兀,y)在D边界上得最值,在边界兀 + y = 6上,即y = 6 —兀,于是/(x,y) = x2(6-x)(-2),由f; - 4x(x一6) + 2x2 = 0,得x} - 0, x2 - 4 i > y = 6 - x = 2,而/(4,2) = -64,所以/(2,1) = 4为最大值,/(4,2) = -64为最小值.例8求函数/(x,y) = 3x2 + 3y2一/在区域D:x2+y2 <16±的最小值.解先求/(x, y)在D内的极值.由= 6兀一3x2, fy(x,y) = 6y,解方程组]& - 3” = 0得驻点©()),(2, 0).由于6y = 0f: (0,0) = 6, £; (0,0) = 0, f;y (0,0) = 6,龙(2,0) = -6, (2,0) = 0, f;y (2,0) = 6.所以,在点(0, 0) ^bB2-AC = -36<0, A = 6>0,ttffi (0, 0)处有极小值/(0,0) = 0.在点(2,0)处B2-AC = 36>0,故函数在点(2,0)处无极值.再求f (x, y)在边界x2 +y2 = 16上的最小值.由于点(x, y)在圆周x2 +y2 = 16上变化,故可解出y2=16-x2(-4<x<4),代入/'(x,y)中,有z = /(x,y) = 3x2 + 3>,2一兀3 = 48-x3(-4 <x< 4),这时z是兀的一元函数,求得在|~4,4]上的最小值z'=4 =-16.最后比较可得,函数/(x, y) = 3x 2 + 3y2 -?在闭区间D 上的最小值/(4,0) = -16.例9求z=「7 的最大值和最小值.x+b+i (宀于+])_2曲+刃二(兀2 +),2+1)_2)心+刃 —(宀 3)2 -,△ - ―(X 2+^2+1)2因为lim 厂弓 =0,即边界上的值为零.又 口 +y +1例10 (E05)某厂要用铁板做成一个体积为2加3的有盖长方体水箱.问当长、宽、高各 取怎样的尺寸时,才能使用料最省.解 设水箱的长为”,宽为艸,则其高应为2/xym.此水箱所用材料的面积此为目标函数.下面求使这函数取得最小值的点(兀,y). 令人=2 y ——-=0, A v = 2 x ——T =0.解这方程组,得唯-•的驻点x = V2, y = V2.根据题意可断定,该驻点即为所求最小值点.因此当水箱的长为呵”、宽为呵川、高为甘乖=臥时,水箱所用的材料最省.注:体积一定的长方体小,以立方体的表面积为最小.例11 (E06)设s 为商品A 的需求量,§2为商品3的需求量,其需求函数分别为q } = 16-2p )+4/?2,?2 = 20 + 4门 一10/?2,总成本函数为 C =2q 2,其中 M ,% 为商 品A 和B 的价格,试问价格卩,必取何值时可使利润最大?2 2、(2 2) 初+ y ——+ %—=2 与 + _ + _ 1 厂 小 (兀y ) A =2 (x > 0, y >0).=0,解得驻点丄_LJi'近/ 血丿‘1r解按题意,总收益函数为R = P4 + P 2q 2 = 〃|(16-2#|2-+4/?2)+ 卩2(20 + 4/?| -IO%),于是总利润函数为L = R_C = q 、(P\_3) + q2(P2 _2)-3)(16-2刃 + 4”2)+ (卩2一2)(20 + 4p -10卩2)・为使总利润最大,求一阶偏导数,并令其为零:- = 14-4/?! +8血=0,学=4(。
多元函数的极值及其-求法

第十一讲 二元函数的极值要求:明白得多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。
问题提出:在实际问题中,往往会碰到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有紧密的关系,因此以二元函数为例,来讨论多元函数的极值问题.一.二元函数的极值概念 设函数),(y x f z =在点),(00y x 的某个邻域内有概念,关于该邻域内的所有),(),(00y x y x ≠,若是总有),(),(00y x f y x f <,那么称函数),(y x f z =在点),(00y x 处有极大值;若是总有),(),(00y x f y x f >,那么称函数),(y x f z =在点),(00y x 有极小值.函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点.例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点.例2.函数2243y x z +=在点)0,0(处有极小值.因为对任何),(y x 有0)0,0(),(=>f y x f .从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的极点,曲面在点)0,0,0(处有切平面0=z ,从而取得函数取得极值的必要条件.定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,那么它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y .几何说明假设函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x -+-=-是平行于xoy 坐标面的平面0z z =.类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z说明 上面的定理尽管没有完全解决求极值的问题,但它明确指出找极值点的途径,即只要解方程组⎩⎨⎧==0),(0),(0000y x f y x f y x ,求得解),(),(),,(2211n n y x y x y x ⋯⋯,那么极值点必包括在其中,这些点称为函数),(y x f z =的驻点.注意1.驻点不必然是极值点,如xy z =在)0,0(点.如何判别驻点是不是是极值点呢?下面定理回答了那个问题.定理2(充分条件)设函数),(y x f z =在点),(00y x 的某邻域内持续,且有一阶及二阶持续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,那么(1)当02>-B AC 时,函数),(y x f z =在点),(00y x 取得极值,且当0<A 时,有极大值00(,)f x y ,当0>A 时,有极小值00(,)f x y ;(2)当02<-B AC 时,函数),(y x f z =在点),(00y x 没有极值;(3)当02=-B AC 时,函数),(y x f z =在点),(00y x 可能有极值,也可能没有极值,还要另作讨论. 求函数),(y x f z =极值的步骤:(1)解方程组0),(00=y x f x ,0),(00=y x f y ,求得一切实数解,即可求得一切驻点 ),(),(),,(2211n n y x y x y x ⋯⋯;(2)关于每一个驻点),(i i y x (1,2,)i n =,求出二阶偏导数的值C B A ,,; (3)确信2B AC -的符号,按定理2的结论判定),(i i y x f 是不是是极值,是极大值仍是极小值;(4)考察函数),(y x f 是不是有导数不存在的点,假设有加以判别是不是为极值点.例3.考察22y x z +-=是不是有极值.解 因为22y x x x z +-=∂∂,22y x y y z +=∂∂在0,0==y x 处导数不存在,可是对所有的)0,0(),(≠y x ,均有0)0,0(),(=<f y x f ,因此函数在)0,0(点取得极大值.注意2.极值点也不必然是驻点,假设对可导函数而言,如何?例4.求函数x y x y x y x f 933),(2233-++-=的极值.解 先解方程组⎪⎩⎪⎨⎧=+-==-+=063096322y y f x x f y x ,求得驻点为)2,3(),0,3(),2,1(),0,1(--, 再求出二阶偏导函数66+=x f xx ,0=xy f ,66+-y f yy .在点)0,1(处,0726122>=⨯=-B AC ,又0>A ,因此函数在点)0,1(处有极小值为5)0,1(-=f ;在点)2,1(处,0722<-=-B AC ,因此)2,1(f 不是极值;在点)0,3(-处,0722<-=-B AC ,因此)0,3(-f 不是极值;在点)2,3(-处,0722>=-B AC ,又0<A ,因此函数在点)2,3(-处有极大值为31)2,3(=-f . 二.函数的最大值与最小值求最值方式:⑴ 将函数),(y x f 在区域D 内的全数极值点求出;⑵ 求出),(y x f 在D 边界上的最值;即别离求一元函数1(,())f x x ϕ,2(,())f x x ϕ的最值;⑶ 将这些点的函数值求出,而且相互较较,定出函数的最值.实际问题求最值依照问题的性质,明白函数),(y x f 的最值必然在区域D 的内部取得,而函数在D 内只有一个驻点,那么能够确信该驻点处的函数值确实是函数),(y x f 在D 上的最值.例4.求把一个正数a 分成三个正数之和,并使它们的乘积为最大.解 设y x ,别离为前两个正数,第三个正数为y x a --,问题为求函数 )(y x a xy u --=在区域D :0>x ,0>y ,a y x <+内的最大值. 因为)2()(y x a y xy y x a y x u --=---=∂∂,)2(x y a x yu --=∂∂, 解方程组⎩⎨⎧=--=--0202x y a y x a ,得3a x =,3a y =. 由实际问题可知,函数必在D 内取得最大值,而在区域D 内部只有唯一的驻点,那么函数必在该点处取得最大值,即把a 分成三等份,乘积3)3(a 最大.另外还可得出,假设令y x a z --=,那么33)3()3(z y x a xyz u ++=≤= 即 33z y x xyz ++≤. 三个数的几何平均值不大于算术平均值.三.条件极值,拉格朗日乘数法引例 求函数22y x z +=的极值.该问题确实是求函数在它概念域内的极值,前面求过在)0,0(取得极小值;假设求函数22y x z +=在条件1=+y x下极值,这时自变量受到约束,不能在整个函数概念域上求极值,而只能在概念域的一部份1=+y x 的直线上求极值,前者只要求变量在概念域内转变,而没有其他附加条件称为无条件极值,后者自变量受到条件的约束,称为条件极值.如何求条件极值?有时可把条件极值化为无条件极值,如上例从条件中解出x y -=1,代入22y x z +=中,得122)1(222+-=-+=x x x x z 成为一元函数极值问题,令024=-='x z x ,得21=x ,求出极值为21)21,21(=z . 可是在很多情形下,将条件极值化为无条件极值并非如此简单,咱们还有一种直接寻求条件极值的方式,可没必要先把问题化为无条件极值的问题,这确实是下面介绍的拉格朗日乘数法.利用一元函数取得极值的必要条件.求函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件.假设函数),(y x f z =在00(,)x y 取得所求的极值,那么第一有00(,)0x y ϕ=.假定在00(,)x y 的某一邻域内函数),(y x f z =与均有持续的一阶偏导数,且00(,)0y x y ϕ≠.有隐函数存在定理可知,方程0),(=y x ϕ确信一个单值可导且具有持续导数的函数()y x ψ=,将其代入函数),(y x f z =中,取得一个变量的函数(,())z f x x ψ=于是函数),(y x f z =在00(,)x y 取得所求的极值,也确实是相当于一元函数(,())z f x x ψ=在0x x =取得极值.由一元函数取得极值的必要条件明白000000(,)(,)0x y x x x x dz dy f x y f x y dx dx ===+=, 而方程0),(=y x ϕ所确信的隐函数的导数为00000(,)(,)x x x y x y dydx x y ϕϕ==-. 将上式代入00000(,)(,)0x y x x dy f x y f x y dx =+=中,得 00000000(,)(,)(,)0(,)x x y y x y f x y f x y x y ϕϕ-=, 因此函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件为0000000000(,)(,)(,)0(,)(,)0x x y y x y f x y f x y x y x y ϕϕϕ⎧-=⎪⎨⎪=⎩.为了计算方便起见,咱们令0000(,)(,)y y f x y x y λϕ=-,那么上述必要条件变成0000000000(,)(,)0(,)(,)0(,)0x x y y f x y x y f x y x y x y λϕλϕϕ+=⎧⎪+=⎨⎪=⎩,容易看出,上式中的前两式的左端正是函数),(),(),(y x y x f y x F λϕ+=的两个一阶偏导数在00(,)x y 的值,其中λ是一个待定常数.拉格朗日乘数法求函数),(y x f z =在条件0),(=y x ϕ下的可能的极值点.⑴ 组成辅助函数),(),(),(y x y x f y x F λϕ+=,(λ为常数)⑵ 求函数F 对x ,对y 的偏导数,并使之为零,解方程组⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(y x y x y x f y x y x f y y x x ϕλϕλϕ得λ,,y x ,其中y x ,确实是函数在条件0),(=y x ϕ下的可能极值点的坐标;⑶ 如何确信所求点是不是为极值点?在实际问题中往往可依如实际问题本身的性质来判定.拉格朗日乘数法推行求函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的可能的极值点.组成辅助函数12(,,,)(,,,)(,,,)(,,,)F x y z t f x y z t x y z t x y z t λϕλψ=++其中21,λλ为常数,求函数F 对z y x ,,的偏导数,并使之为零,解方程组121212120000(,,,)0(,,,)0x x x y yy z z z t t t f f f f x y z t x y z t λϕλψλϕλψλϕλψλϕλψϕψ++=⎧⎪++=⎪⎪++=⎪⎨++=⎪⎪=⎪=⎪⎩得z y x ,,确实是函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的极值点.注意:一样解方程组是通过前几个偏导数的方程找出,,x y z 之间的关系,然后再将其代入到条件中,即能够求出可能的极值点.例6.求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱长别离为z y x ,,,那么问题是在条件0222),,(2=-++=a xz yz xy z y x ϕ下,求函数xyz v = )0,0,0(>>>z y x 的最大值.组成辅助函数)222(),,(2a xz yz xy xyz z y x F -+++=λ,求函数F 对z y x ,,偏导数,使其为0,取得方程组⎪⎪⎩⎪⎪⎨⎧=-++=++=++=++02220)(20)(20)(22a xz yz xy y x xy z x xz z y yz λλλ )4()3()2()1( 由)1()2(,得 z y z x y x ++=, 由 )2()3( , 得 z x y x z y ++=, 即有, ()(),x y z y x z x y +=+= ,()(),y x z z x y y z +=+=,可得z y x ==,将其代入方程02222=-++a xz yz xy 中,得a z y x 66===. 这是唯一可能的极值点,因为由问题本身可知最大值必然存在,因此最大值确实是在这可能的极值点处取得,即在表面积为2a 的长方体中,以棱长为a 66的正方体的体积为最大,最大体积为3366a v =. 例7.试在球面2224x y z ++=上求出与点(3,1,1)-距离最近和最远的点.解 设(,,)M x y z 为球面上任意一点,那么到点(3,1,1)-距离为d =可是,若是考虑2d ,那么应与d 有相同的最大值点和最小值点,为了简化运算,故取2222(,,)(3)(1)(1)f x y z d x y z ==-+-++,又因为点(,,)M x y z 在球面上,附加条件为222(,,)40x y z x y z ϕ=++-=.组成辅助函数(,,)F x y z 222(3)(1)(1)x y z =-+-++222(4)x y z λ+++-.求函数F 对z y x ,,偏导数,使其为0,取得方程组2222(3)202(1)202(1)204x x y y z z x y z λλλ-+=⎧⎪-+=⎪⎨++=⎪⎪++=⎩ )4()3()2()1(之前三个方程中能够看出,,x y z 均不等于零(不然方程两头不等),以λ作为过渡,把这三个方程联系起来,有 311x y z x y z λ--+-===或311x y z--==, 故3,x z y z =-=-,将其代入2224x y z ++=中,得222(3)()4z z z -+-+=,求出z =,再代入到3,x z y z =-=-中,即可得 11x =,11y =,从而得两点(,, 对照表达式看出第一个点对应的值较大,第二个点对应的值较小,因此最近点为,最远点为(.。
4多元函数的极值

4多元函数的极值及其求法一、无条件极值1、f(x,y)=sin x+cos y+cos(x-y)(0≤x,y≤π/2)P116 8.8.4解:f x= cos x-sin(x-y)f y= -sin y+sin(x-y)⇒cos x=sin y解得驻点:P1(0,π/2)、P2(π/2,0)、P3(π/3,π/6)、P4(π/6,π/3)、P5(π/4,π/4)只有P3上A= f xx= -sin x-cos(x-y)|P3=-√3B= f xyx= cos(x-y)|P3=√3/2C= f yy= -cos y-cos(x-y)|P3=-1AC-B2= (-√3)(-1)-(√3/2)2=√3-3/4>0,P3极大值点极大值f(π/3,π/6)=3√3/22、求由x2+y2+z2-2x+2y-4z-10 = 0 确定的隐函数z=z(x,y)的极值解:P116 8.8.5[一] 2x+2zz x-2-4z x= 0 z x=(1-x)/(z-2)2y+2zz y-2y-4z y= 0 z y=(1+y)/(z-2)⇒驻点(1,-1)对应P(1,-1,6)、Q(1,-1,-2)A= z xx= [-(z-2)-(1-x) z x ]/(z-2)2|P=-1/4B= z xyx=-(1-x) z x/(z-2)2|P=0C= z yy= [-(z-2)-(1+y)z y]/(z-2)2|P=-1/4AC-B2= (-1/4)(-1/4)-02>0,A<0,在P达到极大值6A= z xx= [-(z-2)-(1-x) z x ]/(z-2)2|Q =1/4B= z xyx=-(1-x) z x/(z-2)2|Q =0C= z yy= [-(z-2)-(1+y)z y]/(z-2)2|Q=1/4AC-B2= (1/4)(1/4)-02>0,A>0,在Q达到极小值-2[二] (x-1)2+(y+1)2+(z-2)2=42z极大=2+4=6,z极小=2-4=-2二、条件极值1、求z=x2+y2,在条件x+y=1下的条件极值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲 二元函数的极值要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。
问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题.一.二元函数的极值定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值.函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点.例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点.例2.函数2243y x z +=在点)0,0(处有极小值.因为对任何),(y x 有0)0,0(),(=>f y x f .从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件.定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y .几何解释若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为))(,())(,(0000000y y y x f x x y x f z z y x -+-=-是平行于xoy 坐标面的平面0z z =.类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z说明 上面的定理虽然没有完全解决求极值的问题,但它明确指出找极值点的途径,即只要解方程组⎩⎨⎧==0),(0),(0000y x f y x f y x ,求得解),(),(),,(2211n n y x y x y x ⋯⋯,那么极值点必包含在其中,这些点称为函数),(y x f z =的驻点.注意1.驻点不一定是极值点,如xy z =在)0,0(点.怎样判别驻点是否是极值点呢?下面定理回答了这个问题.定理2(充分条件)设函数),(y x f z =在点),(00y x 的某邻域内连续,且有一阶及二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则(1)当02>-B AC 时,函数),(y x f z =在点),(00y x 取得极值,且当0<A 时,有极大值00(,)f x y ,当0>A 时,有极小值00(,)f x y ;(2)当02<-B AC 时,函数),(y x f z =在点),(00y x 没有极值;(3)当02=-B AC 时,函数),(y x f z =在点),(00y x 可能有极值,也可能没有极值,还要另作讨论.求函数),(y x f z =极值的步骤:(1)解方程组0),(00=y x f x ,0),(00=y x f y ,求得一切实数解,即可求得一切驻点 ),(),(),,(2211n n y x y x y x ⋯⋯;(2)对于每一个驻点),(i i y x (1,2,)i n =,求出二阶偏导数的值C B A ,,;(3)确定2B AC -的符号,按定理2的结论判定),(i i y x f 是否是极值,是极大值还是极小值;(4)考察函数),(y x f 是否有导数不存在的点,若有加以判别是否为极值点.例3.考察22y x z +-=是否有极值.解 因为22y x x x z +-=∂∂,22y x y y z +=∂∂在0,0==y x 处导数不存在,但是对所有的)0,0(),(≠y x ,均有0)0,0(),(=<f y x f ,所以函数在)0,0(点取得极大值.注意2.极值点也不一定是驻点,若对可导函数而言,怎样?例4.求函数x y x y x y x f 933),(2233-++-=的极值.解 先解方程组⎪⎩⎪⎨⎧=+-==-+=063096322y y f x x f y x ,求得驻点为)2,3(),0,3(),2,1(),0,1(--, 再求出二阶偏导函数66+=x f xx ,0=xy f ,66+-y f yy .在点)0,1(处,0726122>=⨯=-B AC ,又0>A ,所以函数在点)0,1(处有极小值为5)0,1(-=f ;在点)2,1(处,0722<-=-B AC ,所以)2,1(f 不是极值;在点)0,3(-处,0722<-=-B AC ,所以)0,3(-f 不是极值;在点)2,3(-处,0722>=-B AC ,又0<A ,所以函数在点)2,3(-处有极大值为31)2,3(=-f .二.函数的最大值与最小值求最值方法:⑴ 将函数),(y x f 在区域D 内的全部极值点求出;⑵ 求出),(y x f 在D 边界上的最值;即分别求一元函数1(,())f x x ϕ,2(,())f x x ϕ的最值;⑶ 将这些点的函数值求出,并且互相比较,定出函数的最值.实际问题求最值根据问题的性质,知道函数),(y x f 的最值一定在区域D 的内部取得,而函数在D 内只有一个驻点,那么可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最值.例4.求把一个正数a 分成三个正数之和,并使它们的乘积为最大.解 设y x ,分别为前两个正数,第三个正数为y x a --,问题为求函数 )(y x a xy u --=在区域D :0>x ,0>y ,a y x <+内的最大值. 因为)2()(y x a y xy y x a y xu --=---=∂∂,)2(x y a x y u --=∂∂, 解方程组⎩⎨⎧=--=--0202x y a y x a ,得3a x =,3a y =. 由实际问题可知,函数必在D 内取得最大值,而在区域D 内部只有唯一的驻点,则函数必在该点处取得最大值,即把a 分成三等份,乘积3)3(a 最大.另外还可得出,若令y x a z --=,则33)3()3(z y x a xyz u ++=≤= 即 33z y x xyz ++≤. 三个数的几何平均值不大于算术平均值.三.条件极值,拉格朗日乘数法引例 求函数22y x z +=的极值.该问题就是求函数在它定义域内的极值,前面求过在)0,0(取得极小值;若求函数22y x z +=在条件1=+y x 下极值,这时自变量受到约束,不能在整个函数定义域上求极值,而只能在定义域的一部分1=+y x 的直线上求极值,前者只要求变量在定义域内变化,而没有其他附加条件称为无条件极值,后者自变量受到条件的约束,称为条件极值.如何求条件极值?有时可把条件极值化为无条件极值,如上例从条件中解出x y -=1,代入22y x z +=中,得122)1(222+-=-+=x x x x z 成为一元函数极值问题,令024=-='x z x ,得21=x ,求出极值为21)21,21(=z . 但是在很多情形下,将条件极值化为无条件极值并不这样简单,我们另有一种直接寻求条件极值的方法,可不必先把问题化为无条件极值的问题,这就是下面介绍的拉格朗日乘数法.利用一元函数取得极值的必要条件.求函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件.若函数),(y x f z =在00(,)x y 取得所求的极值,那么首先有00(,)0x y ϕ=.假定在00(,)x y 的某一邻域内函数),(y x f z =与均有连续的一阶偏导数,且00(,)0y x y ϕ≠. 有隐函数存在定理可知,方程0),(=y x ϕ确定一个单值可导且具有连续导数的函数()y x ψ=,将其代入函数),(y x f z =中,得到一个变量的函数(,())z f x x ψ=于是函数),(y x f z =在00(,)x y 取得所求的极值,也就是相当于一元函数(,())z f x x ψ=在0x x =取得极值.由一元函数取得极值的必要条件知道000000(,)(,)0x y x x x x dz dy f x y f x y dx dx ===+=, 而方程0),(=y x ϕ所确定的隐函数的导数为00000(,)(,)x x x y x y dydx x y ϕϕ==-. 将上式代入00000(,)(,)0x y x x dyf x y f x y dx =+=中,得00000000(,)(,)(,)0(,)x x y y x y f x y f x y x y ϕϕ-=, 因此函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件为0000000000(,)(,)(,)0(,)(,)0x x y y x y f x y f x y x y x y ϕϕϕ⎧-=⎪⎨⎪=⎩. 为了计算方便起见,我们令0000(,)(,)y y f x y x y λϕ=-,则上述必要条件变为0000000000(,)(,)0(,)(,)0(,)0x x y y f x y x y f x y x y x y λϕλϕϕ+=⎧⎪+=⎨⎪=⎩,容易看出,上式中的前两式的左端正是函数),(),(),(y x y x f y x F λϕ+=的两个一阶偏导数在00(,)x y 的值,其中λ是一个待定常数.拉格朗日乘数法求函数),(y x f z =在条件0),(=y x ϕ下的可能的极值点.⑴ 构成辅助函数),(),(),(y x y x f y x F λϕ+=,(λ为常数)⑵ 求函数F 对x ,对y 的偏导数,并使之为零,解方程组⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(y x y x y x f y x y x f y y x x ϕλϕλϕ得λ,,y x ,其中y x ,就是函数在条件0),(=y x ϕ下的可能极值点的坐标;⑶ 如何确定所求点是否为极值点?在实际问题中往往可根据实际问题本身的性质来判定.拉格朗日乘数法推广求函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的可能的极值点. 构成辅助函数12(,,,)(,,,)(,,,)(,,,)F x y z t f x y z t x y z t x y z t λϕλψ=++其中21,λλ为常数,求函数F 对z y x ,,的偏导数,并使之为零,解方程组121212120000(,,,)0(,,,)0x x x y yy z z z t t t f f f f x y z t x y z t λϕλψλϕλψλϕλψλϕλψϕψ++=⎧⎪++=⎪⎪++=⎪⎨++=⎪⎪=⎪=⎪⎩得z y x ,,就是函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的极值点. 注意:一般解方程组是通过前几个偏导数的方程找出,,x y z 之间的关系,然后再将其代入到条件中,即可以求出可能的极值点.例6.求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱长分别为z y x ,,,则问题是在条件0222),,(2=-++=a xz yz xy z y x ϕ下,求函数xyz v = )0,0,0(>>>z y x 的最大值.构成辅助函数)222(),,(2a xz yz xy xyz z y x F -+++=λ,求函数F 对z y x ,,偏导数,使其为0,得到方程组⎪⎪⎩⎪⎪⎨⎧=-++=++=++=++02220)(20)(20)(22a xz yz xy y x xy z x xz z y yz λλλ)4()3()2()1( 由)1()2(,得 z y z x y x ++=, 由 )2()3( , 得 zx y x z y ++=, 即有, ()(),x y z y x z x y +=+= ,()(),y x z z x y y z +=+=,可得z y x ==,将其代入方程02222=-++a xz yz xy 中,得 a z y x 66===. 这是唯一可能的极值点,因为由问题本身可知最大值一定存在,所以最大值就是在这可能的极值点处取得,即在表面积为2a 的长方体中,以棱长为a 66的正方体的体积为最大,最大体积为3366a v =. 例7.试在球面2224x y z ++=上求出与点(3,1,1)-距离最近和最远的点.解 设(,,)M x y z 为球面上任意一点,则到点(3,1,1)-距离为d =但是,如果考虑2d ,则应与d 有相同的最大值点和最小值点,为了简化运算,故取 2222(,,)(3)(1)(1)f x y z d x y z ==-+-++,又因为点(,,)M x y z 在球面上,附加条件为222(,,)40x y z x y z ϕ=++-=.构成辅助函数(,,)F x y z 222(3)(1)(1)x y z =-+-++222(4)x y z λ+++-.求函数F 对z y x ,,偏导数,使其为0,得到方程组 2222(3)202(1)202(1)204x x y y z z x y z λλλ-+=⎧⎪-+=⎪⎨++=⎪⎪++=⎩ )4()3()2()1( 从前三个方程中可以看出,,x y z 均不等于零(否则方程两端不等),以λ作为过渡,把这三个方程联系起来,有311x y z x y z λ--+-===或311x y z--==, 故3,x z y z =-=-,将其代入2224x y z ++=中,得222(3)()4z z z -+-+=, 求出z =,再代入到3,x z y z =-=-中,即可得 11x =,11y =, 从而得两点(,, 对照表达式看出第一个点对应的值较大,第二个点对应的值较小,所以最近点为,最远点为(.。