2020数学九年级全一册课时练

合集下载

新人教版数学九年级下册分课时同步练习全册

新人教版数学九年级下册分课时同步练习全册

26.1.1反比例函数知识要点基础练知识点1反比例函数的定义1.下列函数中,表示y是x的反比例函数的是( B )A.y=1x-1B.y=2xC.y=2xD.y=x2.( 合肥包河区期末 )如果函数y=x2m+3为反比例函数,则m的值是-2. 【变式拓展】当a=时,函数y=( 2a-1 )x a2-2是反比例函数.( A )A.-1或1B.小于12的任意实数C.-1D.1知识点2确定反比例函数的解析式3.反比例函数y=-32x中常数k的值为( D )A.-3B.2C.-12D.-324.( 改编 )某蓄水池的排水管的排水量为平均每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,将满池水排空所需要的时间为t小时,那么时间t( 小时 )与Q( 立方米 )之间的函数解析式为t=48Q.5.已知y是x的反比例函数,且当x=-2时,y=3.( 1 )求该函数的解析式;( 2 )当y=2时,求x的值.解:( 1 )该函数的解析式为y=-6x.( 2 )x=-3.知识点3识别实际问题中变量的反比例函数关系6.下列关系中,两个变量之间为反比例函数关系的是( D )A.长40米的绳子减去x米,还剩y米B.买单价为3元的笔记本x本,花了y元C.正方形的面积为S ,边长为aD.菱形的面积为20,对角线的长分别为x ,y7.( 教材P3练习题第1题变式 )写出下列问题中两个变量之间的函数解析式,并判断其是否为反比例函数.( 1 )底边为3的三角形的面积y 随底边上的高x 的变化而变化;( 2 )一艘轮船从相距s 的甲地驶往乙地,轮船的速度v 与航行时间t 的关系;( 3 )在检修100 m 长的管道时,每天能完成10 m,剩下未检修的管道长y ( 单位:m )随检修天数x 的变化而变化.解:( 1 )函数解析式为y=32x ,不是反比例函数. ( 2 )函数解析式为v=s t,是反比例函数. ( 3 )函数解析式为y=100-10x ,不是反比例函数.综合能力提升练8.( 柳州中考 )已知反比例函数的解析式为y=|a|-2x,则a 的取值范围是( C )A.a ≠2B.a ≠-2C.a ≠±2D.a=±29.某圆锥的体积为V ,则圆锥的高h 是底面积S 的( B ) A.正比例函数 B.反比例函数 C.一次函数D.无法确定10.已知y 与x 2成反比例,且当x=-2时,y=2,那么当x=4时,y 的值是( C ) A.-2 B.2C.12D.-411.下列函数:①y=x-2;②y=x3;③y=x -1;④y=2x+1,其中y 是x 的反比例函数的有( B ) A.0个 B.1个 C.2个D.3个12.若y 与x 成反比例关系,x 与4z 成反比例关系,则y 与z 成( B ) A .正比例关系 B .反比例关系 C .一次函数关系D .不能确定【变式拓展】若1x与y 成反比例关系,1y与z 成正比例关系,则x 与1z( A ) A .成正比例关系B .成反比例关系C .不成比例关系D .成一次函数关系13.对于反比例函数y=k x,当自变量x 的值从3增加到6时,函数值减小了1,则函数的解析式为( A ) A .y=6x B .y=3x C .y=2xD .y=12x14.已知函数y=( k+1 )x |k|-3是反比例函数,且正比例函数y=kx 的图象经过第一、三象限,则k 的值为 2 .15.某粮库需要把晾晒场上的1200吨玉米入库封存.( 1 )入库所需要的时间d ( 单位:天 )与入库平均速度v ( 单位:吨/天 )的函数解析式为 d=1200v.( 2 )已知粮库有职工60名,每天最多可入库300吨玉米,预计玉米入库最快可在几天内完成?( 3 )粮库职工连续工作两天后,天气预报说未来几天会下雨,粮库决定次日把剩下的玉米全部入库,在( 2 )的条件下,至少需要增加多少名职工? 解:( 2 )当v=300时,则有d=1200300=4, 所以预计玉米入库最快可在4天内完成.( 3 )粮库的职工连续工作了两天后,还没有入库的玉米有1200-300×2=600吨,每名职工每天可使玉米入库的数量为300÷60=5吨, 将剩余的600 t 玉米一天内全部入库需职工人数为600÷5=120( 名 ), 所以需增加的人数为120-60=60( 名 ).16.已知y=y 1+y 2,y 1与( x-1 )成正比例关系,y 2与( x+1 )成反比例关系.当x=0时,y=-3;当x=1时,y=-1.( 1 )求y 的函数解析式; ( 2 )当x=-12时,求y 的值.解:( 1 )∵y 1与( x-1 )成正比例,y 2与( x+1 )成反比例,∴设y 1=k 1( x-1 ),y 2=k2x+1.∵y=y 1+y 2,当x=0时,y=-3;当x=1时,y=-1,∴{-3=-k 1+k 2,-1=12k 2,解得{k 2=-2,k 1=1, ∴y=x-1-2x+1.( 2 )当x=-12时,y=-12-1-2-12+1=-112.拓展探究突破练17.将x=23代入函数y=-1x 中,所得函数值记为y 1,又将x=y 1+1代入函数y=-1x 中,所得函数值记为y 2,再将x=y 2+1代入函数y=-1x 中,所得函数值记为y 3……继续下去. ( 1 )y 1= -32 ,y 2= 2 ,y 3= -13 ; ( 2 )求y 2019的值.解:( 2 )y 4=-1-13+1=-32,y 5=-1-32+1=2,y 6=-12+1=-13,∴每3次计算为一个循环组依次循环, ∵2019÷3=673,∴y 2019为第673个循环组的第3次计算,与y 3的值相同, ∴y 2019=-13.26.1.2 反比例函数的图象和性质第1课时 反比例函数的图象和性质知识要点基础练知识点1 待定系数法求反比例函数的解析式1.若反比例函数的图象经过点( 2,-2 ),( m ,1 ),则m=( D ) A.1B.-1C.4D.-42.已知反比例函数y=kx( k ≠0 )的图象经过点P ( 5,3 ),则反比例函数的解析式为 y=15x .知识点2 反比例函数的图象3.表示y=-2x ( x>0 )的大致图象是( B )4.( 原创 )已知正比例函数y=k1x( k1≠0 )与反比例函数y=2k2-1x (k2≠12)的大致图象如图所示,那么k1,k2的取值范围是( A )A.k1>0,k2<12B.k1>0,k2>12C.k1<0,k2>12D.k1<0,k2<12【变式拓展】如图是三个反比例函数y=k1x ,y=k2x,y=k3x在x轴上方的图象,由图观察得到k1,k2,k3的大小关系为k1<k2<k3.知识点3反比例函数的性质5.已知反比例函数y=10x,当1<x<2时,y的取值范围是( B )A.y>10B.5<y<10C.1<y<2D.0<y<56.已知反比例函数y=1x,下列结论不正确的是④.( 填序号 )①图象经过点( 1,1 );②图象在第一、三象限;③当x>1时,0<y<1;④当x<0时,y随着x的增大而增大.7.已知反比例函数y=k-1x( k为常数,k≠1 ).( 1 )若点A( 1,2 )在这个函数的图象上,求k的值;( 2 )若在这个函数图象的每一个分支上,y随x的增大而增大,求k的取值范围;( 3 )若k=13,试判断点B( 3,4 ),C( 2,5 )是否在这个函数的图象上,并说明理由.解:( 1 )k=3.( 2 )k<1.( 3 )∵k=13,∴k-1=12,∴反比例函数的解析式为y=12x. 易得点B 在函数y=12x 的图象上,点C 不在函数y=12x 的图象上.综合能力提升练8.如果点( -2,6 )在反比例函数y=kx 的图象上,那么下列各点中,在此图象上的是( D ) A.( 3,4 ) B.( -3,-4 ) C.( 6,2 )D.( -3,4 )9.( 原创 )若点A ( x 1,-3 ),B ( x 2,-1 ),C (x 3,12)在反比例函数y=3x的图象上,则x 1,x 2,x 3的大小关系为( B ) A.x 1<x 2<x 3 B.x 2<x 1<x 3 C.x 3<x 1<x 2D.x 1<x 3<x 210.已知关于x 的方程( k-2 )2x 2+( 2k+1 )x+1=0有实数解,且反比例函数y=2k -3x的图象经过第二、四象限.若k 是整数,则k 的值为( D ) A.4B.3C.2D.111.( 德州中考 )若函数y=kx 与y=ax 2+bx+c 的图象如图所示,则函数y=kx+b 的大致图象为( C )12.如图,在平面直角坐标系中,线段AB 的两个端点分别在坐标轴上,点A 的坐标为( 1,0 ),将线段AB 绕点A 顺时针旋转90°后,点B 恰好落在反比例函数y=4x的图象上的点B'处,则点B 的坐标为( B ) A.( 0,2 ) B.( 0,3 )C.( 0,4 )D.( 0,5 )提示:由旋转的性质以及点A 的坐标,得点B'的纵坐标是1,由点B'在反比例函数y=4x的图象上,得点B'的坐标是( 4,1 ),∴点B 的坐标是( 0,3 ).13.如图,△ABC 的三个顶点分别为A ( 1,2 ),B ( 4,2 ),C ( 4,4 ).若反比例函数y=kx 在第一象限内的图象与△ABC 有交点,则k 的取值范围是 2≤k ≤16 .14.如图,在平面直角坐标系xOy 中,函数y=kx ( k>0,x>0 )的图象经过菱形OACD 的顶点D.若菱形OACD 的顶点C 的坐标为( 5,3 ),则k 的值为 245 .提示:延长CD 交y 轴于点H ,在菱形OACD 中,OD=CD ,CD ∥AO ,∴CH ⊥y 轴.∵点C 的坐标为( 5,3 ),∴OH=3,HC=5.设HD=x ,∴CD=OD=5-x.在Rt △ODH 中,OD 2=DH 2+OH 2,即x 2+32=( 5-x )2,解得x=85,∴点D 的坐标为(85,3),∴k=85×3=245.拓展探究突破练15.某学校的数学兴趣小组对函数y=x+1x的图象和性质进行了探究,探究过程如下,请补充完整.( 1 )自变量x 的取值范围是 x ≠0 ,m= -52 .( 2 )根据( 1 )中表内的数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请你画出该函数图象的另一部分. ( 3 )请你根据函数图象,写出两条该函数的性质. ( 4 )进一步探究该函数的图象发现:①方程x+1x =3有 两 个实数根;②若关于x 的方程x+1x =t 有两个实数根,则t 的取值范围是 t<-2或t>2 .解:( 2 )图略.( 3 )①函数图象关于原点成中心对称;②当x>1时,y 的值随x 的值的增大而增大.( 答案不唯一,合理即可 )( 4 )①提示:方程x+1x =3可以看成函数y=x+1x 的图象与直线y=3的交点的个数.∵函数y=x+1x 的图象与直线y=3有两个交点,∴方程x+1x =3有两个实数根.②提示:观察函数图象可知,当t<-2或t>2时,函数y=x+1x 的图象与直线y=t 有两个交点.第2课时 反比例函数性质的应用知识要点基础练知识点1 反比例函数中k 的几何意义及其应用1.如图,A ,C 是函数y=1x 的图象上的任意两点,过点A 作y 轴的垂线,垂足为B ,记Rt △AOB 的面积为S 1;过点C 作y 轴的垂线,垂足为D,记Rt△OCD的面积为S2,则( C )A.S1>S2B.S1<S2C.S1=S2D.不能确定2.双曲线y1,y2在第一象限的图象如图所示,y1=3,过y1上的任意一点A作x轴的平行线交x.y2于点B,交y轴于点C.若△AOB的面积为1,则y2的解析式是y=5x知识点2反比例函数与其他函数的综合问题的图象如图所示,则二次函数y=2kx2-4x+k2 3.( 教材P9习题第8题变式 )反比例函数y=kx的图象大致是( B )4.已知两个函数y 1=k 1x+b 与y 2=k2x 的图象如图所示,其中点A ( -1,2 ),点B ( 2,-1 ),则不等式k 1x+b>k2x 的解集为( B ) A.x<-1或x>2 B.x<-1或0<x<2 C.-1<x<2 D.-1<x<0或0<x<25.( 大庆中考 )如图,反比例函数y=kx 的图象与一次函数y=x+b 的图象交于A ,B 两点,点A 和点B 的横坐标分别为1和-2,这两点的纵坐标之和为1. ( 1 )求反比例函数的解析式与一次函数的解析式; ( 2 )当点C 的坐标为( 0,-1 )时,求△ABC 的面积.解:( 1 )一次函数的解析式为y=x+1, 反比例函数的解析式为y=2x . ( 2 )当x=-2时,y=-1,即点B ( -2,-1 ),∴BC=2,S △ABC =12BC ·( y A -y C )=12×2×[2-( -1 )]=3.综合能力提升练6.( 改编 )如图,两个反比例函数y=4x和y=2x在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,PA ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( A )A.1B.2C.4D.无法计算7.如图,在平面直角坐标系中,点P ( 1,5 ),Q ( m ,n )在反比例函数的图象上,m>0,过点P 分别作x 轴、y 轴的垂线,垂足为A ,B.Q 为图象上的动点,过点Q 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,QD 交PA 于点E.随着m 的增大,四边形OCQD 与四边形OAPB 不重合部分的面积的变化为( B )A.先增大后减小B.先减小后增大C.先减小后增大再减小D.先增大后减小再增大8.( 合肥二模 )如图,点P 在双曲线y=4x ( x>0 )上,过点P 作PA ⊥x 轴,垂足为A ,分别以点O 和点P 为圆心、大于12OP 的长为半径画弧,两弧相交于C ,D 两点,直线CD 交OA 于点B.当PA=1时,△PAB 的周长为 5 .9.( 原创 )如图,若抛物线y=x2与双曲线y=-2( x<0 )上有三个不同的点xA( x1,m ),B( x2,m ),C( x3,m ),则当n=x1+x2+x3时,m与n之间满足的关系式为m=-2.n10.( 嘉兴中考 )如图,在平面直角坐标系中,已知点B( 4,0 ),等边三角形OAB的顶点A的图象上.在反比例函数y=kx( 1 )求反比例函数的解析式.( 2 )把△OAB向右平移a个单位长度,对应得到△O'A'B',当这个函数图象经过△O'A'B'一边的中点时,求a的值.解:( 1 )过点A作AC⊥OB于点C.∵△OAB是等边三角形,∴∠AOB=60°,OC=1OB.2∵点B( 4,0 ),∴OB=OA=4,∴OC=2,AC=2√3,∴点A( 2,2√3 ).,得k=4√3,把点A( 2,2√3 )代入y=kx∴反比例函数的解析式为y=4√3.x( 2 )分两种情况讨论:①如图1,D是A'B'的中点,过点D作DE⊥x轴于点E.由题意得A'B'=4,∠A'B'E=60°.在Rt△DEB'中,B'D=2,DE=√3,B'E=1,∴O'E=3.,得x=4,∴OE=4,∴a=OO'=1;把y=√3代入y=4√3x②如图2,F 是A'O'的中点,过点F 作FH ⊥x 轴于点H.由题意得A'O'=4,∠A'O'B'=60°,在Rt △FO'H 中,FH=√3,O'H=1. 把y=√3代入y=4√3x,得x=4,∴OH=4,∴a=OO'=3.综上所述,a 的值为1或3.拓展探究突破练11.对于实数a ,b ,我们可以用min{a ,b }表示a ,b 两数中较小的数,例如min{3,-1}=-1,min{2,2}=2.类似地,若函数y 1,y 2都是x 的函数,则y=min{y 1,y 2}表示函数y 1和y 2的“取小函数”.( 1 )设y 1=x ,y 2=1x ,则函数y=min {x ,1x}的图象应该是 B 中的实线部分.( 2 )请在图中用粗实线描出函数y=min{( x-2 )2,( x+2 )2}的图象,并写出该图象三条不同的性质.( 3 )求函数y=min{( x-4 )2,( x+2 )2}图象的对称轴. 解:( 2 )函数y=min{( x-2 )2,( x+2 )2}的图象如图所示.观察图象,其性质有:①对称轴为y 轴;②当x<-2时,y 随x 的增大而减小;③最小值为0.( 答案不唯一,合理即可 )( 3 )令( x-4 )2=( x+2 )2,得x=1,则函数y=min{( x-4 )2,( x+2 )2}图象的对称轴为直线x=1.第1课时 现实生活中的反比例函数问题知识要点基础练知识点1 利用反比例函数解决几何问题1.已知一个矩形的面积为20,若设长为a ,宽为b ,则能反映a 与b 之间函数关系的图象大致为( B )2.( 原创 )把一个长、宽、高分别为3 cm,2 cm,1 cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S ( cm 2 )与高h ( cm )之间的函数关系式为 S=6ℎ .知识点2 利用反比例函数解决行程问题3.一辆汽车匀速通过某段公路,所需时间t ( h )与行驶速度v ( km/h )满足函数关系t=kv ( k ≠0 ),其图象为如图的一段曲线.若这段公路行驶速度不得超过60 km/h,则该汽车通过这段公路最少需要 23 h .4.小军的爸爸早晨从家骑自行车送小军去学校上学,他们的速度是12千米/小时,用了0.5小时到达学校.放学时,爸爸让小军坐汽车,汽车的速度为v 千米/小时. ( 1 )写出t 与v 之间的函数关系式;( 2 )如果小军要在10分钟内回到家,那么汽车的速度至少为多少? 解:( 1 )t 与v 之间的函数关系式为t=6v .( 2 )10分钟=16小时,当t=16时,v=6÷16=36( 千米/小时 ),答:汽车的速度至少为36千米/小时.知识点3利用反比例函数解决工作量问题5.一台印刷机每年可印刷的书本数量y( 万册 )与它的使用时间x( 年 )成反比例关系.当x=2时,y=10,则y与x的函数图象大致是( D )6.( 改编 )某工厂生产化肥的总任务一定,平均每天的化肥产量y( 吨 )与完成生产任务所需要的时间x( 天 )之间成反比例关系.如果每天生产化肥125吨,那么完成总任务需要7天.( 1 )求y关于x的函数解析式,并指出比例系数;( 2 )若要5天完成总任务,则每天产量应达到多少?,比例系数为875.解:( 1 )y关于x的函数解析式为y=875x=175( 吨 ).( 2 )当x=5时,y=8755答:若要5天完成总任务,则每天产量应达到175吨.综合能力提升练7.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18 ℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温( k≠0 )的一部分,则度y( ℃ )随时间x( 时 )变化的函数图象,其中BC段是双曲线y=kx当x=16时,大棚内的温度约为( C )A.18 ℃B.15.5 ℃C.13.5 ℃D.12 ℃8.( 原创 )某商品售价y( 元/件 )是基础价与浮动价的和,其中基础价保持不变,浮动价与+5.月需求量x( 件 )成反比例,根据表格写出y与x的函数关系式为y=600x售价y( 元/件 )1110月需求量x( 件/100120月 )9.将油箱注满k 升油后,轿车行驶的总路程s ( 单位:千米 )与平均耗油量a ( 单位:升/千米 )之间的函数关系式为s=ka ( k 是常数,k ≠0 ).已知某轿车油箱注满油后,以平均耗油量为每千米0.1升的速度行驶,可行驶760千米,当平均耗油量为0.08升/千米时,该轿车可以行驶 950 千米.10.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y ( mg )与时间x ( min )的函数关系如图所示.已知药物燃烧阶段y 与x 成正比例,燃完后y 与x 成反比例.现测得药物10 min 燃完,此时教室内每立方米空气含药量为8 mg .当每立方米空气中含药量低于1.6 mg 时,对人体才能无毒害作用.那么从消毒开始,经过 50 min 后教室内的空气才能达到安全要求.11.如图,学校打算用某种材料围建一个面积为18平方米的矩形ABCD 生物园,用来饲养小兔,其中矩形ABCD 的一边AB 靠墙,墙长为8米.设AD 的长为y 米,CD 的长为x 米. ( 1 )求y 与x 之间的函数解析式;( 2 )若围成矩形ABCD 的生物园的三边材料总长不超过18米,AD 和DC 的长度都是整数,求出满足条件的所有围建方案.解:( 1 )根据题意得xy=18,即y=18x . ( 2 )由题意可知{x ≤8,x +2y ≤18,且y=18x ,所以符合条件的有x=3时,y=6;x=6时,y=3.答:满足条件的所有围建方案为AD=6米,CD=3米或AD=3米,CD=6米.12.合肥市某购物中心分批采购某种电器,预计全年将采购3600台,每批都采购x 台,且每批均需付运费400元.( 1 )写出该购物中心采购这种电器全年的总运费y ( 元 )与每批采购台数x ( 台 )的函数解析式;( 2 )如果要求全年的总运费不超过5万元,那么每批至少需要采购多少台? 解:( 1 )根据题意得y=3600x×400,则y=1440000x. ( 2 )当y ≤50000时,1440000x≤50000,解得x ≥28.8,∵台数取整数,∴每批至少需要采购29台.拓展探究突破练13.用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水( 约10升 ),小敏每次用半盆水( 约5升 ),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克. ( 1 )请帮助小红、小敏求出各自衣服中洗衣粉的残留量y 与漂洗次数x 的函数解析式; ( 2 )当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?解:( 1 )设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数解析式分别为y 1=k1x,y 2=k 2x.将{x 1=1,y 1=1.5和{x 2=1,y 2=2分别代入两个解析式,得1.5=k 11,2=k 21,解得k 1=1.5,k 2=2.∴所求的解析式分别是y 1=32x ,y 2=2x .( 2 )把y=0.5分别代入两个函数解析式,得32x =0.5,2x =0.5,解得x 1=3,x 2=4, 10×3=30( 升 ),5×4=20( 升 ).答:小红共用30升水,小敏共用20升水,小敏的漂洗方法更值得提倡.第2课时 物理学科中的反比例函数问题知识要点基础练知识点1 反比例函数解决力学问题1.已知力F 所做的功W 是15焦,则表示力F 与物体在力的方向上通过的距离s 的函数关系的图象大致为( D )2.小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1000 N 和0.4 m,当撬动石头的动力F 至少需要250 N 时,则动力臂l 的最大值为 1.6 m .知识点2 反比例函数解决电学问题3.( 教材P16第4题变式 )已知蓄电池的电压为定值,使用蓄电池时,电流I ( 单位:A )与电阻R ( 单位:Ω )是反比例函数关系,它的图象如图所示.如果以此蓄电池为电源的用电器的限制电流不能超过6 A,那么用电器的可变电阻R 应控制在( C )A.R ≥2B.0<R ≤2C.R ≥1D.0<R ≤14.舞台灯光可以在很短的时间内将阳光灿烂的晴日变成乌云密布的阴天,这样的效果就是通过改变电阻来控制电流的变化实现的.在灯光变化的电路中,保持电压不变,电流I ( 安培 )与电阻R ( 欧姆 )成反比例,当电阻R=5欧姆时,电流I=2安培. ( 1 )求I 与R 之间的函数关系式; ( 2 )当电流I=0.5安培时,求电阻R 的值. 解:( 1 )设I=UR ,则U=IR=10,∴I=10R . ( 2 )当I=0.5安培时,R=100.5=20( 欧姆 ).知识点3 反比例函数解决物理学中的其他问题5.在一个可以改变容积的密闭容器内,装有质量为m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变,ρ与V 在一定范围内满足ρ=mV ,它的图象如图所示,则该气体的质量m 为( B )A.1.4 kgB.7 kgC.5 kgD.6.4 kg综合能力提升练6.有一个圆台形的物体,其上底面积是S 1,下底面积是S 2.若如图放在桌面上,对桌面的压强是100帕;翻过来放,对桌面的压强是400帕,则S1S 2的值为( C )A .116B .18C .14D .12【变式拓展】用某种金属材料制成的高度为h 的圆柱形物体甲如图放在桌面上,它对桌面的压强为1000帕,将物体甲锻造成高度为12h 的圆柱形的物体乙( 重量保持不变 ),则乙对桌面的压强为( A )A .500帕B .1000帕C .2000帕D .250帕7.一辆汽车前灯电路上的电压U 保持不变,通过前灯的电流强度I 越大,灯就越亮,且I=U R( R 表示前灯电阻 ).已知A ,B 两种前灯灯泡的电阻分别为R 1,R 2.若发现使用灯泡A 时,汽车前灯灯光更亮,则正确的是( C ) A.R 1>R 2 B.R 1=R 2C.R 1<R 2D.与R 1,R 2的大小无关8.( 原创 )近视镜镜片的焦距y ( 米 )是镜片度数x ( 度 )的函数,下表记录了一组数据:( 1 )在下列函数中,符合上述表格中所给数据的是 B ; A.y=1100xB.y=100xC.y=-1200x+32D.y=x 240000−13800x+198( 2 )利用( 1 )中的结论计算:当镜片的度数为200度时,镜片的焦距约为 12 米. 9.某物质在质量不变的情况下,它的密度ρ( kg/m3 )与体积V ( m 3 )成反比例函数关系.根据以上条件,解答下列问题:( 1 )已知V=3 m 3,ρ=2 kg/m 3,求ρ与V 之间的函数解析式;( 2 )在( 1 )的条件下,若该物质的体积由a m 3增加到( a+2 ) m 3,而密度却由6 kg/m 3减少到b kg/m 3,求a 和b 的值. 解:( 1 )ρ=6V .( 2 )当V=a 时,ρ=6,即6=6a ,∴a=1.当V=a+2时,ρ=b ,即b=6a+2,∴b=2. 10.我们知道当电压一定时,电流与电阻成反比例函数关系.现有某学生利用一个最大电阻为200 Ω的滑动变阻器及一个电流表测电源电压,结果如图所示.( 1 )电流( A )与电阻R ( Ω )之间的函数解析式为 I=144R;( 2 )当电阻在2 Ω~200 Ω时,电流应在 0.72 A ~72 A 范围内,电流随电阻的增大而减小 ;( 3 )若限制电流不超过20 A,求电阻的范围. 解:( 3 )当I=144R≤20时,R ≥7.2 Ω. 又∵R max =200 Ω,∴电阻的范围是7.2 Ω~200 Ω.11.某气球内充满了一定质量的气体,当温度不变时,气球内气体的压强P ( 千帕 )随气体体积V ( 立方米 )的变化而变化,P 随V 的变化情况如下表所示.( 1 )写出符合表格数据的P 关于V 的函数解析式为 P=96V ; ( 2 )当气球的体积为20立方米时,气球内气体的压强P 为多少千帕?( 3 )当气球内气体的压强大于144千帕时,气球将爆炸,依照( 1 )中的函数解析式,基于安全考虑,气球的体积至少为多少立方米?解:( 2 )把V=20代入P=96V,得P=4.8,即当气球的体积为20立方米时,气球内气体的压强是4.8千帕.( 3 )把P=144代入P=96V ,得V=23,故P ≤144时,V ≥23. 答:基于安全考虑,气球的体积应不小于23立方米.拓展探究突破练12.如图所示,小华设计了一个研究杠杆平衡条件的实验,在一根长为1000 cm 的匀质木杆的中点左侧固定位置B 处悬挂重物A ,在中点的右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x ( cm ),观察弹簧秤的示数y ( N )的变化情况,实验数据记录如下:( 1 )观察数据,求出y( N )与x( cm )之间的函数解析式,写出自变量的取值范围.( 2 )当弹簧秤的示数是24 N时,弹簧秤与点O的距离是多少?随着弹簧秤与点O的距离不断减小,弹簧秤上的示数将发生怎样的变化?,解:( 1 )设y与x之间的函数解析式为y=kx把x=10,y=30代入上式得k=300,∴y=300.x经检验,其他几组数据也满足此解析式,∴y=300( 0<x≤500 ).x( 2 )当y=24时,x=300=12.5,24∴当弹簧秤上的示数为24 N时,弹簧秤与点O的距离是12.5 cm,随着弹簧秤与点O的距离不断减小,弹簧秤上的示数不断增大.第1课时认识相似图形知识要点基础练知识点1相似图形的概念1.“相似的图形”是( A )A.形状相同的图形B.大小不相同的图形C.能够重合的图形D.大小相同的图形2.( 教材P25练习第2题变式 )观察下列各组图形,其中不相似的是( A )3.下列说法正确的是( D )A.小红小学毕业时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗上的五角星都是相似的知识点2相似图形的放大与缩小4.( 原创 )下列四组图形中,其中一个图形可以看作由另一个图形放大或缩小得到的是( B )5.从放大镜里看一个等腰三角形,以下说法错误的是( B )A.看到的三角形还是一个等腰三角形B.看到的三角形各个角的度数都增大了C.看到的三角形各个角的度数保持不变D.看到的三角形各边长都增大了综合能力提升练6.下列各组图形中,两个图形的形状不一定相同的是( B )A.两个等边三角形B.有一个角是35°的两个等腰三角形C.两个正方形D.两个圆7.观察下列图形,其中相似图形有( C )A.1对B.2对C.3对D.4对8.( 改编 )下列图形中形状不相同的是( C )A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有图案和放大图案C.某人的侧身照片和正面像D.一棵树与它在水中的像9.如图是两个相似圆柱,它们的底面半径和高的尺寸如图所示,求它们的体积之比.解:V1V2=π·( 2a )2·2bπ·( 3a )2·3b=827,∴它们的体积之比为8∶27.拓展探究突破练10.某课外活动小组的同学在研究某种植物标本( 如图 )时,测得叶片①的最大宽度是8 cm,最大长度是16 cm;叶片②的最大宽度是7 cm,最大长度是14 cm;叶片③的最大宽度约为6.5 cm,请你用所学数学知识估算叶片③的完整叶片的最大长度约为多少?解:根据叶片①②的最大长度和宽度,可得出这种植物的叶片的最大宽度∶最大长度=1∶2,由此估算出完整的叶片③的最大长度是6.5×2=13 cm.第2课时相似多边形的特征知识要点基础练知识点1成比例线段1.四条线段a,b,c,d成比例,其中b=3 cm,c=8 cm,d=12 cm,则a=( A )A.2 cmB.4 cmC.6 cmD.8 cm2.( 教材P27练习第1题变式 )钓鱼岛列岛是我国最早发现、命名,并行使主权的,在一幅比例尺是1∶100000的地图上,测得钓鱼岛的东西走向长为3.5厘米,那么它的东西走向实际长度大约是3500米.知识点2相似多边形的意义3.( 原创 )如图所示的四边形与选项中的一个四边形相似,这个四边形是( D )【变式拓展】如图所示的三个矩形中,其中互为相似形的是( B )A.甲与乙B.乙与丙C.甲与丙D.以上都不对知识点3相似多边形的性质及相似多边形的相似比4.( 教材P26例题变式 )如图的两个四边形相似,则∠α的度数是( A )A.87°B.60°C.75°D.120°5.( 原创 )如图,矩形ABCD中,AB=4,点E,F分别在AD,BC边上,且EF⊥BC.若矩形ABFE与矩形DEFC相似,且相似比为1∶2,求AD的长.解:因为矩形ABFE与矩形DEFC相似,且相似比为1∶2,所以ABDE =AEDC=12.因为四边形ABCD为矩形,所以CD=AB=4,所以4DE =AE4=12,所以DE=8,AE=2,所以AD=AE+DE=2+8=10.综合能力提升练6.下列说法正确的是( C )A.所有的菱形都相似B.所有的矩形都相似C.所有的正方形都相似D.所有的等腰三角形都相似7.一个多边形的边长分别是4 cm,5 cm,6 cm,4 cm,5 cm,和它相似的一个多边形的最长边为8 cm,那么这个多边形的周长是( C )A.12 cmB.18 cmC.32 cmD.48 cm8.已知a,b,c,d四条线段依次成比例,其中a=3 cm,b=( x-1 ) cm,c=5 cm,d=( x+1 ) cm,则x=4.拓展探究突破练9.在AB=30 m,AD=20 m的矩形花坛四周修筑小路.( 1 )如果四周的小路的宽均相等,都是a,如图1,那么小路四周所围成的矩形A1B1C1D1和矩形ABCD相似吗?请说明理由.( 2 )如果相对着的两条小路的宽均相等,宽度分别为x,y,如图2,试问小路的宽x与y的比值为多少时,能使得小路四周所围成的矩形A2B2C2D2和矩形ABCD相似?请说明理由.解:( 1 )矩形A1B1C1D1和矩形ABCD不相似.理由:因为30+2a30=15+a15,20+2a20=10+a10,所以30+2a30≠20+2a20,所以小路四周所围成的矩形A1B1C1D1和矩形ABCD不相似.( 2 )因为当30+2y30=20+2x20时,小路四周所围成的矩形A2B2C2D2和矩形ABCD相似,解得x y =23,所以路的宽x与y的比值为23时,能使得小路四周所围成的矩形A2B2C2D2和矩形ABCD 相似.。

2020九年级数学上册第1章1.4用一元二次方程解决问题第2课时市场营销问题同步练习

2020九年级数学上册第1章1.4用一元二次方程解决问题第2课时市场营销问题同步练习

第1章一元二次方程1.4 第2课时市场营销问题知识点市场营销问题1.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,则平均每株盈利减少0.5元.要使每盆的盈利达到15元,则每盆应多植多少株?设每盆应多植x株,则可以列出的方程是( )A.(x+3)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=152.某商店以每件16元的价格购进一批商品,物价局限定,每件商品的利润不得超过30%.若每件商品售价定为x元,则可卖出(170-5x)件,商店预期要盈利280元,那么每件商品的售价应定为( )A.20元 B.20.8元C.20元或30元 D.30元3.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件,如果每件涨价1元,那么每星期少卖出10件.设每件涨价x元,则每星期的销量为__________件,此时,每件商品的利润为__________元.若使每星期的利润为1560元,则可得方程为________________________.4.小丽为校合唱队购买某种服装时,商场经理给出了如下优惠条件:如果一次性购买不超过10件,那么单价为80元/件;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元/件.按此优惠条件,小丽一次性购买这种服装付了1200元,则她购买了多少件这种服装?5.[2017·菏泽] 列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,则每天可多售出2个.已知每个玩具的固定成本为360元,则这种玩具的销售单价为多少元时,厂家每天可获得20000元的利润?6.某核桃专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2240元.(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?7.天山旅行社为吸引顾客组团去具有特殊地貌特征的黄果树风景区旅游,推出了如下收费标准:图1-4-6某单位组织员工去具有特殊地貌特征的黄果树风景区旅游,共支付给天山旅行社旅游费用27000元,则该单位这次共有多少名员工去具有特殊地貌特征的黄果树风景区旅游?8.某汽车销售公司5月份销售某型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x正为整数),实际进价为y万元/辆,求y与x之间的函数表达式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为45万元,那么该月需要售出多少辆汽车?(注:销售利润=销售价-进价)9.某运动器材公司推出一款篮球,销售单价定为40元/个,在该篮球试销期间,为了鼓励消费者购买,公司推出了团购业务:一次购买这种篮球不超过10个时,每个按40元销售;若一次购买这种篮球超过10个,则每多购买一个,每个篮球的销售单价均降低0.5元,但团购数量不得超过40个.(1)当一次购买这种篮球40个时,销售单价为每个________元;当一次购买这种篮球________个时,销售单价恰好为每个35元.(2)某校一次购买这种篮球共付款900元,则该校购买了这种篮球多少个?10.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到下表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.详解详析1.A2.A [解析] 设每件商品的售价应定为x 元,则利润为(x -16)元. 由题意,得(170-5x)(x -16)=280, 解得x 1=20,x 2=30.∵每件商品的利润不得超过30%, ∴x =30不合题意,舍去.故选A .3.(150-10x) (10+x) (150-10x)(10+x)=15604.[解析] 根据“一次性购买多于10件,每增加1件,购买的所有服装的单价降低2元”表示出每件服装的单价,进而列方程求解即可.解:因为购买10件服装的总钱数为10×80=800(元)<1200元,所以小丽购买件数超过了10件.设小丽购买了x 件这种服装.根据题意,得 [80-2(x -10)]x =1200,解得x 1=20,x 2=30.当x =20时,80-2×(20-10)=60>50,符合题意;当x =30时,80-2×(30-10)=40<50,不合题意,舍去. 答:她购买了20件这种服装. 5.解:设销售单价为x 元.根据题意,得(x -360)[160+2(480-x)]=20000,整理,得x 2-920x +211600=0, 解得x 1=x 2=460.答:这种玩具的销售单价为460元时,厂家每天可获得20000元的利润.6.解:(1)设每千克核桃应降价x 元.根据题意,得(60-x -40)(100+x2×20)=2240.解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元. (2)为让利于顾客,每千克核桃应降价6元,即每千克核桃的售价为54元,54÷60=0.9. 答:该店应按原售价的九折出售.7.解:设该单位这次共有x 名员工去具有特殊地貌特征的黄果树风景区旅游. 因为1000×25=25000(元)<27000元, 所以员工人数一定超过25人.可列方程[1000-20×(x-25)]x =27000.整理,得x 2-75x +1350=0, 解得x 1=45,x 2=30.当x 1=45时,1000-20×(x-25)=600<700,不符合题意,舍去; 当x 2=30时,1000-20×(x-25)=900>700,符合题意.答:该单位这次共有30名员工去具有特殊地貌特征的黄果树风景区旅游. 8.解:(1)①当0≤x≤5且x 为整数时,y =30;②当5<x≤30且x 为整数时,y =30-0.1×(x-5)=-0.1x +30.5. 故y 与x 之间的函数表达式为y =⎩⎪⎨⎪⎧30(0≤x≤5且x 为整数);-0.1x +30.5(5<x≤30且x 为整数). (2)若该月销售量低于5辆,则销售利润为(32-30)×5=10(万元)<45万元,因此销售量要多于5辆.设该月售出x(x>5)辆汽车,则由题意,得x[32-(-0.1x+30.5)]=45,解得x1=15,x2=-30(舍去).答:该月需要售出15辆汽车.9. (1)25 20(2)设该校购买这种篮球x个.因为10×40=400(元)<900元,所以x>10.根据题意,得[40-0.5×(x-10)]x=900,解得x1=30,x2=60(舍去).答:该校购买了这种篮球30个.10.解:∵30×40=1200(元)<1400元,∴奖品数超过了30件.设奖品数为x件,则每件奖品的价格为[40-(x-30)×0.5]元.根据题意,得x[40-(x-30)×0.5]=1400,解得x1=40,x2=70.∵单价不得低于30元,∴x=70不符合题意,舍去.答:王老师购买该奖品的件数为40件.。

(含答案)九年级数学人教版上册课时练第22章《22.3 实际问题与二次函数》(2)

(含答案)九年级数学人教版上册课时练第22章《22.3 实际问题与二次函数》(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第22章二次函数22.3实际问题与二次函数一、选择题1.某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-2x2+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元2.某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个3.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD的总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.183m2C.243m2 D.4532m24.一种包装盒的设计方法如图所示,四边形ABCD是边长为80cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30B.25C.20D.155.在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1m ,球落地点A 到点O 的距离是4m ,那么这条抛物线的解析式是()A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -16.三孔桥横截面的三个孔都呈抛物线,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为()A .米B .米C .米D .7米二、填空题7.某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,则可卖出(30-x )件.若要使销售利润最大,则每件的售价应为________元.8.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品的售价为a 元,则可卖出(350-10a )件.但物价部门限定每件商品加价不能超过进价的40%,若商店想获得最大利润,则每件商品的价格应定为________元.9.如图所示是一座抛物线形拱桥,当水面宽为12m 时,桥拱顶部离水面4m ,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.10.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t·为正整数....)的增大而增大,a 的取值范围应为________.11.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体总长为27m,则能建成的饲养室总占地面积最大为________m2.12.如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9m,AB=36m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为________m.13.竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.14.如图,小明的父亲在相距2m的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高度都是2.5m,绳子自然下垂呈抛物线状,身高1m的小明距较近的那棵树0.5m时,头部刚好接触到绳子,则绳子的最低点到地面的距离为________m.三、解答题15.(2020·营口)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?16.有一个窗户边框的形状如图①,上部是由4个全等扇形组成的半圆,下部是矩形,如果制作窗户边框的材料总长为6m,如何设计这个窗户边框的尺寸,使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35m,窗框矩形部分的另一边长约为1.23m时,窗户的透光面积最大,最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6m,利用图③,解答下列问题:(1)若AB为1m,求此时窗户的透光面积;(2)与题干中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.17.(2019•绍兴)有一块形状如图的五边形余料ABCDE ,6AB AE ==,5BC =,90A B Ð=Ð=°,135C Ð=°,90E Ð>°.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.18.凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18-10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低售价买?(2)写出该文具店一次销售x (x >10)只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x ≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?19.(2020·无锡)有一块矩形地块ABCD ,AB =20米,BC =30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米。

人教九年级数学课时练

人教九年级数学课时练

以下是人教版九年级数学课时练的示例内容:1. 判断题(1) 一组对边平行且相等的四边形是平行四边形。

( )(2) 对角线互相垂直的平行四边形是菱形。

( )(3) 顺次连接任意四边形各边中点所得的四边形一定是菱形。

( )(4) 菱形的对角线相等。

( )(5) 若四边形的对角线相等,则这个四边形是矩形。

( )(6) 对角线互相垂直且相等的四边形是正方形。

( )(7) 平行四边形的对角线相等。

( )(8) 矩形的对角线互相垂直。

( )(9) 正方形的对角线相等。

( )(10) 菱形的对角线互相平分。

( )2. 选择题(1) 下列说法中正确的是 ( )A. 对角线互相垂直的四边形是菱形B. 顺次连接矩形各边中点形成的四边形是正方形C. 对角线相等的四边形是矩形D. 四个内角都相等的四边形是矩形(2) 下列说法中正确的是 ( )A. 有一组邻边相等的平行四边形是正方形B. 对角线相等的四边形是矩形C. 对角线互相垂直且相等的平行四边形是正方形D. 有一个内角是直角的平行四边形是矩形(3) 下列说法中正确的是 ( )A. 对角线互相垂直的四边形是菱形B. 顺次连接矩形各边中点形成的四边形的对角线相等C. 对角线相等的四边形是矩形D. 四个内角都相等的四边形是正方形(4) 下列说法中正确的是 ( )A. 对角线互相垂直的平行四边形是菱形B. 顺次连接矩形各边中点形成的四边形是正方形C. 对角线互相垂直平分且相等的四边形是正方形D. 对角线相等的四边形是矩形(5) 下列说法中正确的是 ( )A. 对角线互相垂直的四边形是菱形B. 有四个内角都相等的四边形是矩形C. 对角线互相垂直平分且相等的四边形是正方形D. 有一个内角是直角的平行四边形是矩形。

2020年秋九年级数学上册 第2章 2.5 一元二次方程的应用 第2课时 图形面积问题同步练习

2020年秋九年级数学上册 第2章 2.5 一元二次方程的应用 第2课时 图形面积问题同步练习

2.5 一元二次方程的应用第2课时图形面积问题知识点 1 面积问题图2-5-11.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图2-5-1),原空地一边减少了1 m,另一边减少了2 m,剩余空地的面积为18 m2,求原正方形空地的边长.设原正方形空地的边长为x m,则可列方程为( )A.(x+1)(x+2)=18B.x2-3x+16=0C.(x-1)(x-2)=18D.x2+3x+16=02.将一块正方形铁皮的四角各剪去一个边长为3 cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300 cm3,则原正方形铁皮的边长为( )A.10 cm B.13 cm C.14 cm D.16 cm图2-5-23.如图2-5-2是一块四周镶有宽度相等的花边的地毯,它的长为8 m,宽为5 m,如果地毯中央长方形图案的面积为18 m2.那么花边的宽为________m.4.如图2-5-3,利用一面墙(墙的长度不限),另三边用58 m长的篱笆围成一个面积为200 m2的矩形场地,求矩形的长和宽.图2-5-35.如图2-5-4,要在一个长为10 m、宽为8 m的院子中沿三边辟出宽度相等的花圃,使花圃的面积等于院子面积的30%,试求这个花圃的宽度.图2-5-4知识点 2 动点问题6.教材练习第2题变式如图2-5-5,在△ABC中,∠ABC=90°,AB=8 cm,图2-5-5BC=6 cm.动点P,Q分别从点A,B同时开始运动,点P的速度为1 cm/s,点Q的速度为2 cm/s,点Q运动到点C后停止运动,点P也随之停止运动.经过几秒后,能使△PBQ的面积为15 cm2?( )A.2 s B.3 s C.4 s D.5 s7.如图2-5-6,在Rt△ABC中,∠C=90°,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速运动,其速度均为2 cm/s,几秒后△PCQ的面积是△ABC面积的一半?图2-5-68.如图2-5-7,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米.图2-5-79.在△ABC中,∠B=60°,AB=24 cm,BC=16 cm,点P从点A开始沿AB边向点B以4 cm/s的速度运动,点Q从点C开始沿CB边向点B以2 cm/s的速度运动.它们同时出发,求几秒后,△PBQ的面积是△ABC面积的一半.10.2016·百色如图2-5-8,在直角墙角AOB(OA⊥OB,且OA,OB长度不限)中,要砌20 m长的墙,与直角墙角AOB围成地面为矩形的储仓,且矩形地面AOBC的面积为96 m2.(1)求矩形地面的长;(2)有规格为0.80 m×0.80 m和1.00 m×1.00 m的地板砖单价分别为55元/块和80元/块.若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?图2-5-811.如图2-5-9①,要设计一幅宽20 cm,长30 cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x cm,则每个竖彩条的宽为3x cm.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.(1)结合以上分析完成填空:如图②:用含x的代数式表示:AB=________cm;AD=________cm;矩形ABCD的面积为________cm2.(2)列出方程并完成本题的解答.图2-5-9详解详析1.C [解析] 根据题意,可知剩余的长方形空地的长为(x-1)m,宽为(x-2)m,所以可列出方程为(x-1)(x-2)=18,故选C.2. D [解析] 设原正方形铁皮的边长是x cm,则做成的没有盖的长方体盒子的长、宽均为(x-3×2)cm,高为3 cm,根据题意列方程得(x-3×2)×(x-3×2)×3=300,解得x1=16,x 2=-4(不合题意,舍去).即原正方形铁皮的边长是16 cm.故选D.3.1 [解析] 设花边的宽为x m ,则地毯的长为(8-2x )m ,宽为(5-2x )m ,根据题意列方程得(8-2x )(5-2x )=18,解得x 1=1,x 2=5.5(不符合题意,舍去).故花边的宽为1 m.4.解:设垂直于墙的一边长为x m ,则平行与墙的一边长为(58-2x )m. 依题意得x (58-2x )=200, 解得x 1=25,x 2=4,58-2x 1=8,58-2x 2=50.答:矩形的长为25 m ,宽为8 m 或矩形的长为50 m ,宽为4 m. 5.解:设这个花圃的宽度为x m ,依题意,得 (10-2x )(8-x )=10×8×(1-30%), 解得x 1=12(不合题意,舍去),x 2=1. 答:这个花圃的宽度为1 m.6.B [解析] 设经过t s 后,能使△PBQ 的面积为15 cm 2, 则BP =(8-t )cm ,BQ =2t cm ,由三角形的面积计算公式列方程得12×(8-t )×2t =15,解得t 1=3,t 2=5(当t =5时,BQ =10,不合题意,舍去).故经过3 s 后,能使△PBQ 的面积为15 cm 2. 7.解:设t s 后△PCQ 的面积是△ABC 面积的一半,则可得此时PC =AC -AP =(12-2t )cm ,CQ =BC -BQ =(9-2t )cm ,∴△PCQ 的面积为12·PC ·CQ =12(12-2t )(9-2t )cm 2.∵△PCQ 的面积是△ABC 面积的一半,△ABC 的面积=12×12×9=54(cm 2),∴12(12-2t )(9-2t )=27,解得t =9或t =1.5.∵0≤t ≤4.5, ∴t =1.5,则1.5 s 后△PCQ 的面积是△ABC 面积的一半. 8.设AB =x 米,则BC =(100-4x )米. 根据题意得x (100-4x )=400,整理得x 2-25x +100=0,解得x 1=20,x 2=5. 当AB =20米时,BC =20米,符合题意; 当AB =5米时,BC =80米>25米,故舍去. 答:羊圈的边长AB ,BC 都为20米.9.解:设x s 后,△PBQ 的面积是△ABC 面积的一半,则12(24-4x )(16-2x )×32=12×12×24×16×32,解得x =2或x =12(舍去). 答:2 s 后,△PBQ 的面积是△ABC 面积的一半.10.解: (1)设矩形地面的长为x m ,则宽为(20-x )m ,由题意,得x (20-x )=96, 解得x 1=12,x 2=8(舍去). 答:矩形地面的长为12 m.(2)需要规格为0.80 m×0.80 m 的地板砖96÷(0.8×0.8)=150(块), 则总费用为55×150=8250(元);需要规格为1.00 m×1.00 m 的地板砖96÷(1.0×1.0)=96(块), 则总费用为80×96=7680(元).∵7680<8250,∴用规格为1.00 m×1.00 m 的地板砖费用较少.11. (1)(20-6x ) (30-4x ) (24x 2-260x +600)(2)根据题意,得24x 2-260x +600=(1-13)×20×30,整理,得6x 2-65x +50=0,解得x 1=56,x 2=10(不合题意,舍去),则2x =53,3x =52.答:每个横、竖彩条的宽度分别为53 cm ,52 cm.。

部编版2020九年级数学上册 第1章第2课时 二次函数y=a(x-m)2+k(a≠0)的图象及特征同步练习

部编版2020九年级数学上册 第1章第2课时 二次函数y=a(x-m)2+k(a≠0)的图象及特征同步练习

第2课时二次函数y=a(x-m)2+k(a≠0)的图象及特征知识点一二次函数y=a(x-m)2(a≠0)的图象及其特征图象特征:函数y=a(x-m)2(a≠0)的图象的顶点坐标是_____________,对称轴是直线________.图象的开口方向:当a>0时,开口________,当a<0时,开口________.1.已知抛物线y=(x-2)2,下列说法正确的是( )A.顶点坐标是(0,2)B.对称轴是直线x=-2C.开口向下D.顶点坐标是(2,0)知识点二二次函数y=a(x-m)2+k(a≠0)的图象及其特征图象特征:抛物线y=a(x-m)2+k(a≠0)的顶点坐标为________,对称轴为直线________;抛物线y=a(x-m)2+k(a≠0)的开口方向:当a>0时,开口________,当a<0时,开口_________.2.抛物线y=3(x-2)2+5的顶点坐标是_____________.3.把二次函数y=2x2的图象向左平移1个单位,再向下平移2个单位,平移后抛物线的函数表达式为____________.类型一利用函数图象的平移规律解题例1 [教材补充例题] 已知一条抛物线的开口方向及形状与抛物线y=3x2相同,顶点与抛物线y=(x+2)2的顶点相同.(1)求这条抛物线的函数表达式;(2)求将这条抛物线向右平移4个单位,再向下平移3个单位所得抛物线的函数表达式.【归纳总结】y =a (x -m )2+k (a ≠0)中,m 是抛物线左右平移的标志,当m >0时,抛物线向右平移m 个单位,当m <0时,抛物线向左平移|m |个单位;而k 则是抛物线上下平移的标志,当k >0时,抛物线向上平移k 个单位,当k <0时,抛物线向下平移|k |个单位.类型二 y =a (x -m )2+k (a≠0)型二次函数 图象的特征例2 [教材补充例题](1)二次函数y =4-(x +1)2的图象的开口方向是________,对称轴是________,顶点坐标是________.(2)已知二次函数y =a (x +k )2+k (a ≠0),无论k 取何值,其图象的顶点都在( ) A .直线y =x 上 B .直线y =-x 上 C .x 轴上 D .y 轴上类型三 应用y =a (x -m )2+k (a≠0)确定抛物 线的函数表达式例3 [教材补充例题] 根据下列条件求y 关于x 的二次函数表达式. (1)抛物线的顶点坐标为(-1,-2),且过点(1,10); (2)抛物线过点(0,-2),(1,2),且对称轴为直线x =32.【归纳总结】用顶点式求函数表达式的三种情况 (1)题中出现顶点坐标和另一点的坐标; (2)已知对称轴和两个点的坐标;(3)已知最值和两个点的坐标.二次函数y=a(x-m)2的图象与二次函数y=a(x-m)2+k的图象有何联系?详解详析【学知识】知识点一 (m ,0) x =m 向上 向下 1.[答案] D知识点二 (m ,k) x =m 向上 向下 2.[答案] (2,5)[解析] 由于抛物线y =a(x -m)2+k 的顶点坐标为(m ,k),可知此函数图象的顶点坐标为(2,5).3.[答案] y =2(x +1)2-2[解析] 将二次函数y =2x 2的图象向左平移1个单位,所得抛物线的函数表达式为y =2(x +1)2,将抛物线y =2(x +1)2向下平移2个单位,所得抛物线的函数表达式为y =2(x +1)2-2.【筑方法】例1 解:(1)设抛物线的函数表达式为y =a(x -m)2+k. ∵该抛物线与抛物线y =3x 2的开口方向及形状相同, ∴a =3.又该抛物线的顶点与抛物线y =(x +2)2的顶点相同,∴m =-2,k =0, ∴所求抛物线的函数表达式为y =3(x +2)2.(2)将抛物线y =3(x +2)2向右平移4个单位,再向下平移3个单位,所得抛物线的函数表达式为y =3(x +2-4)2-3,即y =3(x -2)2-3.例2 [答案] (1)向下 直线x =-1 (-1,4)(2)[解析] B 二次函数y =a(x +k)2+k 的图象的顶点坐标为(-k ,k),当x =-k 时,y =k =-(-k)=-x ,所以图象的顶点在直线y =-x 上.故选B.例3 解:(1)设函数表达式为y =a(x +1)2-2. 将x =1,y =10代入,得4a -2=10,∴a =3. ∴函数表达式为y =3(x +1)2-2. (2)设函数表达式为y =a(x -32)2+h.把x =0,y =-2;x =1,y =2代入,得 ⎩⎪⎨⎪⎧94a +h =-2,14a +h =2,解得⎩⎪⎨⎪⎧a =-2,h =52, ∴函数表达式为y =-2(x -32)2+52.【勤反思】[小结] x =m (m ,0) x =m (m ,k)[反思] 它们的开口方向相同,对称轴都为直线x =m ;前者的顶点坐标为(m ,0),后者的顶点坐标为(m ,k),前者可由二次函数y =ax 2的图象向左(m<0)或向右(m>0)平移|m|个单位得到,后者可由二次函数y =ax 2的图象向左(m<0)或向右(m>0)平移|m|个单位、再向上(k>0)或向下(k<0)平移|k|个单位得到,即前者向上(k>0)或向下(k<0)平移|k|个单位可得到后者.。

北师大版九年级数学上册全册课时练习(一课时一练)

北师大版九年级数学上册全册课时练习(一课时一练)

北师大版九年级数学上册全册课时练习1 第一课时菱形的概念及其性质1.如图1-1-1,在▱ABCD中,若添加下列条件:①AB=CD;②AB=BC;③∠1=∠2.其中能使▱ABCD成为菱形的有( )图1-1-1A.0个B.1个C.2个D.3个2.菱形OACB在平面直角坐标系中的位置如图1-1-2所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( )A.(3,1) B.(3,-1)C.(1,-3) D.(1,3)1-1-2 1-1-33.如图1-1-3,P是菱形ABCD对角线BD上的一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是________cm.4.如图1-1-4,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD 的周长是( )A.25 B.20C.15 D.101-1-4 1-1-55.如图1-1-5,在菱形ABCD中,对角线AC,BD相交于点O,H为AD边的中点.若菱形ABCD的周长为32,则OH的长为________.6.如图1-1-6,在△ABC中,AB=AC,四边形ADEF是菱形.求证:BE=CE.图1-1-67.如图1-1-7,在菱形ABCD中,AC=6,BD=8,则菱形ABCD的边长为( )A.5 B.10 C.6 D.88.已知菱形的边长是2 cm,一条对角线长是2 cm,则另一条对角线长是( )A.4 cm B.2 3 cmC. 3 cm D.3 cm1-1-7 1-1-89.如图1-1-8,在菱形ABCD中,AC,BD相交于点O,若∠BCO=55°,则∠CBO=________°.10.如图1-1-9,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为( )图1-1-9A.(-5,4) B.(-5,5)C.(-4,4) D.(-4,3)11.一个菱形的边长为4 cm,且有一个内角为60°,则这个菱形的面积是________.12.如图1-1-10,在菱形ABCD中,∠BAD=80°,对角线AC,BD相交于点O,点E 在AB上,且BE=BO,则∠EOA=________°.图1-1-10 图1-1-1113.如图1-1-11,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为________.14.如图1-1-12所示,已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN的最小值是________.图1-1-1215.如图1-1-13,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过点O作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.图1-1-1316.如图1-1-14所示,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD 交AD的延长线于点F,请你猜想CE与CF在数量上有什么关系,并证明你的猜想.图1-1-1417.如图1-1-15,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=CE;(2)若∠E=50°,求∠BAO的度数.图1-1-15第二课时菱形的判定1.如图1-1-16,要使▱ABCD成为菱形,则需添加的一个条件是( )图1-1-16A.AC=AD B.BA=BCC.∠ABC=90° D.AC=BD2.如图1-1-17,在△ABC中,AD是∠BAC的平分线,DE∥AC,DF∥AB.求证:四边形AEDF是菱形.图1-1-173.下列命题中,正确的是( )A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形图1-1-184.如图1-1-18,在▱ABCD中,AB=13,AC=10,当BD=________时,四边形ABCD 是菱形.5.如图1-1-19,在▱ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.求证:四边形ABCD是菱形.图1-1-196.用直尺和圆规作一个菱形,如图1-1-20,能判定四边形ABCD是菱形的依据是( )图1-1-20A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7.如图1-1-21,在△ABC中,AB=AC,∠B=60°,∠FAC,∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.图1-1-218.如图1-1-22所示,在▱ABCD中,AE,CF分别是∠BAD和∠BCD的平分线.添加一个条件,仍无法判定四边形AECF为菱形的是( )A.AE=AF B.EF⊥ACC.∠B=60°D.AC是∠EAF的平分线1-1-22 1-1-239.如图1-1-23,D,E,F分别是△ABC的边AB,BC,AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是( )A.AB⊥AC B.AB=ACC.AB=BC D.AC=BC10.顺次连接对角线相等的四边形的各边中点,所形成的四边形是________.图1-1-2411.如图1-1-24,E,F,G,H分别是任意四边形ABCD中AD,BD,BC,CA的中点,当四边形ABCD的边满足条件____________时,四边形EFGH是菱形.12.如图1-1-25,在△ACB中,∠ACB=90°,∠B=60°,作边AC的垂直平分线l 交AB于点D,过点C作AB的平行线交l于点E,判断四边形DBCE的形状,并说明理由.图1-1-2513.如图1-1-26,在Rt△ABC中,∠B=90°,E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.图1-1-2614.某校九年级学习小组在探究学习过程中,用两块完全相同且含60°角的三角板ABC 与三角板AEF按如图1-1-27①所示方式放置,现将三角板AEF绕点A按逆时针方向旋转α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,判断四边形ABPF的形状,并说明理由.图1-1-27第3课时菱形的性质与判定的综合应用1.已知菱形的两条对角线长分别是12和16,则此菱形的面积是( )A.192 B.96 C.48 D.40图1-1-282.如图1-1-28,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是( )A.6 B.12 C.24 D.483.如图1-1-29,已知菱形ABCD两条对角线BD与AC的长度之比为3∶4,周长为40 cm,求菱形的面积及高.图1-1-294.如图1-1-30,在平行四边形ABCD中,AC平分∠DAB,AB=2,则四边形ABCD的周长为( )A.4 B.6 C.8 D.121-1-30 1-1-315.如图1-1-31,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°6.如图1-1-32,将等边三角形ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC;②BD,AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是( )A.1 B.2 C.3 D.41-1-3 1-1-337.如图1-1-33,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.8.如图1-1-34所示,在菱形ABCD中,AE⊥BC,BE=EC,AE=2,则AB=________.1-1-3 1-1-359.如图1-1-35,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,且AD交EF于点O,则∠AOF=________°.10.如图1-1-36,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求四边形BCFE的周长.图1-1-36图1-1-3711.如图1-1-37,四边形ABCD 的四边相等,且面积为120 cm 2,对角线AC =24 cm ,则四边形ABCD 的周长为( )A .52 cmB .40 cmC .39 cmD .26 cm12.如图1-1-38,在给定的一张平行四边形纸片ABCD 上作一个菱形,甲、乙两人的作法如下:图1-1-38甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,则四边形ABEF 是菱形.根据两人的作法可判断( )A .甲正确,乙错误B .甲错误,乙正确C .甲、乙均正确D .甲、乙均错误图1-1-3913.如图1-1-39,菱形ABCD 的边长为8 cm ,∠A =60°,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则四边形BEDF 的面积为________ cm 2.14.如图1-1-40,在菱形ABCD 中,P 是AB 上的一个动点(不与点A ,B 重合),连接DP 交对角线AC 于点E ,连接BE .(1)求证:∠APD =∠CBE ;(2)试问P 点运动到什么位置时,△ADP 的面积等于菱形ABCD 面积的14,为什么?图1-1-4015.如图1-1-41,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2 5,求四边形ABCD的面积.图1-1-4116.教材“做一做”变式题明明将两张长为8 cm,宽为2 cm的长方形纸条交叉叠放,如图1-1-42①所示,他发现重叠部分可能是一个菱形.(1)请你帮助明明证明四边形ABCD是菱形;(2)明明又发现:如图②所示,当菱形的一条对角线与长方形纸条的一条对角线重合时,菱形ABCD的周长最大,求此时菱形ABCD的周长.图1-1-422 第1课时矩形的概念及其性质1.若矩形ABCD的两邻边长分别是1,2,则其对角线BD的长是( )A. 3 B.3 C. 5 D.2 52.如图1-2-1所示,在矩形ABCD中,E是BC边的中点,且AE平分∠BAD,CE=2,则CD的长是( )A.2 B.3 C.4 D.51-2-1 1-2-23.如图1-2-2,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC 的度数是( )A.30° B.22.5° C.15° D.10°4.如图1-2-3,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD.求证:AO=BO.图1-2-35.如图1-2-4,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB 的度数为( )A.30° B.60° C.90° D.120°1-2-4 1-2-56.如图1-2-5,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是( )A.3 cm B.6 cm C.10 cm D.12 cm图1-2-67.如图1-2-6,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别是AO ,AD 的中点,若AB =6 cm ,BC =8 cm ,则EF =________ cm.8.如图1-2-7,在矩形ABCD 中,过点B 作BE ∥AC 交DA 的延长线于点E .求证:BE =BD .图1-2-79.若直角三角形两条直角边的长分别为6和8,则斜边上的中线的长是( ) A .5 B .10 C.245 D.125图1-2-810.如图1-2-8,△ABC 中,∠ACB =90°,∠B =55°,D 是斜边AB 的中点,那么∠ACD 的度数为( )A .15°B .25°C .35°D .45°11.如图1-2-9,已知△ABC 和△ABD 均为直角三角形,其中∠ACB =∠ADB =90°,E 为AB 的中点.求证:CE =DE .图1-2-912.如图1-2-10,已知矩形ABCD 沿着直线BD 折叠,使点C 落在点C ′处,BC ′交AD 于点E ,AD =8,AB =4,则DE 的长为( )A .3B .4C .5D .61-2-10 1-2-1113.如图1-2-11,在矩形ABCD中,E,F分别是AB,CD的中点,连接DE,BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=5,BC=8,则图中阴影部分的面积为( )A.5 B.8 C.13 D.2014.如图1-2-12,在矩形ABCD中,两条对角线相交于点O,折叠矩形,使顶点D与对角线交点O重合,折痕为CE,已知△CDE的周长是10 cm,则矩形ABCD的周长为( )A.15 cm B.18 cm C.19 cm D.20 cm1-2-121-2-1315.如图1-2-13,在Rt△ABC中,∠ACB=90°,D,E,F分别是边AB,BC,CA的中点,若CD=6 cm,则EF=________ cm.16.如图1-2-14,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.图1-2-1417.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图1-2-15①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图1-2-15②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=FB,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.图1-2-15参考答案1.C 2.A 3.C .4.证明:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC.∵∠AOC=∠BOD,∴∠AOC-∠DOC=∠BOD-∠DOC,即∠AOD=∠BOC.在△AOD和△BOC中,∠A=∠B,∠AOD=∠BOC,AD=BC,∴△AOD≌△BOC,∴AO=BO.5.B 6.A 7.2.58.证明:∵四边形ABCD是矩形,∴AC=BD,AD∥BC.又∵BE∥AC,∴四边形AEBC 是平行四边形, ∴BE =AC ,∴BE =BD . 9.A . 10.C. 11.证明:在Rt △ABC 中, ∵E 为斜边AB 的中点, ∴CE =12AB .在Rt △ABD 中, ∵E 为斜边AB 的中点, ∴DE =12AB .∴CE =DE .12.C 13.D 14.D 15.6 16.解:(1)证明:∵四边形ABCD 是矩形, ∴AB =DC ,AC =BD ,AD =BC ,∠ADC =∠ABC =90°.由平移的性质得:DE =AC ,EC =BC ,∠DCE =∠ABC =90°,DC =AB , ∴AD =EC .在△ACD 和△EDC 中,AD =EC ,∠ADC =∠ECD ,CD =DC , ∴△ACD ≌△EDC .(2)△BDE 是等腰三角形.理由如下: ∵AC =BD ,DE =AC , ∴BD =DE ,∴△BDE 是等腰三角形.17.解:(1)证明:∵四边形ABCD 为矩形, ∴AD ∥BC ,∴∠EAO =∠BFO . 又∵∠AOE =∠FOB ,AE =FB ,∴△AOE ≌△FOB ,∴EO =BO , ∴AO 是△ABE 的边BE 上的中线, ∴△AOB 和△AOE 是“友好三角形”. (2)∵△AOE 和△DOE 是“友好三角形”, ∴S △AOE =S △DOE ,AE =ED =12AD =12BC =3.∵△AOB 和△AOE 是“友好三角形”, ∴S △AOB =S △AOE .∵△AOE ≌△FOB ,∴S △AOE =S △FOB , ∴S △AOD =S △ABF ,∴S 四边形CDOF =S 矩形ABCD -2S △ABF =4×6-2×12×4×3=12.第2课时 矩形的判定1.如图1-2-16,要使平行四边形ABCD 成为矩形,需添加的条件是( )A .AB =BC B .AO =CO C .∠ABC =90°D .∠1=∠22.木工师傅做一个矩形木框,做好后量得长为80 cm ,宽为60 cm ,对角线的长为100cm ,则这个木框________.(填“合格”或“不合格”)1-2-16 1-2-173.如图1-2-17,在△ABC 中,AD ⊥BC 于点D ,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,当△ABC 满足条件__________时,四边形AEDF 是矩形.4.如图1-2-18,菱形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,AE ∥BD.求证:四边形AODE是矩形.图1-2-18图1-2-195.如图1-2-19,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是( )A.AO=OC B.AC=BDC.AC⊥BD D.BD平分∠ABC6.如图1-2-20,在▱ABCD中,对角线AC,BD相交于点O,OA=3,要使▱ABCD为矩形,则OB的长为( )A.4 B.3 C.2 D.11-2-20 1-2-217.如图1-2-21,工人师傅砌门时,要想检验门框ABCD是否符合设计要求(即门框是不是矩形),在确保两组对边分别平行的前提下,只要测量出对角线AC,BD的长度,然后看它们是否相等就可以判断了.(1)当AC________(填“等于”或“不等于”)BD时,门框符合要求;(2)这种做法的根据是______________________.8.如图1-2-22,四边形ABCD是平行四边形,对角线AC,BD相交于点O,△OAB为等边三角形,BC= 3.求四边形ABCD的周长.图1-2-229.对于四边形ABCD,给出下列4组条件:①∠A=∠B=∠C=∠D;②∠B=∠C=∠D;③∠A=∠B,∠C=∠D;④∠A=∠B=∠C=90°,其中能得到“四边形ABCD是矩形”的条件有( )A.1组 B.2组 C.3组 D.4组图1-2-2310.如图1-2-23,直角∠AOB内的一点P到这个角的两边的距离之和为6,则图中四边形的周长为________.11.下列命题错误的是( )A.有三个角是直角的四边形是矩形B.有一个角是直角且对角线互相平分的四边形是矩形C.对角线相等且有一个角是直角的四边形是矩形D.对角线相等且互相平分的四边形是矩形12.如图1-2-24,四边形ABCD的对角线AC,BD相交于点O,已知下列6个条件:①AB∥DC;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD.下列组合中,不能使四边形ABCD成为矩形的是( )A.①②③ B.②③④C.②⑤⑥ D.④⑤⑥1-2-24 1-2-2513.如图1-2-25,D,E,F分别是△ABC各边的中点.添加下列条件后,不能得到四边形ADEF是矩形的是( )A.∠BAC=90° B.BC=2AEC.ED平分∠AEB D.AE⊥BC图1-2-2614.如图1-2-26,已知四边形ABCD,E,F,G,H分别是四边的中点,只要四边形ABCD 的对角线AC,BD再满足条件________,则四边形EFGH一定是矩形.15.如图1-2-27,AB∥CD,PM,PN,QM,QN分别为角平分线.求证:四边形PMQN 是矩形.图1-2-2716.如图1-2-28,在△ABC中,AB=AC,D为BC的中点,E是△ABC外一点且四边形ABDE是平行四边形.求证:四边形ADCE是矩形.图1-2-2817.如图1-2-29,四边形ABCD的对角线AC,BD交于点O,已知O是AC的中点,AE =CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论.图1-2-2918.如图1-2-30,在△ABC 中,O 是边AC 上的一个动点,过点O 作直线MN ∥BC .设MN 交∠ACB 的平分线于点E ,交△ACB 的外角∠ACD 的平分线于点F .(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.图1-2-301.C2.合格3.答案不唯一,如∠BAC =90° 4.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴∠AOD =90°. ∵DE ∥AC ,AE ∥BD ,∴四边形AODE 是平行四边形. 又∵∠AOD =90°, ∴四边形AODE 是矩形.5.B 6.B 7.(1)等于(2)对角线相等的平行四边形是矩形 8.解:∵四边形ABCD 是平行四边形, ∴AC =2OA ,BD =2OB .∵△OAB 为等边三角形,∴OA =OB =AB , ∴AC =BD ,∴四边形ABCD 为矩形, ∴∠ABC =90°.在Rt △ABC 中,AC =2OA =2AB ,BC =3,由勾股定理,得AB =AC 2-BC 2=1, ∴四边形ABCD 的周长=2(AB +BC )=2(1+3). 9.B 10 12.11.C12.C 13.D 14.AC ⊥BD 15.证明:∵PM ,PN 分别平分∠APQ ,∠BPQ , ∴∠MPQ =12∠APQ ,∠NPQ =12∠BPQ .∵∠APQ +∠BPQ =180°,∴∠MPQ +∠NPQ =90°,即∠MPN =90°. 同理可证∠MQN =90°.∵AB ∥CD ,∴∠APQ +∠CQP =180°, ∴∠MPQ +∠MQP =90°,即∠PMQ =90°,∴四边形PMQN 是矩形. 16.证明:∵四边形ABDE 是平行四边形, ∴AE ∥BC ,AB =DE ,AE =BD . ∵D 为BC 的中点,∴CD =BD . ∴CD ∥AE ,CD =AE ,∴四边形ADCE 是平行四边形. ∵AB =AC ,AB =DE , ∴AC =DE ,∴平行四边形ADCE 是矩形. 17.解:(1)证明:∵DF ∥BE , ∴∠FDO =∠EBO ,∠DFO =∠BEO . ∵O 为AC 的中点,∴OA =OC . ∵AE =CF , ∴OA -AE =OC -CF , 即OE =OF .在△BOE 和△DOF 中,∠EBO =∠FDO ,∠BEO =∠DFO ,OE =OF , ∴△BOE ≌△DOF (AAS).(2)若OD =12AC ,则四边形ABCD 是矩形.证明:∵△BOE ≌△DOF ,∴OB =OD . ∵OD =12AC ,∴OA =OB =OC =OD ,且BD =AC , ∴四边形ABCD 是矩形.18.解:(1)证明:∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,如图所示,∴∠2=∠5,∠4=∠6.∵MN ∥BC ,∴∠1=∠5,∠3=∠6, ∴∠1=∠2,∠3=∠4,∴OE =OC ,OF =OC ,∴OE =OF . (2)∵∠2=∠5,∠4=∠6, ∴∠2+∠4=∠5+∠6=90°.∵CE =12,CF =5,∴EF =122+52=13, ∴OC =12EF =6.5.(3)当点O 在边AC 上运动到AC 的中点时,四边形AECF 是矩形. 理由:当O 为AC 的中点时,AO =CO . 又∵OE =OF ,∴四边形AECF 是平行四边形. 又∵∠ECF =90°, ∴四边形AECF 是矩形.第3课时 矩形的性质与判定的综合应用1.矩形具有而菱形不一定具有的性质是( ) A .对边分别相等 B .对角分别相等 C .对角线互相平分 D .对角线相等2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④对角线相等且互相平分的四边形是矩形;⑤对角线互相垂直平分的四边形是矩形.其中正确的有( )A .1个B .2个C .3个D .4个3.已知矩形的两条对角线所夹锐角为44°,那么对角线与矩形相邻两边所夹的角分别是( )A .22°,68°B .44°,66°C .24°,66°D .40°,50°4.如图1-2-31所示,矩形ABCD 中,AB =3,BC =5,点E 在AD 上,且EB 平分∠AEC ,则△ABE的面积为( )A.2.4 B.2 C.1.8 D.1.51-2-311-2-325.如图1-2-32,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD =12,则四边形ABOM的周长为________.6.在矩形纸片ABCD中,AD=4 cm,AB=10 cm,按如图1-2-33所示方式折叠,使点B与点D重合,折痕为EF,则DE=________ cm.1-2-331-2-347.如图1-2-34,在矩形ABCD中,BC=20 cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3 cm/s和2 cm/s,则最快________s后,四边形ABPQ成为矩形.8.如图1-2-35,在四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E.求证:AE=CE.图1-2-359.如图1-2-36,在矩形ABCD中(AD>AB),E是BC上一点,且DE=DA,AF⊥DE,垂足为F,在下列结论中,不一定正确的是( )A.△AFD≌△DCE B.AF=12AD C.AB=AF D.BE=AD-DF1-2-361-2-3710.如图1-2-37,△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( )A.2 3 B.3 3 C.4 D.4 311.如图1-2-38,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P 不与点B,C重合),PE⊥AB于点E,PF⊥AC于点F,则EF长的最小值为( )图1-2-38A.4 B.4.8 C.5.2 D.612.如图1-2-39,矩形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F,已知AD=4 cm,图中阴影部分的面积总和为6 cm2,则对角线AC的长为________cm.1-2-391-2-4013.如图1-2-40,M是矩形ABCD的边AD的中点,P为BC上一点,PE⊥MC于点E,PF⊥MB于点F,当AB,BC满足条件____________时,四边形PEMF为矩形.14.如图1-2-41,在△ABC中,AB=AC,D为BC的中点,连接AD,AE∥BC,DE∥AB,连接CE,DE交AC于点G.(1)求证:四边形ADCE为矩形;(2)点F在BA的延长线上,请直接写出图中所有与∠FAE相等的角.图1-2-4115.如图1-2-42,在矩形ABCD中,AB=2,BC=5,点E,P分别在AD,BC上,且DE =BP=1.求证:四边形EFPH为矩形.图1-2-4216.如图1-2-43,在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.图1-2-4317.如图1-2-44,在△ABC中,分别以AB,AC,BC为边在BC的同侧作等边三角形ABD,等边三角形ACE,等边三角形BCF.(1)求证:四边形DAEF是平行四边形.(2)探究下列问题(只填满足的条件,不需证明):①当△ABC满足条件:____________时,四边形DAEF是矩形;②当△ABC满足条件:____________时,四边形DAEF是菱形;③当△ABC满足条件:____________时,以D,A,E,F为顶点的四边形不存在.图1-2-441.D 2.A 3.A 4.D 5.20. 6.5.8. 7.48.证明:如图,过点B作BF⊥CE于点F.∵CE⊥AD,∴∠D+∠DCE=90°.∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D.在△BCF和△CDE中,∠BCF=∠D,∠BFC=∠CED=90°,BC=CD,∴△BCF≌△CDE(AAS),∴BF=CE.∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.9.B 10.A . 11.B 12.513.2AB=BC14.解:(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD. ∵D为BC的中点,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形.∵AB=AC,D为BC的中点,∴AD⊥BC,即∠ADC=90°,∴四边形ADCE是矩形.(2)∵AB=AC,∴∠B=∠ACB.∵AE∥BC,∴∠AED=∠EDC,∠EAC=∠ACB,∠FAE=∠B,∴∠FAE=∠B=∠ACB=∠AEG=∠EAG=∠GDC.15.证明:∵四边形ABCD是矩形,∴AD=BC,AD∥BC.又∵DE=BP,∴四边形DEBP是平行四边形,∴BE∥DP.∵AD=BC,DE=BP,∴AE=CP.又∵AD∥BC,即AE∥CP,∴四边形AECP是平行四边形,∴AP ∥CE ,∴四边形EFPH 是平行四边形.∵在矩形ABCD 中,∠ADC =∠ABP =90°,AD =BC =5,CD =AB =2,DE =BP =1,∴CE =5,同理BE =2 5, ∴BE 2+CE 2=BC 2, ∴∠BEC =90°, ∴四边形EFPH 为矩形.16.解:(1)证法一:∵四边形ABCD 是矩形, ∴∠A =∠C =90°,AB =CD ,AB ∥CD , ∴∠ABD =∠CDB .由折叠的性质可得:∠ABE =12∠ABD ,∠CDF =12∠CDB ,∴∠ABE =∠CDF .在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF (ASA), ∴AE =CF .∵四边形ABCD 是矩形, ∴AD =BC ,AD ∥BC , ∴DE =BF ,DE ∥BF ,∴四边形BFDE 为平行四边形. 证法二:∵四边形ABCD 是矩形, ∴AB ∥CD ,AD ∥BC , ∴∠ABD =∠CDB ,DE ∥BF .由折叠的性质得∠EBD =12∠ABD ,∠FDB =12∠CDB ,∴∠EBD =∠FDB ,∴BE ∥DF . 又∵DE ∥BF ,∴四边形BFDE 为平行四边形. (2)∵四边形BFDE 为菱形, ∴BE =DE ,∠FBD =∠EBD =∠ABE . ∵四边形ABCD 是矩形, ∴AD =BC ,∠A =∠ABC =90°, ∴∠ABE =∠FBD =∠EBD =30°. 在Rt △ABE 中,∵AB =2,∴AE =23=2 33,BE =2AE =43 3,∴BC =AD =AE +DE =AE +BE =2 33+43 3=2 3.17.解:(1)证明:∵△ABD 和△BCF 都是等边三角形, ∴∠ABC +∠FBA =∠DBF +∠FBA =60°, ∴∠ABC =∠DBF . 又∵BA =BD ,BC =BF , ∴△ABC ≌△DBF , ∴AC =DF =AE .同理可证△ABC ≌△EFC , ∴AB =EF =AD ,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形). (2)①∠BAC =150° ②AB =AC ≠BC③∠BAC=60°3 第1课时正方形的性质1.如图1-3-1,在正方形ABCD中,点E在边DC上,DE=4,EC=2,则AE的长为________.1-3-11-3-22.如图1-3-2,正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,F为垂足,那么FC=________.3.如图1-3-3,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为G.求证:AF=BE.图1-3-34.如图1-3-4,在正方形ABCD的外侧作等边三角形ADE,则∠AEB的度数为( ) A.10° B.12.5° C.15° D.20°1-3-41-3-55.如图1-3-5,E为正方形ABCD的对角线BD上的一点,且BE=BC,则∠DCE=________°.6.如图1-3-6,四边形ABCD是正方形,△EBC是等边三角形.(1)求证:△ABE≌△DCE;(2)求∠AED的度数.图1-3-67.若正方形的一条对角线长为4,则这个正方形的面积是( )A.8 B.4 2 C.8 2 D.16图1-3-78.如图1-3-7,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是________.9.如图1-3-8,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证:△ADE≌△ABF;(2)求△AEF的面积.图1-3-810.如图1-3-9,在平面直角坐标系中,正方形OABC的顶点O,B的坐标分别是(0,0),(2,0),则顶点C的坐标是( )A.(1,1) B.(-1,-1) C.(1,-1) D.(-1,1)1-3-91-3-1011.如图1-3-10,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.12.如图1-3-11,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC的度数为( )A.45° B.55° C.60° D.75°1-3-111-3-1213.如图1-3-12,正方形ABCD的边长为2,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB的延长线于点F,则EF的长为________.14.如图1-3-13,将边长为8 cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是________.1-3-13 1-3-1415.如图1-3-14,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推,则正方形OB2017B2018C2018的顶点B2018的坐标是________.16.如图1-3-15,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.图1-3-1517.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1-3-16①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图1-3-16②),求证:EF2=ME2+NF2.图1-3-161.213 2.2-13.证明:∵四边形ABCD是正方形,∴AB =BC ,∠A =∠CBE =90°. ∵BF ⊥CE ,∴∠BCE +∠CBG =90°. ∵∠ABF +∠CBG =90°, ∴∠BCE =∠ABF .在△BCE 和△ABF 中,∠BCE =∠ABF ,BC =AB ,∠CBE =∠A , ∴△BCE ≌△ABF (ASA), ∴AF =BE .4.C 5.22.56.解:(1)证明:∵四边形ABCD 是正方形,△EBC 是等边三角形, ∴BA =BC =CD =BE =CE ,∠ABC =∠BCD =90°,∠EBC =∠ECB =60°, ∴∠ABE =∠ECD =30°.在△ABE 和△DCE 中,AB =DC ,∠ABE =∠DCE ,BE =CE , ∴△ABE ≌△DCE (SAS). (2)∵BA =BE ,∠ABE =30°, ∴∠BAE =12×(180°-30°)=75°.∵∠BAD =90°,∴∠EAD =90°-75°=15°, 同理可得∠ADE =15°,∴∠AED =180°-15°-15°=150°. 7.A 8.29.解:(1)证明:∵四边形ABCD 为正方形, ∴AD =AB ,∠D =∠B =90°,BC =DC . ∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC ,∴DE =BF .在△ADE 和△ABF 中,AD =AB ,∠D =∠B ,DE =BF , ∴△ADE ≌△ABF (SAS).(2)由题知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =12×4=2,CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF = 4×4-12×4×2-12×4×2-12×2×2=6.10.C 11.10 12.C 13.4 14.3 cm 15.(0,21009)16.证明:∵四边形ABCD 是正方形, ∴OD =OC . 又∵DE =CF ,∴OD -DE =OC -CF ,即OE =OF .在△AOE 和△DOF 中,AO =DO ,∠AOE =∠DOF ,OE =OF , ∴△AOE ≌△DOF (SAS), ∴∠OAE =∠ODF .∵∠OAE +∠AEO =90°,∠AEO =∠DEM , ∴∠ODF +∠DEM =90°, 即AM ⊥DF .17.证明:(1)∵△ADF 绕着点A 顺时针旋转90°,得到△ABG , ∴AG =AF ,∠GAF =90°. ∵∠EAF =45°,∴∠GAE =∠GAF -∠EAF =90°-45°=45°,即∠GAE =∠EAF .在△AEG 和△AEF 中,⎩⎪⎨⎪⎧AG =AF ,∠GAE =∠EAF ,AE =AE ,∴△AEG ≌△AEF (SAS).(2)把△ADF 绕着点A 顺时针旋转90°,得到△ABG ,如图,连接GM ,则△ADF ≌△ABG , ∴DF =BG .由(1)知△AEG ≌△AEF , ∴EG =EF . ∵∠CEF =45°,∴△BME ,△DNF ,△CEF 均为等腰直角三角形, ∴CE =CF ,BE =BM ,NF =2DF , ∴BE =DF , ∴BE =BM =DF =BG , ∴∠BMG =45°,∴∠GME =45°+45°=90°, ∴EG 2=ME 2+MG 2.又∵EG =EF ,MG =2BM =2DF =NF , ∴EF 2=ME 2+NF 2.第2课时 正方形的判定1.如果要证明平行四边形ABCD 为正方形,那么我们需要在四边形ABCD 是平行四边形的基础上,进一步证明( )A.AB=BD且AC⊥BD B.∠A=90°且AB=ADC.∠A=90°且AC=BD D.AC和BD互相垂直平分2.已知在四边形ABCD中,∠A=∠B=∠C=90°,若使四边形ABCD是正方形,则还需加上一个条件:________________.3.在四边形ABCD中,AC,BD相交于点O,下列条件能判定四边形ABCD是正方形的是( )A.OA=OC,OB=OD B.OA=OB=OC=ODC.OA=OC,OB=OD,AC=BD D.OA=OB=OC=OD,AC⊥BD图1-3-174.如图1-3-17,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成( )A.22.5°角B.30°角 C.45°角D.60°角5.如图1-3-18,有4个动点P,Q,E,F分别从正方形ABCD的4个顶点出发,沿着AB,BC,CD,DA以同样的速度向B,C,D,A各点移动.请判断四边形PQEF的形状.图1-3-186.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件:________,使其成为正方形.(只填一个即可)图1-3-197.如图1-3-19所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他判定的方法是__________________________.8.如图1-3-20所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.图1-3-209.若顺次连接四边形ABCD各边中点所得的四边形是正方形,则四边形ABCD一定是( )A.矩形 B.对角线互相垂直的四边形C.菱形 D.对角线互相垂直且相等的四边形图1-3-2110.如图1-3-21,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能判定四边形ECFB为正方形的是( )A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF图1-3-2211.如图1-3-22,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )A.30 B.34 C.36 D.4012.如图1-3-23,在平行四边形ABCD中,对角线AC,BD相交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.图1-3-2313.如图1-3-24,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为N.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE为正方形?并给出证明.图1-3-2414.观察如图1-3-25所示图形的变化过程,解答以下问题:图1-3-25如图1-3-26,在△ABC中,D为BC边上的一动点(点D不与B,C两点重合),DE∥AC 交AB于点E,DF∥AB交AC于点F.(1)试探索当AD满足什么条件时,四边形AEDF为菱形,并说明理由;(2)在(1)的条件下,当△ABC满足什么条件时,四边形AEDF为正方形?为什么?图1-3-2615.如图1-3-27,在四边形ABCD中,E,G分别是AD,BC的中点,F,H分别是BD,AC的中点.(1)当AB,CD满足什么条件时,四边形EFGH是矩形?并证明你的结论;(2)当AB,CD满足什么条件时,四边形EFGH是菱形?并证明你的结论;(3)当AB,CD满足什么条件时,四边形EFGH是正方形?并证明你的结论.图1-3-271.B 2.AB=BC(答案不唯一)3.D 4.C .5.解:在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴AF=BP=CQ=DE.又∵∠A=∠B=∠C=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF,∴FP=PQ=QE=EF,∴四边形PQEF是菱形.∵△AFP≌△BPQ,∴∠APF=∠BQP.∵∠BPQ+∠BQP=90°=∠BPQ+∠APF,∴∠FPQ=90°,∴四边形PQEF为正方形.6.AB=BC或AC⊥BD(答案不唯一)7.有一组邻边相等的矩形是正方形8.解:(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形.(2)AB=AD(或AC⊥BD,答案不唯一).9.D 10.D 11.B12.证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO⊥AC,即AC⊥BD,∴四边形ABCD 是菱形.(2)∵四边形ABCD 是平行四边形, ∴AO =CO .又∵△ACE 是等边三角形, ∴EO 平分∠AEC ,∴∠AED =12∠AEC =12×60°=30°.又∵∠AED =2∠EAD , ∴∠EAD =15°,∴∠ADO =∠EAD +∠AED =15°+30°=45°. ∵四边形ABCD 是菱形, ∴∠ADC =2∠ADO =90°, ∴四边形ABCD 是正方形.13.解:(1)证明:∵在△ABC 中,AB =AC ,AD ⊥BC , ∴∠BAD =∠DAC .∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE =∠CAE ,∴∠DAE =∠DAC +∠CAE =12×180°=90°.又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC =∠CEA =90°, ∴四边形ADCE 为矩形.(2)当△ABC 满足∠BAC =90°时,四边形ADCE 为正方形. 证明:∵AB =AC ,∠BAC =90°, ∴∠ACB =∠B =45°.∵AD ⊥BC ,∴∠CAD =∠ACD =45°,∴DC =AD .又∵四边形ADCE 是矩形, ∴矩形ADCE 是正方形.∴当∠BAC =90°时,四边形ADCE 是正方形.14.解:(1)当AD 平分∠BAC 时,四边形AEDF 为菱形. 理由:∵AE ∥DF ,DE ∥AF , ∴四边形AEDF 为平行四边形. ∵AD 平分∠BAC , ∴∠EAD =∠FAD . 又∵DE ∥AF , ∴∠FAD =∠ADE , ∴∠EAD =∠ADE , ∴AE =DE ,∴平行四边形AEDF 为菱形.(2)当∠BAC =90°时,菱形AEDF 是正方形.因为有一个角是直角的菱形是正方形. 15.解:(1)当AB ⊥CD 时,四边形EFGH 是矩形.证明:∵E ,F 分别是AD ,BD 的中点,G ,H 分别是BC ,AC 的中点, ∴EF ∥AB ,EF =12AB ,GH ∥AB ,GH =12AB , FG ∥CD .∴EF ∥GH ,EF =GH ,∴四边形EFGH 是平行四边形. ∵AB ⊥CD ,∴EF ⊥FG ,即∠EFG =90°,∴四边形EFGH 是矩形.(2)当AB =CD 时,四边形EFGH 是菱形.证明:∵E ,F 分别是AD ,BD 的中点,H ,G 分别是AC ,BC 的中点, ∴EF =12AB ,GH =12AB ,FG =12CD ,EH =12CD .又∵AB =CD , ∴EF =FG =GH =EH , ∴四边形EFGH 是菱形.(3)当AB =CD 且AB ⊥CD 时,四边形EFGH 是正方形. 证明:∵E ,F 分别是AD ,BD 的中点, ∴EF ∥AB ,EF =12AB ,同理,EH ∥CD ,EH =12CD ,FG =12CD ,GH =12AB .∵AB =CD , ∴EF =EH =GH =FG , ∴四边形EFGH 是菱形. ∵AB ⊥CD ,∴EF ⊥EH ,即∠FEH =90°, ∴菱形EFGH 是正方形.1 第1课时 认识一元二次方程1.下列方程是一元二次方程的是( ) A .ax 2+bx +c =0 B .3x 2-2x =3(x 2-2)C.x3-2x-4=0 D.(x-1)2+1=02.若关于x的方程(m-2)x2+mx-1=0是一元二次方程,则m的取值范围是________.3.一元二次方程3x2-2x-5=0的二次项系数和一次项系数分别为( )A.-5和2 B.3和-2 C.3和2 D.3和-54.一元二次方程3x(x-3)=2x2+1化为一般形式为__________.5.王叔叔从市场上买了一块长80 cm,宽70 cm的矩形铁皮,准备制作一个工具箱.如图2-1-1,他将矩形铁皮的四个角各剪掉一个边长为x cm的正方形后,剩余的部分刚好能围成一个底面积为3000 cm2的无盖长方体工具箱,根据题意列方程为( )图2-1-1A.(80-x)(70-x)=3000B.80×70-4x2=3000C.(80-2x)(70-2x)=3000D.80×70-4x2-(70+80)x=30006.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何.”译文:“一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步.”如果设矩形田地的长为x步,可列方程为______________.7.已知关于x的一元二次方程2bx2-(a+1)x=x(x-1)的二次项系数为1,一次项系数为-1,求a+b的值.8.已知关于x的方程(m2-9)x2+(m+3)x-5=0.(1)当m为何值时,此方程是一元一次方程?并求出此时方程的解;(2)当m为何值时,此方程是一元二次方程?并写出这个方程的二次项系数、一次项系数及常数项.。

北师大版 九年级数学下册 全一册 课时同步练习 习题合集(含答案解析)

北师大版 九年级数学下册 全一册  课时同步练习 习题合集(含答案解析)

2.1二次函数一、夯实基础1.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )A.y=x(x+1) B.xy=1C.y=2x2-2(x+1)2D.132+=xy2.当路程S一定时,速度υ与时间t之间的函数关系是 ( )A.正比例函数 B.反比例函数 C.一次函数 D.二次函数3.图中的三角形是有规律地从里到外逐层排列的.设y为第n层(n为正整数)三角形的个数,则下列函数关系式正确的是 ( )A.y=4n-4 B.y=4nC.y=4n+4 D.y=n24.当m 时,函数y=(m-2)x2+4x-5(m是常数)是二次函数.5.若y=(m2-3m)x2m-2m-1是二次函数,则m=.6.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=.二、能力提升7.如果水流的速度为a m/min(定量),那么每分钟的进水量Q(m3)与所选择的水管直径D(m)之间的函数关系式是什么?8.一台机器原价为60万元,如果每年的折旧率为x,两年后这台机器的价位为y万元,写出y与x的函数关系式.9.已知函数y=(m2-4)x2+(m2-3m+2)x-m-1.(1)当m为何值时,y是x的二次函数?(2)当m为何值时,y是x的一次函数?三、课外拓展10.如图所示,长方形ABCD的长为5 cm,宽为4 cm,如果将它的长和宽都减去x(cm),那么它剩下的小长方形AB′C′D′的面积为y(cm2).(1)写出y与x的函数关系式;(2)上述函数是什么函数?(3)自变量x的取值范围是什么?四、中考链接1.(2015·兰州中考)下列函数解析式中,一定为二次函数的是( )A.y =3x -1B.y =a +bx +cC.s =2-2t +1D.y =2.(2014·江苏苏州中考)已知二次函数y =ax 2+bx -1(a ≠0)的图象经过点(1,1),则代数式1-a -b 的值为( A .-3 B .-1 C .2 D .5答案1. CBA2.B[提示:本题考查一次函数(包括正比例函数)、反比例函数以及二次函数的概念.当S 一定时,S=υt ,υ与t 成反比例关系.故选B]3.B[提示:尝试利用代值的方法解决实际问题,如本题分别将第1,2,3层的三角形的个数代入各函数关系式中,只有B 符合.故选B .]4.≠2[提示:当m -2≠0,即m ≠2时,函数y =(m -2)x 2+4x -5为二次函数.] 5.-1[提示:需m 2-3m ≠0,m 2-2m -l =2同时成立.] 6.a (1+x )27.解:函数关系式为Q =a ·π·(2D )2= 24aD .8.解:由题意,得y =60(1-x)(1-x)=60(1-x)2,x 的取值范围为0<x <1. 9.提示:(1)当二次项系数m 2-4≠0时,原函数是二次函数.(2)当二次项系数m 2-4=0且一次项系数m 2-3m +2≠0时,原函数是一次函数,由此确定m 的值.解:(1)由m 2-4≠0,解得m ≠±2.故当m ≠±2时,y 是x 的二次函数. (2)由m 2-4=0,解得m=±2.由m 2-3m +2≠0,解得m ≠1,m ≠2.所以m =-2.因此,当m =-2时,y 是x 的一次函数. 10.解:(1)根据长方形的面积公式,得y =(5-x )·(4-x)=x 2-9x +20,所以y 与x 的函数关系式为y =x 2-9x +20. (2)上述函数是二次函数. (3)自变量x 的取值范围是0<x <4. 中考链接:1.解:选项A 是一次函数;选项B 当a =0,b ≠0时是一次函数,当a ≠0时是二次函数,所以选项B 不一定是二次函数;选项C 一定是二次函数;选项D 不是二次函数.故选C 2. 解:把点(1,1)的坐标代入,得2.2.1二次函数的图像与性质一、夯实基础1.抛物线y =2x 2,y =-2x 2,y =2x 2+1共有的性质是( ).A .开口向上B .对称轴都是y 轴C .都有最高点D .顶点都是原点 6.任给一些不同的实数k ,得到不同的抛物线y =x 2+k ,当k 取0,±1时,关于这些抛物线有以下判断:(1)开口方向都相同;(2)对称轴都相同;(3)形状相同;(4)都有最低点.其中判断正确的是________.(填序号)2.抛物线y =ax 2+b 与x 轴有两个交点,且开口向上,则a 、b 的取值范围是( ). A .a >0,b <0 B .a >0,b >0C .a <0,b >0D .a <0,b <03.在同一直角坐标系中,y =ax 2+b 与y =ax +b(a ,b 都不为0)的图象的大致位置是( ).4.若二次函数y =ax 2+c ,当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( ).A .a +cB .a -cC .-cD .c7.已知点(-2,y 1)、(-1,y 2)、(3,y 3)在函数y =x 2+c 的图象上,则y 1、y 2、y 3的大小关系是________.二、能力提升5.在同一直角坐标系中,图象不可能由函数y =2x 2+1的图象通过平移变换、轴对称变换得到的函数是( ).A .y =2x 2-1 B .y =2x 2+3C .y =-2x 2-1 D .y =212x -1 8.当m =_______时,二次函数y =(1-m)x 22m 的图象开口向上.9.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-2,-8),则抛物线对应的函数关系式为_______.10.说明y =213x +4是由y =213x 怎样平移得到的,并说明: (1)抛物线y =213x +4的顶点坐标、对称轴及y 随x 的变化情况; (2)函数的最大(小)值.三、课外拓展11.设直线y 1=x +b 与抛物线y 2=x 2+c 的交点为A(3,5)和B . (1)求出b 、c 和点B 的坐标.(2)画出草图,根据图象回答:当x 在什么范围时y 1≤y 2?12.如图所示,小华在某次投篮中,球的运动路线是抛物线y =215x +3.5的一部分,若命中篮圈中心,求他与篮底的距离l.四、中考链接1.(2012广州市,2, 3分)将二次函数y=x 2的图像向下平移1个单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020数学九年级全一册课时练因式分解的方法1.十字相乘法(1)把二次项系数和常数项分别水解因数;(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;(3)确认最合适的十字图并写下因式分解的结果;(4)检验。

2.加公因式法(1)找出公因式;(2)加公因式并确认另一个因式;①找公因式可按照确定公因式的方法先确定系数再确定字母;②加公因式并确认另一个因式,特别注意必须确认另一个因式,需用原多项式除以公因式,税金的商即是加公因式后剩的一个因式,也需用公因式分别除去原多项式的每一项,谋的剩的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

3.未定系数法(1)确定所求问题含待定系数的一般解析式;(2)根据并集条件,列举一组不含未定系数的方程;(3)解方程或消去待定系数,从而使问题得到解决。

轴对称知识点1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,就是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任一一点至线段两个端点的距离成正比。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段成正比、对应角成正比。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的座标为(x,-y)点(x,y)关于y轴对称的点的坐标为(-x,y)点(x,y)关于原点轴对称的点的座标为(-x,-y)9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,缩写为三线合一。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角成正比,等同于60,12.等边三角形的判定:三个角都相等的三角形是等腰三角形。

存有一个角就是60的等腰三角形就是等边三角形有两个角是60的三角形是等边三角形。

13.直角三角形中,30角所对的直角边等同于斜边的一半。

不等式1.掌控不等式的基本性质,并可以灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。

(2)不等式的两边都除以(或除以)同一个正数,不等号的方向维持不变,即为:如果a>b,并且c>0,那么ac>bc。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac2.比较大小:(a、b分别则表示两个实数或整式)一般地:如果a>b,那么a-b就是正数;反过来,如果a-b就是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。

3.不等式的边值问题:能够并使不等式设立的未知数的值,叫作不等式的求解;一个不等式的所有求解,共同组成这个不等式的边值问题;谋不等式的边值问题的过程,叫作求解不等式。

4.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左。

一元一次方程的数学分析1.一般方法:①回去分母:回去分母就是指等式两边同时除以分母的最轻公倍数。

②去括号:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。

括号前是“-”,把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。

(改成与原来相反的符号。

③移项:把方程两边都加之(或乘以)同一个数或同一个整式,就相等于把方程中的某些项发生改变符号后,从方程的一边安远至另一边,这样的变形叫作移项。

④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。

⑤系数化成1。

2.图像法:一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。

3.求根公式法:对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。

整式1.整式:整式为单项式和多项式的泛称,就是有理式的一部分,在有理式中可以涵盖提,减至,乘坐,除、乘方五种运算,但在整式中除数无法所含字母。

2.乘法(1)同底数幂相加,底数维持不变,指数相乘。

(2)幂的乘方,底数不变,指数相乘。

(3)内积的乘方,先把积中的每一个因数分别乘方,再把税金的幂相加。

3.整式的除法(1)同底数幂相乘,底数维持不变,指数相乘。

(2)任何不等于零的数的零次幂为1。

分数的性质1.分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。

读作几分之几。

2.分数可以定义成一个乘法算式:例如二分之一等同于1除以2。

其中,1分子等同于被除数,-分数线等同于除号,2分母等同于除数,而0.5分后数值则等同于商。

3.分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于比值。

4.当分子与分母同时乘坐或除以相同的数(0除外),分后数值不能变化。

因此,每一个分数都存有无穷个与其成正比的分数。

利用此性质,可以展开约分及通分。

5.一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。

正负数加减法则顺口溜正正相加,和为正。

负负相乘,和为负。

正减负来,得为正。

负减正去,若非负。

其余没说,看大小。

谁小就往,谁边好像。

有理数、整式的加减、一元一次方程、图形的初步认识。

(1)有理数:就是初中数学的基础内容,中考试题中分值约为3-6分后,多以选择题,填空题,计算题的形式发生,难易度属直观。

【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

(2)整式的以此类推:中考试题中分值约为4分后,题型以挑选和填空题居多,难易度属极易。

【考察内容】①整式的概念和直观的运算,主要就是同类项的概念和化简表达式②完全平方公式,平方差公式的几何意义③利用加公因式法和公式法水解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。

中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

【实地考察内容】①方程及方程解的概念②根据题意列于一元一次方程③解一元一次方程。

题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下卷学三角形打基础相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)平行线和平行线:平行线和平行线就是历年中考中常用的考点。

通常以填空题,选择题形式发生。

分值为3-4分后,难易度为易。

【考察内容】①平行线的性质(公理)②平行线的判别方法③结构平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

【实地考察内容】①考察平面直角坐标系内点的坐标特征②函数自变量的值域范围和球函数的值③考察结合图像对简单实际问题中的函数关系进行分析。

(3)二元一次方程组:中考分值约为3-6分后,题型主要以挑选,答疑居多,难易度为中。

【考察内容】①方程组的数学分析,求解方程组②根据题意列二元一次方程组解经济问题。

(4)不等式和不等式组:中考试题中分值约为3-8分后,挑选,填空题,答疑题居多。

【考察内容:】①一元一次不等式(组)的数学分析,不等式(组)边值问题的数轴则表示,不等式(组)的整数解等,题型以挑选,填空题居多。

②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。

③留心不等式(组)和函数图像的融合问题。

(5)数据库的收集整理与描述分值通常在6-10分后,题型近几年主要以答疑题发生,偶尔以挑选填空题发生。

难易度为中。

【考察内容】①常用统计图和平均数,众数,中位数的排序分析。

②方差,极差的应用分析③与现实生活有关的实际问题的实地考察热点。

题目著重考查统计学的科学知识分析和数据处理。

三角形、全等三角形、轴对称、整式的乘除与因式分解、分式。

(1)三角形:就是初中数学的基础,中考命题中的重点。

中考试题分值约为18-24分后,以填空题,挑选,答疑题,也可以发生一些证明题目。

【考查内容】①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与认定。

②三角形全等融入平行四边形的证明③三角形运动,卷曲,转动,堆叠构成的新数学问题④等腰三角形的性质与判定,面积,周长等⑤直角三角形的性质,勾股定理就是重点⑥三角形与圆的相关位置关系⑦三角形中位线的性质应用领域(2)全等三角形(3)轴对称:图形的轴对称就是中考题的新题型,热点题型。

分值通常为3-4分后,题型以填空题,挑选,作图居多,偶尔也可以发生答疑题。

【考察内容】①轴对称和轴对称图形的性质辨别。

②注意镜面对称与实际问题的解决。

(4)整式的秦九韶与因式分解:中考试题中分值约为4分后,题型以挑选,填空题居多,难易度属极易。

【考察内容】①整式的概念和直观的运算,主要就是同类项的概念和化简表达式②完全平方公式,平方差公司的几何意义③利用加公因式法和公式法水解因式。

(5)分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。

【实地考察内容】①分式的概念,性质,意义②分式的运算,化简表达式。

③列分式方程解决实际问题。

二次根式、勾股定理、四边形、一次函数和数据的分析。

(1)二次根式(2)勾股定理:求解直角三角形,求解直角三角形的科学知识就是近几年各地中考命题的热点之一,实地考察题型为选择题,填空题,应用题居多,分值通常8-12分后,难易度恼怒。

【考察内容】①常用锐角的三角函数值的排序②根据图形计算距离,高度,角度的应用题③根据题中得出的信息构筑图形,创建数学模型,然后用解直角三角形的科学知识解决问题。

(3)四边形:初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。

【实地考察内容】①多边形的内角和,外角和等问题②图形的方形问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。

(4)一次函数:一次函数图像与性质就是中考必修的内容之一。

中考试题中分值约为10分后左右题型多样,形式有效率,综合应用性弱。

甚至存有存有探究题目发生。

相关文档
最新文档