九年级全一册数学优化设计第二十四章综合全练

合集下载

人教版2020-2021学年九年级数学上册第二十四章 圆章节综合练习(含答案)

人教版2020-2021学年九年级数学上册第二十四章 圆章节综合练习(含答案)

人教版2020-2021学年九年级数学上册第二十四章圆章节综合练习一、单选题1.在下列命题中,正确的是()A.弦是直径B.长度相等的两条弧是等弧C.三点确定一个圆D.三角形的外心不一定在三角形的外部2.如图,CD为圆O的直径,弦AB⊥CD,垂足为E⊥CE=1,半径为25,则弦AB的长为()A.24B.14C.10D.73.一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是(⊥A.2.5 cm或6.5 cmB.2.5 cmC.6.5 cmD.5 cm或13cm4.在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD 5.在Rt⊥ABC中,⊥C=90°,AC=3cm,AB=5cm,若以C为圆心,4cm为半径画一个圆,则下列结论中,正确的是()A.点A在圆C内,点B在圆C外B.点A在圆C外,点B在圆C内C.点A在圆C上,点B在圆C外D.点A在圆C内,点B在圆C上6.如图,点O是△ABC的内心,若∠A=70°,则∠BOC的度数是()A.120°B.125°C.130°D.135°7.如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A.6B.7C.8D.98.如图所示,正六边形ABCDEF内接于O,若边心距OH ,则O的半径为()A.1B C.2D.49.如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA=OB=OC=2,则这朵三叶花的面积为⊥ ⊥A.3π–3B.3π–6C.6π–3D.6π–610.如图,已知在正方形ABCD中,连结AC,在AC上截取AE=AD,作△ADE的外接圆交AB于点F,连结DF交AC于点M,连结EF,下列选项不正确的是()A.DG AFB.AM=ECC.∠EFB=∠AFDD.S四边形BCMF=S四边形ADEF二、填空题11.如图,⊙O是△ABC的外接圆,若∠AOB=100°,∠ACB=__°.12.如图,在△ABC中,∠C=90°,AC=4,BC=2,则△ABC的内切圆的半径是______(分母不含根号......).13.如图,正六边形ABCDEF的边长为1,连接AC、BE、DF,则图中灰色四边形的周长为__.14.如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为_____.(答案用根号表示)三、解答题15.在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽 ,求油的最大深度.AB mm60016.如图,⊥O是四边形ABCD的外接圆,对角线AC与BD相交于点E,且AE=DE,连接AD、CB.(1)求证:AB=CD;(2)在不添加任何辅助线的情况下,直接写出图中所有的全等三角形.17.如图,OA⊥OD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B⊥(1)求证:直线CD 是⊙O 的切线;(2)如果D 点是BC 的中点,⊙O 的半径为 3cm ,求DE 的长度.(结果保留π)18.如图,已知直线PA 交O 于A 、B 两点,AE 是O 的直径,点C 为O 上一点,且AC 平分PAE ∠,过C 作CD PA ⊥,垂足为D .(1)求证:CD 为O 的切线;(2)若2CD AD =,O 的直径为20,求线段AB 的长.19.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求阴影部分的面积答案1.D2.B3.A4.D5.D6.B7.B8.C9.B10.D11.5012.313.14.6π15.解:过点O作OC AB⊥于点D,OD延长线交⊙O于点C,由垂径定理,得13002BD AB==,在Rt ODB ∆中,300BD =,325OB =,由勾股定理得:125OD ==, ∴325125200CD OC OD mm =-=-=. ∴油的最大深度是200mm.16.(1)证明:如图,连接OA 、OB 、OC 、OD , ∵AE =DE ,∴∠ADB =∠DAC ,∴∠AOB =∠DOC ,∴AB =CD ;(2)解:⊥在△ABD 与△DCA 中,ABD DCA ADB DAC AD DA ∠=∠⎧⎪∠=∠⎨⎪=⎩.故△ABD ≌△DCA (AAS );⊥在△ABE 与△DCE 中,AEB DEC ABE DCE AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩.故△ABE ≌△DCE (AAS );⊥由AB =DC 知,∠ACB =∠DBC .在△ABC 与△DCB 中,BAC CDB ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩.故△ABC ≌△DCB (AAS ).17.(1)证明:∵AC 是⊙O 切线,∴OA ⊥AC ,∴∠OAC=90°,∵CO 平分∠AOD ,∴∠AOC=∠COD ,在△AOC 和△DOC 中,∴△AOC ≌△DOC ,∴∠ODC=∠OAC=90°,∴OD ⊥CD ,∴直线CD 是⊙O 的切线.(2)∵OD ⊥BC ,DC=DB ,∴OC=OB ,∴∠OCD=∠B=∠ACO ,∵∠B+∠ACB=90°,∴∠B=30°,∠DOE=60°,∴DE 的长度=π.18.证明:(1)连接OC .∵点C 在O 上,OA OC =,∴OCA OAC ∠=∠,∵CD PA ⊥,∴90CDA ︒∠=,∴90CAD DCA ︒∠=∠=,∵AC 平分PAE ∠,∴DAC CAO ∠=∠,∴90DCO DCA ACO DCA DAC ︒∠=∠+∠=∠+∠=, ∴CD 是O 切线.(2)作OF AB ⊥于F ,∴90OCD CDF OFD ︒∠=∠=∠=,∴四边形CDFO 是矩形,∴OC FD =,OF CD =,∵2CD AD =,设AD x =,则2OF CD x ==,∵10DF OC ==,∴10AF x =-,在Rt AOF 中,222AF OF OA +=,∴()()22210210x x -+=,解得4x =或0(舍),∴4=AD ,6AF =∵OF AB ⊥,∴212AB AF ==(垂径定理).19解:(1)⊥⊥ABC 与⊥D 都是劣弧AC 所对的圆周角,⊥D =60°, ⊥⊥ABC =⊥D =60°;(2)⊥AB 是⊥O 的直径,⊥⊥ACB =90°.可得⊥BAC =90°﹣⊥ABC =30°,⊥⊥BAE =⊥BAC +⊥EAC =30°+60°=90°,即BA ⊥AE ,得OA ⊥AE ,又⊥OA 是⊥O 的半径,⊥AE 是⊥O 的切线;(3)连接OC ,作OF ⊥AC ,⊥OF 垂直平分AC ,⊥OA =OB ,⊥OF =12BC =2,⊥⊥D =60°,⊥⊥AOC =120°,⊥ABC =60°,⊥AC =2AB =,⊥S 阴影=S 扇形﹣S △AOC =21204116236023ππ⨯-⨯=-。

九上数学第二十四章 圆培优综合测试卷A(含解析)

九上数学第二十四章 圆培优综合测试卷A(含解析)

【走进重高汇编】九上数学第二十四章圆培优综合测试卷A一.选择题(共8小题)1.以边长为1的正方形ABCD的顶点A为圆心,以为半径作⊙A,则点C关于⊙A的位置关系是()A.点C 在⊙A内 B.点C在⊙A上C.点C在⊙A外D.不能确定2.如图,正△ABC内接于⊙O,动点P在圆周的劣弧AB上,且不与A、B重合,则∠BPC=()A.60° B.30° C.90° D.120°3.下列命题中:①任意三点确定一个圆②平分弦的直径垂直于弦③等边三角形的外心也是三条中线、高、角平分线的交点④90°的圆周角所对的弦是直径⑤同弧或等弧所对的圆周角相等,其中真命题的个数为()A.2 B.3 C.4 D.54.如图,已知⊙O的半径为5,弦AB=7,M是AB上任意一点,则线段OM的长不可能是()A.3.5 B.4.5 C.4 D.55.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O 与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5° B.3,30° C.3,22.5° D.2,30°6.⊙O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm,∠CEA=30°,则弦CD的长为()A.8cm B.4cm C.2 D.27.如图,等边△ABC中,P为三角形内一点,过P作PD⊥BC,PE⊥AB,PF⊥AC,连结AP、BP、CP,如果S△APF+S△BPE+S△PCD=,那么△ABC的内切圆半径为()A.1 B. C. D.28.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4 B.CD﹣DF=2﹣3 C.BC+AB=2+4 D.BC﹣AB=2二.填空题(共8小题)9.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为度.10.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是.11.如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,2),且与直线y=﹣2始终保持相切,则a= .12.如图,在扇形AOB中,∠AOB=100°,半径OA=9,将扇形OAB沿着过点B的直线折叠,点O恰好落在弧AB上的点D处,折痕交OA于点C,则弧AD的长等于.13.已知:如图,面积为2的四边形ABCD内接于⊙O,对角线AC经过圆心,若∠BAD=45°,CD=,则AB的长等于.14.如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.15.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为.16.如图,△ABC中,BC=4,∠BAC=45°,以为半径,过B、C两点作⊙O,连OA,则线段OA的最大值为.三.解答题(共8小题)17.如图,在Rt△ABC中,∠C=90°,AC=10,BC=24,⊙O的半径为6,当圆心O与C重合时,试判断⊙O与AB的位置关系.18.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=12cm,水面最深地方的高度为2cm,求这个圆形截面所在圆的半径.19.如图,A,B,C是⊙O上的三个点,连结和的中点的弦DE分别与弦AB,AC交于点F,G.若∠BAC=70°,求∠AFG的度数.20.如图,P是半径为cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB=3cm,∠APB=60°,C是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=cm,求图中阴影部分的面积.21.如图,AB为⊙O的直径,弦CK交AB于P,D为上一点,且∠CPD=∠BPD=60°,连OC、OD.(1)求证:∠OCK=∠ODP;(2)若PC=4,PO=6,求S△POD.22.如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=r(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)如图2,当F是AB的四等分点且EF•EC=时,求EC的值.23.如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别与EF,GF交于I,H两点.(1)求∠FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,①求证:FD=FI;②设AC=2m,BD=2n,求m:n的值.24.已知点A,B,C是半径为2的圆0上的三个点,其中点A是劣弧BC上的一动点(不与点B,C重合),连接AB、AC,点D、E分别在弦AB,AC上,连接OD、OE.(1)当点A为劣弧BC的中点时,且满足AD=CE(如图①)①求证:OD=OE;②当BC=时,求∠DOE的度数;(如图②)(2)当BC=,且OD⊥AB,OE⊥AC时(如图③),设BD=x,△DOE的面积为y,求y关于x的函数关系式,并求出自变量x的取值范围.【走进重高汇编】九上数学第二十四章圆培优综合测试卷A参考答案与试题解析一.选择题(共8小题)1.以边长为1的正方形ABCD的顶点A为圆心,以为半径作⊙A,则点C关于⊙A的位置关系是()A.点C 在⊙A内B.点C在⊙A上C.点C在⊙A外D.不能确定【解答】解:如图所示,∵正方形ABCD的边长为1,∴AC==.∵⊙A的半径为,∴点C在⊙A上.故选:B.【点评】本题考查的是点与圆的位置关系,熟知点与圆的3种位置关系是解答此题的关键.2.如图,正△ABC内接于⊙O,动点P在圆周的劣弧AB上,且不与A、B重合,则∠BPC=()A.60°B.30°C.90°D.120°【解答】解:∵正△ABC内接于⊙O,∴∠A=60°,∵∠A与∠BPC是对的圆周角,∴∠BPC=∠A=60°.故选:A.【点评】此题考查了圆周角定理与正三角形的性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.3.下列命题中:①任意三点确定一个圆②平分弦的直径垂直于弦③等边三角形的外心也是三条中线、高、角平分线的交点④90°的圆周角所对的弦是直径⑤同弧或等弧所对的圆周角相等,其中真命题的个数为()A.2 B.3 C.4 D.5【解答】解:①不在直线上的任意三点确定一个圆,故本小题是假命题;②若两弦都是直径,则平分弦的直径不一定垂直于弦,故本小题是假命题;③等边三角形的外心也是三条中线、高、角平分线的交点,是真命题;④90°的圆周角所对的弦是直径,是真命题;⑤同弧或等弧所对的圆周角相等,是真命题.综上所述,真命题有③④⑤共3个.故选:B.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.如图,已知⊙O的半径为5,弦AB=7,M是AB上任意一点,则线段OM的长不可能是()A.3.5 B.4.5 C.4 D.5【解答】解:连接OA,过点O作OD⊥AB于点D,当点M与点A重合时OM最长,当点M于点D重合时OM最短,∵OD⊥AB,AB=7,∴AD=AB=,∴OD===,∴≤OM≤5.∵>=3.5,∴A不合题意.故选:A.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O 与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30° C.3,22.5°D.2,30°【解答】解:∵△ABC为等腰直角三角形,∴BC=AB=4,∠B=45°,∵点O为BC的中点,∴OB=2,∵AB为切线,∴OD⊥AB,∴∠ODB=90°,∴△ODB为等腰直角三角形,∴OD=OB=×2=2,∠BOD=45°,∴∠MND=BOD=22.5°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了等腰直角三角形的性质.6.⊙O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm,∠CEA=30°,则弦CD的长为()A.8cm B.4cm C.2D.2【解答】解:过点O作OM⊥CD,连结OC,则CD=2CM,∵AE=6cm,EB=2cm,∴AB=8cm,∴OC=OB=4cm,∴OE=4﹣2=2(cm),∵∠CEA=30°,∴OM=OE=×2=1(cm),∴CM===,∴CD=2cm.故选:C.【点评】此题考查了垂经定理,用到的知识点是垂经定理、勾股定理、30°角的直角三角形,关键是根据题意做出辅助线,构造直角三角形.7.如图,等边△ABC中,P为三角形内一点,过P作PD⊥BC,PE⊥AB,PF⊥AC,连结AP、BP、CP,如果S△APF+S△BPE+S△PCD=,那么△ABC的内切圆半径为()A.1 B.C. D.2【解答】解:过P点作正三角形的三边的平行线,于是可得△MPN,△OPQ,△RSP都是正三角形,即:MF=FN,RE=SE,四边形ASPM,四边形NCDP,平行四边形PQBR是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S△AFP+S△PCD+S△BPE=,故知S△ABC=9,S△ABC=AB2sin60°=9,故AB=6,三角形ABC的高h=3,△ABC的内切圆半径r=h=.故选:C.【点评】本题主要考查等边三角形的性质,面积及等积变换,解答本题的关键是过P点作三角形三边的平行线,证明黑色部分的面积与白色部分的面积相等,此题有一定难度.8.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.CD+DF=4 B.CD﹣DF=2﹣3 C.BC+AB=2+4 D.BC﹣AB=2【解答】解:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,∵将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,∴OG=DG,∵OG⊥DG,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC,在△OMG和△GCD中,∴△OMG≌△GCD,∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),∴c=a+b﹣2.在Rt△ABC中,由勾股定理可得a2+b2=(a+b﹣2)2,整理得2ab﹣4a﹣4b+4=0,又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,解得(舍去),∴,∴BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,∴CD﹣DF=,CD+DF=.综上只有选项A错误,故选:A.【点评】本题考查了三角形的内切圆和内心,切线的性质,勾股定理,矩形的性质等知识点的综合应用,解决本题的关键是三角形内切圆的性质.二.填空题(共8小题)9.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为45 度.【解答】解:∵∠AOB与∠APB为所对的圆心角和圆周角,∴∠APB=∠AOB=×90°=45°.故答案为:45.【点评】本题考查了圆周角定理的运用.关键是确定同弧所对的圆心角和圆周角,利用圆周角定理.10.若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是10或8 .【解答】解:此题有两种情况:(1)当两直角边是6和8时,由勾股定理得:AB===10,此时外接圆的半径是5,直径是10;(2)当一个直角边是6,斜边是8时,此时外接圆的半径是4,直径是8.故答案为:10或8.【点评】本题主要考查了三角形的外接圆和外心,勾股定理等知识点,解此题的关键是知道直角三角形的外接圆的半径等于斜边的长,求出斜边长即可,用的数学思想是分类讨论思想.11.如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,2),且与直线y=﹣2始终保持相切,则a= .【解答】【解答】解:如图,连接PF.设⊙P与直线y=﹣2相切于点E,连接PE.则PE⊥AE.∵动点P在抛物线y=ax2上,∴设P(m,am2).∵⊙P恒过点F(0,2),∴PF=PE,即=am2+2.解得a=.故答案是:.【点评】本题考查了二次函数综合题,此题涉及到了二次函数图象上点的坐标特征,两点间的距离等知识点.根据题意得到PF是⊙P的半径是解题的关键.12.如图,在扇形AOB中,∠AOB=100°,半径OA=9,将扇形OAB沿着过点B的直线折叠,点O恰好落在弧AB上的点D处,折痕交OA于点C,则弧AD的长等于2π.【解答】解:∵△BCD是由△BCO翻折得到,∴∠CBD=∠CBO,∠BOD=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠ODB=2∠DBC,∵∠ODB+∠DBC=90°,∴∠ODB=60°,∵OD=OB∴△ODB是等边三角形,∴∠DOB=60°,∵∠AOB=100°,∴∠AOD=∠AOB﹣∠DOB=40°,∴弧AD的长==2π,故答案为2π.【点评】本题考查翻折变换、弧长公式、等边三角形的判定和性质等知识,解题的关键是等边三角形的发现,属于中考常考题型.13.已知:如图,面积为2的四边形ABCD内接于⊙O,对角线AC经过圆心,若∠BAD=45°,CD=,则AB的长等于.【解答】解:延长BC、AD交于点E.∵∠BAD=45°,∴△ABE和△DEC是等腰直角三角形.∵CD=,设AB为x,则BC=x﹣2,CE=2,DE=,AD=x﹣.∵四边形ABCD面积为2,∴×(x﹣)+x(x﹣2)=2,解得x=.即AB=.【点评】把有一个直角的四边形添加辅助线转化成直角三角形来解.14.如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.【解答】解:连接OT、OD、DT,过O作OM⊥AD于M,∵OA=OT,AT平分∠BAC,∴∠OTA=∠OAT,∠BAT=∠CAT,∴∠OTA=∠CAT,∴OT∥AC,∵PC⊥AC,∴OT⊥PC,∵OT为半径,∴PC是⊙O的切线,∵OM⊥AC,AC⊥PC,OT⊥PC,∴∠OMC=∠MCT=∠OTC=90°,∴四边形OMCT是矩形,∴OM=TC=,∵OA=2,∴sin∠OAM=,∴∠OAM=60°,∴∠AOM=30°∵AC∥OT,∴∠AOT=180°﹣∠OAM=120°,∵∠OAM=60°,OA=OD,∴△OAD是等边三角形,∴∠AOD=60°,∴∠TOD=120°﹣60°=60°,∵PC切⊙O于T,∴∠DTC=∠CAT=∠BAC=30°,∴tan30°==,∴DC=1,∴阴影部分的面积是S梯形OTCD﹣S扇形OTD=×(2+1)×﹣=.故答案为:.【点评】本题考查了切线的性质和判定,解直角三角形,矩形的性质和判定,勾股定理,扇形的面积,梯形的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,本题综合性比较强,有一定的难度.15.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为(3π﹣)cm2.【解答】解:作OH⊥DK于H,连接OK,∵以AD为直径的半圆,正好与对边BC相切,∴AD=2CD,∴A'D=2CD,∵∠C=90°,∴∠DA'C=30°,∴∠ODH=30°,∴∠DOH=60°,∴∠DOK=120°,∴扇形ODK的面积为=3πcm2,∵∠ODH=∠OKH=30°,OD=3cm,∴OH=cm,DH=cm;∴DK=3cm,∴△ODK的面积为cm2,∴半圆还露在外面的部分(阴影部分)的面积是:(3π﹣)cm2.故答案为:(3π﹣)cm2.【点评】此题考查了折叠问题,解题时要注意找到对应的等量关系;还考查了圆的切线的性质,垂直于过切点的半径;还考查了直角三角形的性质,直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30度.16.如图,△ABC中,BC=4,∠BAC=45°,以为半径,过B、C两点作⊙O,连OA,则线段OA的最大值为2+2+2.【解答】解:作OF⊥BC于F,则BF=CF=BC=2,如图,连结OB,在Rt△OBF中,OF===2,∵∠BAC=45°,BC=4,∴点A在BC所对应的一段弧上一点,∴当点A在BC的垂直平分线上时OA最大,此时AF⊥BC,AB=AC,作BD⊥AC于D,如图,设BD=x,∵△ABD为等腰直角三角形,∴AB=BD=x,∴AC=x,在Rt△BDC中,∵BC2=CD2+BD2,∴42=(x﹣x)2+x2,即x2=4(2+),∵AF•BC=BD•AC,∴AF==2+2,∴AO=AF+OF=2+2+2,即线段OA的最大值为2+2+2.故答案为2+2+2.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和圆周角定理.解决本题的关键是确定OA垂直平分BC时OA最大.三.解答题(共8小题)17.如图,在Rt△ABC中,∠C=90°,AC=10,BC=24,⊙O的半径为6,当圆心O与C重合时,试判断⊙O与AB的位置关系.【解答】解:作CD⊥AB于D,如图,∵∠C=90°,AC=10,BC=24,∴AB==26,∵CD•AB=AC•BC,∴CD==,当圆心O与C重合时,∵OD=>6,即圆心O到AB的距离大于圆的半径,∴AB与⊙O相离.【点评】本题考查了直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l 和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.18.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=12cm,水面最深地方的高度为2cm,求这个圆形截面所在圆的半径.【解答】解:(1)先作弦AB的垂直平分线;在弧AB上任取一点C连接AC,作弦AC的垂直平分线,两线交点作为圆心O,OA作为半径,画圆即为所求图形.(2)过O作OE⊥AB于D,交弧AB于E,连接OB.∵OE⊥AB,∴BD=AB=×12=6cm,由题意可知,ED=2cm,设半径为xcm,则OD=(x﹣2)cm,在Rt△BOD中,由勾股定理得:OD2+BD2=OB2∴(x﹣2)2+62=x2解得x=10,即这个圆形截面的半径为10cm.【点评】本题主要考查了垂径定理、勾股定理的运用.解决问题的关键是根据题意画出图形,再根据勾股定理进行求解.19.如图,A,B,C是⊙O上的三个点,连结和的中点的弦DE分别与弦AB,AC交于点F,G.若∠BAC=70°,求∠AFG的度数.【解答】解:连接OB、OC、OA、AD、OE、OF.∵∠BOC=2∠BAC=140°,∴∠AOB+∠AOC=360°﹣140°=220°,又∵D、E是结和的中点,∴∠BOD=∠AOB,∠AOE=∠AOC,∴∠BOD+∠AOE=(∠AOB+∠AOC)=110°,又∵∠DAB=∠BOD,∠ADF=∠AOE,∴∠DAB+∠ADF=55°,∴∠AFG=∠DAB+∠ADF=55°.【点评】本题考查了圆周角定理和三角形的外角的性质定理,正确求得∠DAB+∠ADF是关键.20.如图,P是半径为cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB=3cm,∠APB=60°,C是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=cm,求图中阴影部分的面积.【解答】解:(1)∵PA、PB、DE是⊙O的切线,∴PA=PB=3cm,CE=BE,AD=DC,∴△PDE的周长=PE+DE+PD=PE+CE+CD+PD=PE+BE+AD+PD=PA+PB=3cm+3cm=6cm;(2)连接OB、OA、OE,OD,如图,∵PA、PB、OC是⊙O的切线,∴OB⊥PB,OA⊥PA,OC⊥DE,∴∠OBP=∠OPA=90°,∵∠APB=60°,∴∠BOA=120°,∵BE=CE,DC=DA,∴S△OCE=S△OBE,S△OCD=S△ODA,∴S五边AOBED=2S△ODE=2×××=4,∴图中阴影部分的面积=S五边AOBED﹣S扇形AOB=4﹣=(4﹣π)cm2.【点评】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.也考查了扇形面积的计算.21.如图,AB为⊙O的直径,弦CK交AB于P,D为上一点,且∠CPD=∠BPD=60°,连OC、OD.(1)求证:∠OCK=∠ODP;(2)若PC=4,PO=6,求S△POD.【解答】(1)证明:如图所示:作OE⊥CK于E,OF⊥PD于F,∵∠CPD=∠BPD=60°,∴∠KPB=180°﹣60°﹣60°=60°,∵OE⊥CK,OF⊥PD,∴EO=OF,∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,∴Rt△OEC≌Rt△OFD(HL),∴∠OCK=∠ODP;(2)解:如图所示:连接OK,∵∠KPB=60°,∠OEP=90°,∴∠EOP=30°,∴PE=PO=×6=3,EO==3,∵PC=4,∴EC=EK=7,PK=10,∵KO=CO,∴∠OKC=∠OCK,∵∠OCK=∠ODP,∴∠K=∠ODP,∴∠KOP=∠POD,在△OPD和△OPK中,,∴△OPD≌△OPK,∴S△POD=S△POK=×EO×PK=×10×3=30.【点评】此题主要考查了全等三角形的判定与性质以及垂径定理和勾股定理等知识,根据已知转换图形得出S△POD=S△POK是解题关键.22.如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB 于点F,EB=r(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)如图2,当F是AB的四等分点且EF•EC=时,求EC的值.【解答】(1)证明:连结OC、OE,OE交AB于H,如图1,∵E是弧AB的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)解:如图2,连接OA,∵=,∴AE=BE=r,设OH=x,则HE=r﹣x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r﹣x)2=,∴x2﹣(r﹣x)2=r2﹣,解得x=,∴HE=r﹣=r,在Rt△OAH中,AH=,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF===r,∵EF•EC=,∴EC=r.【点评】本题主要考查切线的判定及垂径定理,在(1)中掌握切线的判定方法是解题的关键,在(2)中求出HF的值是解题的关键.23.如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别与EF,GF交于I,H两点.(1)求∠FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,①求证:FD=FI;②设AC=2m,BD=2n,求m:n的值.【解答】解:(1)∵EF是⊙O的直径,∴∠FDE=90°;(2)四边形FACD是平行四边形.理由如下:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴∠AEB=90°.又∵∠FDE=90°,∴∠AEB=∠FDE,∴AC∥DF,∴四边形FACD是平行四边形;(3)①连接GE,如图.∵四边形ABCD是菱形,∴点E为AC中点.∵G为线段DC的中点,∴GE∥DA,∴∠FHI=∠FGE.∵EF是⊙O的直径,∴∠FGE=90°,∴∠FHI=90°.∵∠DEC=∠AEB=90°,G为线段DC的中点,∴DG=GE,∴=,∴∠1=∠2.∵∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∴FD=FI;②∵AC∥DF,∴∠3=∠6.∵∠4=∠5,∠3=∠4,∴∠5=∠6,∴EI=EA.∵四边形ABCD是菱形,四边形FACD是平行四边形,∴DE=BE=n,AE=EC=m,FD=AC=2m,∴EF=FI+IE=FD+AE=3m.在Rt△EDF中,根据勾股定理可得:n2+(2m)2=(3m)2,即n=m,∴m:n=:5.【点评】此题主要考查了圆周角定理以及菱形的性质和平行四边形的判定与性质等知识,熟练应用菱形的性质是解题关键.24.已知点A,B,C是半径为2的圆0上的三个点,其中点A是劣弧BC上的一动点(不与点B,C重合),连接AB、AC,点D、E分别在弦AB,AC上,连接OD、OE.(1)当点A为劣弧BC的中点时,且满足AD=CE(如图①)①求证:OD=OE;②当BC=时,求∠DOE的度数;(如图②)(2)当BC=,且OD⊥AB,OE⊥AC时(如图③),设BD=x,△DOE的面积为y,求y关于x的函数关系式,并求出自变量x的取值范围.【解答】(1)①证明:如图①作直径BF,直径AG,则:由点A为劣弧BC的中点知=,故=,∴∠OAE=∠OBD,∵在△BOD和△AOE中∴△BOD≌△AOE(SAS),∴OD=OE;②解:如图②连接OB,OC,BC∵OB=OC=2,BC=2,∴△BOC为等腰直角三角形,∴∠BOC=90°,由△BOD≌△AOE知,∴∠BDO=∠AEO,∴∠DOE=∠AOD+∠BOD=∠AOB=45°;(2)解:如图③,过点E作EG⊥DO于点G,∵BD=x,圆的半径为2,∴OD=,∵BC=,∴DE=BC=,设GE=y,∵∠O=45°,∴GO=y,∴DG=﹣y,则DE2=DG2+GE2,即2=(﹣y)2+y2,解得:y1=,y2=(不合题意舍去),∴OD边上的高EG=,y=OD×EG=×=(0<x<).【点评】此题主要考查了圆的综合应用以及全等三角形的判定与性质和三角形面积公式等知识,熟练利用圆周角定理得出∠OAE=∠OBD是解题关键.。

人教版九年级上册数学 24章复习题含答案。

人教版九年级上册数学 24章复习题含答案。

24.1垂直于弦的直径1. 在⊙O 中,AB 为弦,AB OC ⊥于点C ,交⊙O 于点D ,若5=AO ,2=CD ,则弦AB 的长为( )A.4B.6C.8D.102.如图,⊙O 的弦AB 垂直平分半径OC ,则四边形OACB ( ) A.是正方形 B.是长方形 C.是菱形 D.以上答案都不对3.设P 为半径6cm 的圆内的一点,它到圆心的距离为3.6cm,则经过点P 的最短弦的长度是 ( ).A .4.8cmB .7.2cmC .6.4cmD .9.6cm4.在直径是20cm 的⊙O 中,∠AOB 是60°,那么弦AB 的弦心距是( )5.若圆的半径3,圆中一条弦为52,则此弦中点到弦所对劣弧的中点的距离为 .6.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如右图所示,已知AB =16m ,半径OA =10m ,高度CD 为_____m.7.圆中一弦把和它垂直的直径分成3 cm 和4 cm 两部分,则这条弦长为________. 8.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示, 则这个小孔的直径是 mm.9.已知:如图,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且BF AE =.求证:OF OE =.10.已知:如图, ⊙O 的直径CD 垂直弦AB 于P , 且PA =4cm, PD =2cm .AB 第2题图第6题图DBAO CBA 8mm第8题图求:⊙O的半径长.11.如图,已知:⊙O中,弦AB与弦CD互相垂直,垂足为E,又AE=3,EB=7,求O点到CD的距离.12.已知:如图,AB,CD是⊙O的弦,且AB⊥CD于H,A H=4,B H=6,C H=3,D H=8.求:⊙O 的半径.13. 如图弓形的弦AB=6cm,弓形的高是1cm,求其所在圆的半径.14.某机械传动装置在静止时如图所示,连杆PB与B的运动所形成的⊙O交于点A,测量得PA=4cm,AB=8cm,⊙O的半径是5cm,求点P到圆心O 的距离.人教版九年级数学 24.2 点和圆、直线和圆的位置关系一、选择题1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 2018·眉山如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于( )A.27° B.32° C.36° D.54°3. 在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B 在⊙A内,则实数a的取值范围是( )A.a>2 B.a>8C.2<a<8 D.a<2或a>84. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD5. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设( )A.∠A>45°,∠B>45° B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是 ( )A.3步B.5步C.6步D.8步7. 已知⊙O的半径为2,点P在⊙O内,则OP的长可能是( )A.1 B.2C.3 D.48. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定二、填空题9. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB.P为⊙C上的动点,∠APB=90°,则AB长的最大值为________.10. 已知在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则直线BC与⊙A 的位置关系是________.11. 如图,菱形ABOC的边AB,AC分别与☉O相切于点D,E,若点D是AB的中点,则∠DOE= .12. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A上,点________在⊙A外.13. (2019•河池)如图,PA、PB是的切线,A、B为切点,∠OAB=38°,则∠P=_______ ___.14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O 的半径为________.15. 如图,在扇形ABC中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为________.O16. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB 只有一个公共点,则R的取值范围是______________.三、解答题17. 2020·凉山州模拟如图,⊙O的直径AB=10 cm,弦BC=6 cm,∠ACB的平分线交⊙O 于点D,交AB于点E,P是AB延长线上一点,且PC=PE.(1)求证:PC是⊙O的切线;(2)求AC,AD的长.18. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.19. 已知:如图,在Rt△ABC中,∠C=90°,AC=8,AB=10.点P在AC上,AP=2.若⊙O的圆心在线段BP上,且⊙O与AB,AC分别切于点D,E.求:(1)△BAP的面积S;(2)⊙O的半径.人教版九年级数学 24.2 点和圆、直线和圆的位置关系课时训练-答案一、选择题1. 【答案】D[解析]∵AB为☉O的切线,∴∠OAB=90°.∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2. 【答案】A3. 【答案】C4. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】B二、填空题9. 【答案】1610. 【答案】相切11. 【答案】60°[解析]连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与☉O相切于点D,∴OD⊥AB.∵D是AB的中点,∴OD是AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∴∠AOD=∠AOB=30°,同理∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为60°.112. 【答案】O B,D C [解析] ∵四边形ABCD为正方形,∴AC⊥BD,AO=BO=CO=DO. 设AO=BO=x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x=22(负值已舍去),∴AO =22<1,AC =2>1,∴点O 在⊙A 内,点B ,D 在⊙A 上,点C 在⊙A 外.13. 【答案】76【解析】∵是的切线,∴, ∴,∴,∴,故答案为:76.14. 【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵BC与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】135° [解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.16. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD=12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB 相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.PA PB 、O PA PB PA OA =⊥,90PAB PBA OAP ∠=∠∠=︒,90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒180525276P ∠=︒-︒-︒=︒三、解答题17. 【答案】解:(1)证明:连接OC,如图所示.∵AB是⊙O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠EAC=90°-∠ABC,∠ABC=∠OCB,∴∠PCE=90°-∠OCB+45°=90°-(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.(2)连接BD,如图所示.在Rt△ACB中,AB=10 cm,BC=6 cm,∴AC=AB2-BC2=102-62=8(cm).∵∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=22AB=5 2(cm).18. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD ⊥l ,∴AD ∥OC ,∴∠DAC =∠ACO.∵OA =OC ,∴∠ACO =∠CAO ,∴∠DAC =∠CAO ,即AC 平分∠DAB.(2)如图②,连接BF.∵AB 是⊙O 的直径,∴∠AFB =90°,∴∠BAF =90°-∠B.∵∠AEF =∠ADE +∠DAE =90°+∠DAE ,又由圆内接四边形的性质,得∠AEF +∠B =180°,∴90°+∠DAE +∠B =180°, ∴∠DAE =90°-∠B ,∴∠BAF =∠DAE.19. 【答案】解:(1)∵∠C =90°,AC =8,AB =10,∴在Rt △ABC 中,由勾股定理,得BC =6,∴△BAP 的面积S =12AP ·BC =12×2×6=6. (2)连接OD ,OE ,OA.设⊙O 的半径为r ,则S △BAP =12AB ·r +12AP ·r =6r , ∴6r =6,解得r =1.故⊙O 的半径是1.24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,面积等于b,ab的值为()A.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC 内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究(2)如图②,在△ABC中,AB=BC,∠ABC=120∘,AC=6,求△ABC外接圆的半径及AB+BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD的人工湖,已知AD//BC,AD⊥AB,AB= 180m,BC=300m,AD>BC,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD内建一个湖心小岛P,并分别修建观光长廊PB和PC,且PB和PC相互垂直.为了容纳更多的游客,要使线段PB、PC之和尽可能的大.试问PB+PC是否存在最大值?若存在,请求出PB+PC的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,的值为()面积等于b,abA.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究 (2)如图②,在△ABC 中,AB =BC,∠ABC =120∘,AC =6,求△ABC 外接圆的半径及AB +BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD 的人工湖,已知AD//BC ,AD ⊥AB ,AB =180m ,BC =300m ,AD >BC ,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD 内建一个湖心小岛P ,并分别修建观光长廊PB 和PC ,且PB 和PC 相互垂直.为了容纳更多的游客,要使线段PB 、PC 之和尽可能的大.试问PB +PC 是否存在最大值?若存在,请求出PB +PC 的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)人教版 九年级数学 24.4 弧长和扇形面积一、选择题1. 如图在等边三角形ABC 中,将边AC 逐渐变成以BA 为半径的AC ︵,其他两边的长度不变,则∠ABC 的度数由60°变为( )图A .(180π)°B .(120π)°C .(90π)°D .(60π)°2. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A .2πB .4πC .12πD .24π3. (2020·聊城)如图,有一块半径为1m ,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( )A .41m B .43m C .415m D .23m 4. (2020·聊城)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点M ,连接OC ,DB ,如果OC∥DB ,OC =23,那么图中阴影部分的面积是( )A .πB .2πC .3πD .4π5. 2019·天水模拟 一个圆锥的轴截面是一个正三角形,则圆锥侧面展开图形的圆心角是( ) A .60° B .90° C .120° D .180°6. 用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A. 2 cm B .3 2 cm C .4 2 cm D .4 cm7. (2020·苏州)如图,在扇形OAB 中,已知90AOB ∠=︒,2OA =,过AB 的中点C作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )AM CBDA.1π-B.12π- C.12π-D.122π-8. 2018·黑龙江 如图在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 按逆时针方向旋转40°得到△ADE ,点B 经过的路径为弧BD ,则图阴影部分的面积为( )图A.143π-6B.259π C.338π-3D.33+π二、填空题9. (2020·湘潭)如图,在半径为6的⊙O 中,圆心角60AOB ︒∠=,则阴影部分面积为________.10. (2020·绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是______度.11. 如图所示,在△ABC 中,AB =BC =2,∠ABC =90°,则图中阴影部分的面积是________.12. 如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,AB =123,OP =6,则劣弧AB ︵的长为________.(结果保留π)13. 如图所示,有一直径是 2 米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC ,则:(1)AB 的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.14. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)15. (2020·新疆)如图,⊙O 的半径是2,扇形BAC 的圆心角为60°,若将扇形BAC 剪下转成一个圆锥,则此圆锥的底面圆的半径为____________.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 如图,AB 是半圆O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交半圆O 于点E ,连接CE.(1)判断CD 与半圆O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,半圆O 的半径为1,求图中阴影部分的面积.18. (2020·内江)如图,AB 是⊙O 的直径,C 是⊙O 上一点,ODBC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 是⊙O 的切线;(2)设OE 交⊙O 于点F ,若2DF BC ==,EF 的长; (3)在(2)的条件下,求阴影部分的面积.19. 如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上的点F 处,点C 落在点A 处,再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG. (1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.人教版 九年级数学 24.4 弧长和扇形面积 课时训练-答案一、选择题1. 【答案】A [解析] 设变形后的∠B =n °,AB =AC ︵的长=a .由题意可得n180π·a =a ,解得n =180π.2. 【答案】C [解析] 根据扇形的面积公式,S =120×π×62360=12π.故选C.3. 【答案】C 【解析】先利用弧长公式求得圆锥的底面半径,再利用勾股定理求圆锥的高.设圆锥形容器底面圆的半径为r ,则有2πr=180190⋅π,解得r =41,则圆锥的高为22)41(1-=415(m).4. 【答案】B【解析】借助圆的性质,利用等积转化求解阴影部分的面积.由垂径定理,得CM =DM ,∵OC ∥DB ,∴∠C =∠D ,又∵∠OMC =∠BMD ,∴△OMC ≌△BMD(ASA),∴OM =BM =21OB =21OC ,∴cos ∠COM =OC OM =21,∴∠COM =60°.∴S 阴影=S 扇形BOC =360)32(602⋅π=2π.5. 【答案】D6. 【答案】C [解析] 设纸帽底面圆的半径为r cm ,则2πr =120×π×6180,解得r =2.设圆锥的高为h cm ,由勾股定理得h2+r2=62,所以h2+22=62,解得h =4 2.7. 【答案】B【解析】本题考查了不规则图形面积的计算,连接OC ,由题意得∠DOC=∠BOC=45°,四边形OECD 为正方形,OC=2,由特殊角的三角函数得OE=OD=1,S 阴影=S 扇形OAB -S 正方形CEOD =290(2)360π⨯-12=2π-1,因此本题选B .8. 【答案】B [解析] ∵AB =5,AC =3,BC =4,∴AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形.由旋转的性质得,△ADE 的面积=△ABC 的面积,由图可知,阴影部分的面积=△ADE 的面积+扇形ADB 的面积-△ABC 的面积, ∴阴影部分的面积=扇形ADB 的面积=40π×52360=259π.二、填空题9. 【答案】6π【解析】本题考查了扇形面积的计算,解题的关键是熟记扇形面积的计算公式.阴影部分面积为26066360ππ⨯=,故答案为:6π.10. 【答案】100【解析】设圆心角的度数是n ,则2π×2.5=9180n π.解得n =100.11. 【答案】π-2 [解析] ∵在△ABC 中,AB =BC =2,∠ABC =90°,∴△ABC 是等腰直角三角形,∴S 阴影=S 半圆AB +S 半圆BC -S △ABC=12π×(22)2+12π×(22)2-12×2×2 =π-2.12. 【答案】 8π 【解析】∵AB 是小圆的切线,∴OP ⊥AB ,∴AP =12AB =6 3.如解图,连接OA ,OB ,∵OA =OB ,∴∠AOB =2∠AOP.在Rt △AOP 中,OA =OP 2+AP 2=12,tan ∠AOP =AP OP =636=3,∴∠AOP =60°.∴∠AOB =120°,∴劣弧AB 的长为120π·12180=8π.13. 【答案】(1)1 (2)14[解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2. ∵AB =AC ,AB2+AC2=BC2=2, ∴AB =1(米).(2)设所得圆锥的底面圆的半径为r 米. 根据题意,得2πr =90·π·1180,解得r =14.14. 【答案】6π [解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).15.【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接OA ,OB ,OC ,过点O 作OD ⊥AC 于点D .∵AB =AC ,OB =OC ,OA =OA ,所以△OAB ≌△OAC ,所以∠OAB =∠OAC =12∠BAC =12×60°=30°.在Rt △OAD 中,因为∠OAC =30°,OA =2,所以OD =1,AD 因为OD ⊥AC ,所以AC =2AD =BC l =60180×π×π.设此圆锥的底面圆的半径为r ,则r .16. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB -S △OAB)=2(90π×22360-12×2×2)=2π-4. 故答案为2π-4.三、解答题17. 【答案】解:(1)CD 与半圆O 相切.证明:∵AC 平分∠DAB ,∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA ,∴∠DAC =∠OCA ,∴OC ∥AD.∵AD ⊥CD ,∴OC ⊥CD.又∵OC 为半圆O 的半径,∴CD 与半圆O 相切.(2)连接OE.∵AC 平分∠DAB ,∴∠DAC =∠BAC ,∴EC ︵=BC ︵.又∵E 是AC ︵的中点,∴AE ︵=EC ︵=BC ︵,S 弓形AE =S 弓形CE ,∴∠BOC =∠EOC =60°.又∵OE =OC ,∴△OEC 是等边三角形,∴∠ECO =60°,CE =OC =1.由(1)得OC ⊥CD ,∴∠OCD =90°,∴∠DCE =30°,∴DE =12,DC =32, ∴S 阴影=S △DEC =12×12×32=38.18. 【答案】(1)证明:连接OC ,如图,∵OD ⊥BC ,∴CD=BD ,∴OE 为BC 的垂直平分线,∴EB=EC ,∴∠EBC=∠ECB ,∵OB=OC ,∴∠OBC=∠OCB ,∴∠OBC+∠EBC=∠OCB+∠ECB ,即∠OBE=∠OCE ,∵CE 为⊙O 的切线,∴OC ⊥CE ,∴∠OCE=90°, ∴∠OBE=90°,∴OB ⊥BE ,∴BE 与⊙O 相切.(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD 中,BD=12BC=∵OD2+BD2=OB2,∴222(2)R R -+=,解得R=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴在Rt △OBE 中,∠BEO=30º,OE=2OB=8,∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD ⊥BC 知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=OE=8,∴=S OBEC S S -阴影四边形扇形OBC =21120482360π⨯⨯ 163π=,【解析】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.(1)连接OC ,如图,根据垂径定理由OD ⊥BC 得到CD=BD ,则OE 为BC 的垂直平分线,所以EB=EC ,根据等腰三角形的性质得∠EBC=∠ECB ,加上∠OBC=∠OCB ,则∠OBE=∠OCE ;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE 与⊙O 相切;(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD ,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE ,利用EF=OE-OF 即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用=S OBEC S S 阴影四边形扇形OBC 代入数值即可求解.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC =AD =2,∠ABC =90°.∵△BEC 绕点B 逆时针旋转90°得△BFA ,∴△BFA ≌△BEC ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°,AF =CE ,∴∠AFB +∠FAB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG ,∴∠AFB +∠CFG =∠AFG =90°,AF =FG ,∴∠CFG =∠FAB =∠ECB ,CE =FG ,∴CE 綊FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG.(2)∵E 是AB 的中点,∴AE =BE =12AB. ∵△BFA ≌△BEC ,∴BF =BE =12AB =1, ∴AF =AB2+BF2= 5.由(1)知四边形EFGC 是平行四边形,FC 为其对角线,∴点G 到FC 的距离等于点E 到FC 的距离,即BE 的长,∴S 阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形FAG =90π·22360+12×2×1+12×(1+2)×1-90π·(5)2360=52-π4.。

人教版数学九年级上册第24章圆同步训练题(含答案)

人教版数学九年级上册第24章圆同步训练题(含答案)

人教版九年级数学上册第24章圆训练题(精练)一、单选题(本大题10题,每小题3分,共30分)1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2B.4C.8D.162.(本题3分)如图,AB是⊙O的直径,BC是⊙O的弦,已知∠AOC=80°,则∠ABC的度数为()A.20°B.30°C.40°D.50°3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC⊙30°⊙AC⊙4,则⊙O的半径为()A.4B.8C.D.4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm 为半径作圆.则图中阴影部分面积为( )A .(π)cm 2B .(π)cm 2C .(2π)cm 2D .(2π-)cm 26.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2BC .32 D7如图,在一个圆内有AB 、CD 、EF ,若AB +CD =EF ,则AB +CD 与EF 的大小关系是( )A .AB +CD =EFB .AB +CD <EFC .AB +CD ≤EF D .AB +CD >EF8.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .C .6D .9.如图,在ABC 的外接圆上,,,AB BC CA 所对的圆心角的度数比为12:13:11.在BC 上取一点D ,过D 分别作直线,AC AB 的平行线,交BC 于,EF 两点,则EDF ∠的度数为( )A .55°B .60°C .65°D .70°10.如图,在Rt ABC 中,90,30∠=︒∠=︒C A ,在AC 边上取点O 为圆心画圆,使O 经过,A B 两点,下列结论:①2AO CO =;②AO BC =;③以O 圆心,OC 为半径的圆与AB 相切;④延长BC 交O 于点D ,则,,A B D 是O 的三等分点.其中正确结论的序号是( )A .①②③④B .①②③C .②③④D .①③④二、填空题(本大题7题,每小题4分,共28分)11.(本题4分)若四边形ABCD 是⊙O 的内接四边形,∠A=120°,则∠C 的度数是___.12.(本题4分)如图,四边形ABCD 内接于⊙O ,∠C =130°,则∠BOD 的度数是______.13.(本题4分)如图,四边形ABCD 是菱形,∠B =60°,AB =1,扇形AEF 的半径为1,圆心角为60°,则图中阴影部分的面积是______.14.(本题4分)如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A OB '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)15.(本题4分)如图,在Rt⊙ABC 中,⊙ACB=90°⊙AC=6⊙BC=8,点D 是AB 的中点,以CD 为直径作⊙O⊙⊙O分别与AC⊙BC交于点E⊙F,过点F作⊙O的切线FG,交AB于点G,则FG的长为_____⊙16.(本题4分)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC 平分AB)可以求解.现已知弦8AB=米,半径等于5米的弧田,按照上述公式计算出弧田的面积为_____平方米.17.(本题4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边 BC 相交于点E,过点E作EF⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF 的长为_____.三、解答题(本大题7题,18-23每小题7分,24题20分,共62分)18.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD⊥CE 于点D,AC 平分∠DAB.(1)求证:直线CE 是⊙O 的切线;(2)若AB=10,CD=4,求BC 的长.19.如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D⊙连接AD,BD⊙求四边形ABCD的面积.20.如图,在△ABC中,AB⊙AC⊙∠BAC⊙54°,以AB为直径的⊙O分别交AC⊙BC于点D⊙E,过点B作直线BF,交AC的延长线于点F⊙⊙1)求证:BE⊙CE⊙⊙2)若AB⊙6,求弧DE的长;⊙3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.21.如图,在圆O 中,弦AB =8,点C 在圆O 上(C 与A ,B 不重合),连接CA 、CB ,过点O 分别作OD ⊥AC ,OE ⊥BC ,垂足分别是点D 、E(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.22.如图1,AB 为半圆的直径,点O 为圆心,AF 为半圆的切线,过半圆上的点C 作//CD AB 交AF 于点D ,连接BC .(1)连接DO ,若//BC OD ,求证:CD 是半圆的切线;(2)如图2,当线段CD 与半圆交于点E 时,连接AE ,AC ,判断AED ∠和ACD ∠的数量关系,并证明你的结论.23.如图,已知AB是⊙P的直径,点C在⊙P上,D为⊙P外一点,且∠ADC=90°,直线CD为⊙P的切线.⑴试说明:2∠B+∠DAB=180°⑵若∠B=30°,AD=2,求⊙P的半径.24.若一个四边形的两条对角线互相垂直且相等,则称这个四边形为奇妙四边形.如图1,四边形ABCD 中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据奇妙四边形对角线互相垂直的特征可得奇妙四边形的一个重要性质:奇妙四边形的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形奇妙四边形(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是奇妙四边形,若⊙O的半径为6,∠ BCD=60°.求奇妙四边形ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是奇妙四边形作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论参考答案1.B【详解】⊙⊙O中最长的弦为8cm,即直径为8cm⊙⊙⊙O的半径为4cm⊙故选B.2.C【详解】∵AC AC,∴∠ABC=12∠AOC=12×80°=40°,故选C.3.A【详解】∵AB是直径,∴∠C=90°,∵∠ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选A.4.B【详解】连接OC ,如图,∵CD 为⊙O 的切线,∴OC ⊥CD ,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°,故选B .5.C【详解】连接AD ,∵△ABC 是正三角形,∴AB=BC=AC=4,∠BAC=∠B=∠C=60°, ∵BD=CD ,∴AD ⊥BC ,∴=∴S 阴影=S △ABC -3S 扇形AEF =12×4×﹣26023360π⨯⨯﹣2π)cm 2, 故选C .6.D【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,×1.故选D.7.D【详解】如图,在弧EF上取一点M,使EM CD=,则FM AB=,所以AB=FM,CD=EM,在⊙MEF中,FM+EM>EF,所以AB+CD>EF,故选:D.8.D【详解】如图,设光盘圆心为O,连接OC⊙OA⊙OB⊙∵AC⊙AB都与圆O相切,∴AO平分∠BAC⊙OC⊥AC⊙OB⊥AB⊙∴∠CAO=∠BAO=60°⊙∴∠AOB=30°⊙在Rt△AOB中,AB=3cm⊙∠AOB=30°⊙∴OA=6cm⊙根据勾股定理得:=⊙则光盘的直径为⊙故选D.9.C【详解】解:,,AB BC CA 所对的圆心角的度数比为12:13:11,BC ∴所对的圆心角的度数为13360130,121311⨯︒=︒++ 65BAC ︒∴∠=//,//,AC ED AB DF,FED ACB EFD ABC ∴∠=∠∠=∠18018065EDF FED EFD ACB ABC BAC ∴∠=︒-∠-∠=︒-∠-∠=∠=︒.故选C .10.D【详解】①如图,连接OB ,则OA OB =.90,30C OAB ︒︒∠=∠=,30,60ABO OAB ABC ︒︒∴∠=∠=∠=,30,2CBO OB OC ︒∴∠=∴=.2AO CO ∴=,故①正确;②在Rt OCB △中,90,,C OB BC AO OB ︒∠=>=,AO BC ∴>,故②错误;③如图,过点O 作OE AB ⊥于点E ,90,30ACB ABO CBO ︒︒∠=∠=∠=,OC OE ∴=,∴以O 圆心,OC 为半径的圆与AB 相切,故③正确;④如图,延长BC ,交O 于点D ,连接AD .90,ACB DC BC ︒∠=∴=.AD AB ∴=,60ABC ︒∠=,ADB ∴是等边三角形.,AD AB BD AD AB BD ∴==∴==,,,A B D ∴是O 的三等分点,故④正确;故正确的有①③④.11.60°⊙【详解】∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣∠A=60°,故答案为60°.12.100°⊙【详解】∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠C=180°,∵∠C=130°,∴∠A=50°,∴∠BOD=2∠A=100°,故答案为100°.13.6π- 【详解】连接AC ,∵四边形ABCD 是菱形,∴∠B=∠D=60°,AB=AD=DC=BC=1,∴∠BCD=∠DAB=120°,∴∠1=∠2=60°,∴△ABC 、△ADC 都是等边三角形,∴AC=AD=1,∵AB=1,∴△ADC的高为2,AC=1, ∵扇形BEF 的半径为1,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AF 、DC 相交于HG ,设BC 、AE 相交于点G ,在△ADH 和△ACG 中,34160AD ACD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADH ≌△ACG(ASA),∴四边形AGCH 的面积等于△ADC 的面积,∴图中阴影部分的面积是:S 扇形AEF ﹣S △ACD =2601113602π⨯⨯-⨯6π,故答案为64π-. 14.4π.【详解】解:根据题意,知OA=OB .又∠AOB=36°,∴∠OBA=72°.∴点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π.【点睛】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.15.125⊙ 【详解】如图,在Rt △ABC 中,根据勾股定理得,AB=10⊙∴点D是AB中点,∴CD=BD=12AB=5⊙连接DF⊙∵CD是⊙O的直径,∴∠CFD=90°⊙∴BF=CF=12BC=4⊙∴连接OF⊙∵OC=OD⊙CF=BF⊙∴OF∥AB⊙∴∠OFC=∠B⊙∵FG是⊙O的切线,∴∠OFG=90°⊙∴∠OFC+∠BFG=90°⊙∴∠BFG+∠B=90°⊙∴FG⊥AB⊙∴S△BDF=12DF×BF=12BD×FG⊙∴FG=3412==55 DF BFBD⨯⨯⊙故答案为125. 16.10 【详解】解:∵弦8AB =米,半径OC ⊥弦AB ,∴4=AD , ∴3OD ==,∴2OA OD -=,∴弧田面积12=(弦×矢+矢2)()21822102=⨯⨯+=, 故答案为1017.2【详解】连接AE,作CM⊥FD, ∵AB=AC,AE⊥BC, ∴BE=EC,AB∥CM, ∴CM=BF, ∴666sin ,sin 446410CM CM AF D D CD AD AC CM CM ∠==∠====++++ , ∴6410CM CM=+ , ∴CM=2或CM=-12(舍去),∴BF=2.18.【详解】(1)如图,连接OC∵AC平分∠DAB,∴∠DAC=∠CAB,∵OA=OC,∴∠OCA=∠CAB,∴∠OCA=∠DAC,∴AD∥CO,∵CD⊥AD,∴OC⊥CD,∵OC是⊙O直径且C在半径外端,∴CD为⊙O的切线;(2)∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴DC AC BC AB,∴BC•AC=DC•AB=4×10=40,∵BC 2+AC 2=100,∴(BC+AC)2=BC 2+AC 2+2BC •AC=180,(BC -AC)2= BC 2+AC 2-2BC •AC=20,∴AC ﹣BC ﹣∴19.S 四边形ADBC ⊙49⊙cm 2⊙⊙【详解】∵AB 为直径,∴∠ADB=90°,又∵CD 平分∠ACB ,即∠ACD=∠BCD ,∴AD BD =,∴AD=BD ,∵直角△ABD 中,AD=BD ,AD 2+BD 2=AB 2=102,则,则S △ABD =12AD•BD=12=25(cm 2),在直角△ABC 中,=6(cm),则S △ABC =12AC•BC=12×6×8=24(cm 2), 则S 四边形ADBC =S △ABD +S △ABC =25+24=49(cm 2).20.【详解】(1)连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=12∠BAC=12×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=5439 18010ππ⨯⨯=;(3)当∠F的度数是36°时,BF与⊙O相切,理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.21.⊙1⊙【详解】(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=12 AB,∵AB=8,∴DE=4;(2)过点O作OH⊥AB,垂足为点H,则OH=3,连接OA,∵OH经过圆心O,∴AH=BH=12 AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.22.【详解】(1)证明:连接OC ,AF 为半圆的切线,AB 为半圆的直径,AB AD ∴⊥,//CD AB ,//BC OD ,∴四边形BODC 是平行四边形,OB CD ∴=,OA OB =,CD OA ∴=,∴四边形ADCO 是平行四边形,//OC AD ∴,//CD BA ,CD AD ∴⊥,//OC AD ,OC CD ∴⊥,CD ∴是半圆的切线;(2)解:90AED ACD ∠+∠=︒,理由:如图2,连接BE ,AB 为半圆的直径,90AEB ∴∠=︒,90EBA BAE ∴∠+∠=︒,90DAE BAE ∠+∠=︒,ABE DAE ∴∠=∠,ACE ABE ∠=∠,ACE DAE ∴∠=∠,90ADE ∠=︒,90DAE AED AED ACD ∴∠+∠=∠+∠=︒. 23.【详解】解:⊙ 连接CP⊙PC =PB ,⊙⊙B =⊙PCB ,⊙⊙APC=⊙PCB+⊙B=2⊙B⊙CD是⊙OP的切线,⊙⊙DCP=90°⊙⊙ADC=90°,⊙⊙DAB+⊙APC=180°⊙2⊙B+⊙DAB=180°⊙ 连接AC⊙⊙B=30°,⊙⊙APC=60°,⊙PC=P A,⊙⊙ACP是等边三角形,⊙AC=P A,⊙ACP=60° ⊙⊙ACD=30°,⊙AC=2AD=4,⊙P A=4答:⊙P的半径为4.24.【详解】解:(1)矩形的对角线相等但不垂直,所以矩形不是奇妙四边形;故答案为不是;(2)连结OB、OD,作OH⊥BD于H,如图2,则BH=DH,∵∠BOD=2∠BCD=2×60°=120°,∴在等腰△OBD中,∠OBD=30°,在Rt △OBH 中,∵∠OBH=30°, ∴132126OH OB ==⨯=,∴BH ==∴2BD BH ==∵四边形ABCD 是奇妙四边形,∴AC BD ==AC BD ⊥∴112542ABCD BD A S C =⨯==四边形; (3)12OM AD =. 理由如下:连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图3, ∵OE ⊥AD ,∴在等腰△AOD 中,12AE DE AD ==, 又∵22BOC BAC BOM ∠=∠=∠,∴∠BOM=∠BAC ,同理可得∠AOE=∠ABD ,∵BD ⊥AC ,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°, ∵∠BOM+∠OBM=90°, ∴∠OBM=∠AOE , 在△BOM 和△OAE 中 90BMO OEA OBM AOEOB AO ⎧∠∠=⎪∠∠⎨⎪⎩=== ∴()BOM OAE AAS ≌, ∴OM=AE , ∴12OM AD =.1。

人教版九年级数学上册第二十四章圆单元测试题及答案(ABC卷)

人教版九年级数学上册第二十四章圆单元测试题及答案(ABC卷)

九年级数学第二十四章圆测试题(A )时间:45分钟 分数:100分一、选择题(每小题3分,共33分)1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为10,最小距离为4则此圆的半径为( )A .14B .6C .14 或6D .7 或32.如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .8 3.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( )A .40°B .80°C .160°D .120°4.如图24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( ) A .20° B .40° C .50° D .70°5.如图24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位6.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( )A .80°B .50°C .40°D .30°7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( ) A .5 B .7 C .8 D .108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26m B .26m π C .212m D .212m π图24—A —5图24—A —1 图24—A —2 图24—A —3 图24—A —49.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .310 B .512 C .2 D .3 11.如图24—A —7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( ) A .D 点 B .E 点 C .F 点 D .G 点 二、填空题(每小题3分,共30分) 12.如图24—A —8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC= 。

人教版 九年级数学上册 第24章 圆 综合复习题(含答案)

人教版 九年级数学上册 第24章 圆 综合复习题(含答案)

人教版九年级数学上册第24章圆综合复习题一、选择题(本大题共10道小题)1. 如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=70°,那么∠DOE的度数为()A.35°B.38°C.40°D.42°2. 如图半径为1的⊙O与正五边形ABCDE相切于点A,C,则劣弧AC的长度为()图A.35π B.45π C.34π D.23π3. 有下列说法:(1)直径是弦;(2)弦是直径;(3)半圆是弧,但弧不一定是半圆;(4)半径相等的两个圆是等圆;(5)长度相等的两条弧是等弧.其中错误的有() A.1个B.2个C.3个D.4个4. 2019·唐山乐亭期末如图,圆锥的底面半径OB=6 cm,高OC=8 cm,则这个圆锥的侧面积是()A.30 cm2B.60π cm2C.30π cm2D.48π cm25. 如图,已知⊙O1,⊙O2,⊙O3,⊙O4是四个半径为3的等圆,在这四个圆中,若某圆的圆心到直线l的距离为6,则这个圆可能是()A .⊙O 1B .⊙O 2C .⊙O 3D .⊙O 46. 如图AB 为半圆O 的直径,AB =4,C ,D 为AB ︵上两点,且AC ︵=15BD ︵.若∠CED= 52∠COD ,则BD ︵的长为( )图A.59πB.78πC.89πD.109π7.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 与∠BOC 互补,则弦BC 的长为( ) A . 33 B . 43 C . 53 D . 638. 如图在扇形OAB 中,∠AOB =150°,AC =AO =6,D 为AC 的中点,当弦AC沿AB ︵运动时,点D 所经过的路径长为( )图A .3π B.3πC.32 3πD .4π9.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为( )A .π3B .π2 C .π D .2π10. 如图,将半径为6的⊙O 沿AB 折叠,AB ︵与垂直于AB 的半径OC 交于点D ,且CD =2OD ,则折痕AB 的长为( )A .4 2B .8 2C .6D .6 3二、填空题(本大题共5道小题)11.如图,四边形ABCD 是⊙O 的内接正方形,若正方形的面积等于4,则⊙O 的面积等于________.12.若一个圆锥的底面圆的半径为2,母线长为6,则该圆锥侧面展开图的圆心角是________°.13.在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且AB ∥CD ,若AB 和CD 之间的距离为18,则弦CD 的长为________.14. 2019·兴化期中 已知等边三角形ABC 的边长为2,D 为BC 的中点,连接AD .点O 在线段AD 上运动(不与端点A ,D 重合),以点O 为圆心,33为半径作圆,当⊙O 与△ABC 的边有且只有两个公共点时,DO 的取值范围为________.15. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)三、解答题(本大题共4道小题)16. 在△ABC 中,AB =AC =10,BC =16,⊙A 的半径为7,判断⊙A 与直线BC 的位置关系,并说明理由.17. 一个圆锥的高为3 3,侧面展开图半圆,求:(1)圆锥的母线长与底面圆半径的比; (2)圆锥的全面积.18. 2018·牡丹江如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .19.如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC 的中点,DE⊥BC,DE与AC的延长线交于点E.射线AO与射线EB交于点F,与⊙O交于点G.设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.人教版九年级数学上册第24章圆综合复习题-答案一、选择题(本大题共10道小题)1. 【答案】C[解析]∵∠A=70°,∴∠B+∠C=110°,∴∠BOE+∠COD=220°,∴∠DOE=∠BOE+∠COD-180°=40°,故选C.2. 【答案】B[解析] 连接OA,OC,则∠OAE=∠OCD=90°.∵五边形ABCDE 为正五边形,∴∠E=∠D=108°,∴∠AOC=540°-∠OAE-∠OCD-∠E-∠D=144°,∴劣弧AC的长度为144180×π×1=45π.3. 【答案】B4. 【答案】B5. 【答案】B6. 【答案】D7. 【答案】B 【解析】如解图,延长CO交⊙O于点A′,连接A′B.设∠BAC=α,则∠BOC=2∠BAC=2α,∵∠BAC+∠BOC=180°,∴α+2α=180°,∴α=60°.∴∠BA′C=∠BAC =60°,∵CA′为直径,∴∠A′BC=90°,则在Rt△A′BC中,BC=A′C·sin∠BA′C=2×4×32=43.8. 【答案】C[解析] 如图∵D为AC的中点,AC=AO=6,∴OD⊥AC,∴AD=12AC=12AO,∴∠AOD=30°,OD=3 3.作BF =AC ,E 为BF 的中点. 同理可得∠BOE =30°, ∴∠DOE =150°-60°=90°,∴点D 所经过的路径长为nπR 180=90π×3 3180=3 32π.9.【答案】C【解析】如解图,连接OE 、OF ,∵AB 为⊙O 的直径,AB =12,∴AO =OB =6,∵⊙O 与DC 相切于点E ,∴∠OEC =90°,∵在▱ABCD 中,∠C =60°,AB ∥D C ,∴∠A =∠C =60°,∠AOE =∠OEC =90°,∵在△AOF 中,∠A =60°,AO =FO ,∴△AOF 是等边三角形,即∠AOF =∠A =60°,∴∠EOF =∠AOE -∠AOF =90°-60°=30°,弧EF 的长=30π×6180=π.解图10. 【答案】B[解析] 如图,延长CO 交AB 于点E ,连接OB .∵CE ⊥AB ,∴AB=2BE .∵OC =6,CD =2OD ,∴CD =4,OD =2,OB =6.由折叠的性质可得DE =12×(6×2-4)=4,∴OE =DE -OD =4-2=2.在Rt △OEB 中,BE =OB2-OE2=62-22=4 2,∴AB =8 2.故选B.二、填空题(本大题共5道小题)11.【答案】2π 【解析】由题意得,正方形的边长AB =2,则⊙O 的半径为2×22=2,∴⊙O 的面积是(2)2π=2π.12.【答案】120【解析】圆锥的侧面展开图是扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.设扇形的圆心角为n°,则2π×2=nπ·6180,解得n=120.13. 【答案】24【解析】设AB切⊙O于点E,如解图,连接EO并延长交CD于点M,∵C⊙O=26π=2πr,∴r=13,∵AB∥CD,且AB与CD之间的距离为18,∴OM=18-r=5,∵AB为⊙O的切线,∴∠CMO=∠AEO=90°,∴在Rt△CMO中,CM=OC2-OM2=12,∴CD=2CM=24.解图14. 【答案】0<DO<33或2 33<DO<3[解析] ∵等边三角形ABC的边长为2,D为BC的中点,∴AD⊥BC,BD=1,AD= 3. 分四种情况讨论:(1)如图①所示,当0<DO<33时,⊙O与△ABC的BC边有且只有两个公共点,(2)如图②所示,当DO=33时,⊙O与△ABC的边有三个公共点;(3)如图③所示,当⊙O 经过△ABC 的顶点A 时,⊙O 与△ABC 的边有三个公共点,则当33<DO ≤2 33时,⊙O 与△ABC 的边有四个或三个公共点.(4)如图④所示,当2 33<DO <3时,⊙O 与△ABC 的边有两个公共点.综上,当0<DO <33或2 33<DO <3时,⊙O 与△ABC 的边只有两个公共点. 故答案为0<DO <33或2 33<DO < 3.15. 【答案】6π[解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).三、解答题(本大题共4道小题)16. 【答案】解:⊙A 与直线BC 相交. 理由:过点A 作AD ⊥BC 于点D , 则BD =CD =8. ∵AB =AC =10, ∴AD =6. ∵6<7,∴⊙A 与直线BC 相交.17. 【答案】解:(1)设圆锥的母线长为l ,底面圆的半径为r , 根据题意得2πr =180πl180, 所以l =2r ,即圆锥的母线长与底面圆半径的比为2∶1. (2)因为r 2+(3 3)2=l 2,即r 2+(3 3)2=4r 2,解得r =3(负值已舍去), 所以l =6,所以圆锥的全面积=π·32+12·2π·3·6=27π.18. 【答案】证明:如图,延长AD 交⊙O 于点E , ∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD . ∵AB ︵=2AC ︵,∴AE ︵=AB ︵, ∴AB =AE ,∴AB =2AD .19. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG ,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD ≌△EGD ,∠EBC =∠ECB ,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG =45°,β=∠ACB =135°,∴∠ECB =45°,∠CEB =90°,△ECD 、△BEC 、△A BG 都是等腰直角三角形,由CD 的长,可得出BE 和CE 的长,再由题干条件△A BE 的面积是△ABC 的面积的4倍可得出AC 的长,利用勾股定理在△ABE 中求出AB 的长,再利用勾股定理在△ABG 求出AG 的长,即可求出半径长.①(1)①β=90°+α,γ=180°-αword版初中数学证明:如解图①,连接BG,∵AG是⊙O的直径,∴∠ABG=90°,∴α+∠BGA=90°,(1分)又∵四边形ACBG内接于⊙O,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分)∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)11 / 11。

人教版九年级上册数学第二十四章练习题(含答案)

人教版九年级上册数学第二十四章练习题(含答案)

圆和垂直于弦的直径一、基础练习。

1.下列说法正确的是()A.直径是弦,弦是直径B.半圆是弧C.无论过圆内哪一点,只能作一条直径D.长度相等两条弧是等弧2.下列说法错误的有()①经过点P的圆有无数个;②以点P为圆心的圆有无数个;③半径为3 cm且经过点P的圆有无数个;④以点P为圆心,以3 cm为半径的圆有无数个.A.1个B.2个C.3个D.4个3.如图1,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为() A.2 cm B. 3 cm C.2 3 cm D.2 5 cm图1 图24.如图2,在⊙O中,弦AB垂直于直径CD于点E,则下列结论:①AE=BE;②AC=BC;③AD=BD;④EO=ED.其中正确的有()A.①②③④B.①②③C.②③④D.①④5.如图3,在⊙O中,半径为5,∠AOB=60°,则弦长AB=________.图3 图46.如图4,是两个同心圆,其中两条直径互相垂直,其大圆的半径是2,则其阴影部分的面积之和________(结果保留π).7.如图5,AB是⊙O的直径,BC是弦,OD⊥BC于点E,交BC于点D.(1)请写出五个不同类型的正确结论;(2)若BC=8,ED=2,求⊙O的半径.图5二、提高训练。

8.平面内的点P到⊙O上点的最近距离是3,最远距离是7,则⊙O的面积为__________.9.如图6,已知在⊙O中,AB,CD两弦互相垂直于点E,AB被分成4 cm和10 cm两段.(1)求圆心O到CD的距离;(2)若⊙O半径为8 cm,求CD的长是多少?图610.如图7,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于点E,已知AB=2DE.(1)若∠E=20°,求∠AOC的度数;(2)若∠E=α,求∠AOC的度数.图7弧、弦、圆心角和圆周角一、基础练习。

1.下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.如图1,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数为()A.50°B.40°C.30°D.25°图1 图23.如图2,已知AB是⊙O的直径,BC=CD=DE,∠BOC=40°,那么∠AOE=() A.40°B.50°C.60°D.120°4.如图3所示,A,B,C,D是圆上的点,∠1=68°,∠A=40°.则∠D=______.图3 图45.在半径为5 cm的⊙O中,60°的圆心角所对的弦长为________cm.6.如图4,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是________.7.如图5,在⊙O中,AB=AC,∠B=50°.求∠A的度数.图5二、提高训练。

九年级数学上册第二十四章圆章末测试卷B(附答案新人教版)

九年级数学上册第二十四章圆章末测试卷B(附答案新人教版)

九年级数学上册第二十四章圆章末测试卷B(附答案新人教版)第二十四章圆章末检测题(B)一、选择题(每小题3分,共30分)1.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为() A.1 B.2 C.3 D.4 2.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O 的位置关系是() A.P在圆内 B.P在圆上 C.P在圆外 D.无法确定 3.如图,A,B,C在⊙O上,∠OAB=22.5°,则∠ACB的度数是() A.11.5° B.112.5° C.122.5° D.135° 第3题图第5题图第7题图第8题图 4.正多边形的一边所对的中心角与它的一个外角的关系是() A.相等 B.互余 C.互补 D.互余或互补 5.如图所示,在一圆形展厅的圆形边缘上安装监视器,每台监视器的监控角度是35°,为了监视整个展厅,最少需要在圆形的边缘上安装几个这样的监视器() A.4台 B.5台 C.6台D.7台 6.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是() A.相离 B.相交 C.相切 D.外切 7.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为() A.r B.2 r C. r D.3r 8.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 9.如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC,BC为直径画半圆,则图中阴影部分的面积为() A.10π-8 B.10π-16 C.10π D.5π第9题图第10题图 10.如图,已知直线y= x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB.则△PAB面积的最大值是() A.8 B.12 C. D.二、填空题(每小题3分,共24分) 11.用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设____________ ______. 12.如图,P是⊙O的直径BA延长线上一点,PD交⊙O于点C,且PC=OD,如果∠P=24°,则∠DOB=________. 第12题图第13题图第14题图第15题图 13.如图所示是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,则该输水管的直径为___________. 14.如图同心圆,大⊙O的弦AB切小⊙O于P,且AB=6,则圆环的面积为____________. 15.如图,正五边形ABCDE内接于⊙O,F是⊙O上一点,则∠CFD=____°. 16.如图,PA,PB分别切⊙O于A,B,并与⊙O的切线,分别相交于C,D,已知△PCD的周长等于10cm,则PA=__________ cm.第16题图第17题图第18题图 17.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为_______________. 18.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为__________. 三、解答题(共66 分) 19.(6分)如图,一块直角三角尺形状的木板余料,木工师傅要在此余料上锯出一块圆形的木板制作凳面,要想使锯出的凳面的面积最大. (1)请你试着用直尺和圆规画出此圆(要求尺规作图,保留作图痕迹,不写作法).(2)若此Rt △ABC的直角边分别为30cm和40cm,试求此圆凳面的面积.第19题图第20题图 20.(6分)如图,平行四边形ABCD中,以A为圆心,AB为半径的圆分别交AD,BC于F,G,延长BA交圆于E.求证: = . 21.(8分)如图,在⊙O中,半径OA⊥弦BC,点E 为垂足,点D在优弧上.(1)若∠AOB=56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.第21题图第22题图第23题图 22.(8分)如图,△ABC内接于⊙O,AB=8,AC=4,D是AB边上一点,P是优弧的中点,连接PA,PB,PC,PD,当BD的长度为多少时,△PAD 是以AD为底边的等腰三角形?并加以证明. 23.(8分)如图,半径为R的圆内,ABCDEF是正六边形,EFGH是正方形.(1)求正六边形与正方形的面积比;(2)连接OF,OG,求∠OGF. 24.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.第24题图第25题图第26题图 25.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.附加题(15分,不计入总分) 26.(12分)如图,A是半径为12cm的⊙O上的定点,动点P从A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到点A立即停止运动.(1)如果∠POA=90°,求点P运动的时间;(2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2s时,判断直线BP与⊙O的位置关系,并说明理由.第二十四章圆章末检测题(B)参考答案一、选择题 1.C;提示:①②③正确,不在同一直线上的三点才能确定一个圆,故④错误. 2.C;提示:因为OP=7>5,所以点P与⊙O的位置关系是点在圆外. 3.B;提示::∵OA=OB,∴∠OAB=∠OBA=22.5°,∴∠AOB=135°,在优弧AB上任取点E,连接AE、BE,则∠AEB= ∠AOB=67.5°,又∵∠AEB+∠ACB=180°,∴∠ACB=112.5°,4.A;提示:设正多边形是正n边形,则它的一边所对的中心角是,正多边形的外角和是360°,则每个外角也是,所以正多边形的一边所对的中心角与它的一个外角相等. 5.C;提示:如图,连接BO,CO,∵∠BAC=35°,∴∠BOC=2∠BAC=70°.∵360÷70=5 ,∴最少需要在圆形的边缘上安装6个这样的监视器.6.C;提示:∵⊙O的直径是10,∴⊙O的半径r=5.∵圆心O到直线l的距离d是5,∴r=d,∴直线l和⊙O的位置关系是相切,故选C. 7.B;提示:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则 =2πr,解得:R=3r.根据勾股定理得圆锥的高为2 r,故选B. 8.D;提示:A、∵点C是的中点,∴OC⊥BE.∵AB 为圆O的直径,∴AE⊥BE.∴OC∥AE,本选项正确; B、∵ = ,∴ BC=CE,本选项正确; C、∵AD为圆O的切线,∴AD⊥OA.∴∠DAE+∠EAB=90°. ∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确; D、由已知条件不能推出AC⊥OE,本选项错误. 9.B;提示:设各个部分的面积为:S1、S2、S3、S4、S5,如图所示:∵两个半圆的面积和是:S1+S5+S4+S2+S3+S4,△ABC的面积是S3+S4+S5,阴影部分的面积是:S1+S2+S4,∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.即阴影部分的面积为π×16+ π×4- ×8×4=10π-16. 10.C;提示:∵直线y= x-3与x轴、y轴分别交于A,B两点,∴A点的坐标为(4,0),B点的坐标为(0,-3). 即OA=4,OB=3,由勾股定理,得AB=5. 过C作CM⊥AB于M,连接AC,则由三角形面积公式得:×AB×CM= ×OA×OC+ ×OA×OB,∴5×CM=4×1+3×4,∴CM= . ∴⊙C上点到直线y= x-3的最大距离是1+ = . ∴△PAB面积的最大值是×5× = . 二、填空题 11.一个三角形中有两个角是直角;提示:用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设一个三角形中有两个角是直角. 12.72°;提示:连接OC,如图,∵PC=OD,而OC=OD,∴PC=CO,∴∠1=∠P=24°,∴∠2=2∠P=48°,而OD=OC,∴∠D=∠2=48°,∴∠DOB=∠P+∠D=72°. 13.10cm;提示:过点O作OD⊥AB于点D,连接OA,则AD= AB= ×8=4cm.设OA=r,则OD=r-2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r-2)2+42,解得r=5cm.故该输水管的直径为10cm. 14.9π;提示:∵大⊙O的弦AB切小⊙O于P,∴OP⊥AB. ∴AP=BP= AB= ×6=3. ∵在Rt△OAP 中,AP2=OA2-OP2,∴OA2-OP2=9. ∴圆环的面积为:πOA2-πOP2=π(OA2-OP2)=9π. 15.36;提示:如图,连接OD、OC;∵正五边形ABCDE内接于圆O,∴ = ×⊙O的周长.∴∠DOC= 360×°=72°.∴∠CFD= ×72°=36°. 16.5;提示:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm. 17.1或5;提示:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5. 18.2π-4;提示:由题意得,阴影部分面积=2(S扇形AOB-S△A0B)=2( - ×2×2)=2π-4.三、解答题 19.解:(1)如图所示:(2)设三角形内切圆半径为r,则•r•(50+40+30)= ×30×40,解得r=10(cm).故此圆凳面的面积为:π×102=100π(cm 2).第19题答图第20题答图 20.证明:连接AG.∵A为圆心,∴AB=AG.∴∠ABG=∠AGB. ∵四边形ABCD为平行四边形,∴AD∥BC,∠AGB=∠DAG,∠EAD=∠ABG. ∴∠DAG=∠EAD,∴ = . 21.解:(1)∵OA⊥BC,∴ =.∴∠ADC=∠AOB. ∵∠AOB=56°,∴∠ADC=28°;(2)∵OA⊥BC,∴CE=BE= BC=3. 设⊙O的半径为r,则OE=r-1,OB=r,在Rt△BOE中,OE 2+BE2=OB2,则32+(r-1)2=r2.解得r=5.所以⊙O的半径为5. 22.解:当BD=4时,△PAD是以AD为底边的等腰三角形.理由如下:∵P是优弧的中点,∴ = .∴PB=PC.在△PBD 与△PCA中,,∴△PBD≌△PCA(SAS).∴PD=PA. 即BD=4时,△PAD 是以AD为底边的等腰三角形. 23.解:(1)设正六边形的边长为a,则三角形OEF的边EF上的高为 a,则正六边形的面积为:6× ×a× a= a2,∴正方形的面积为:a×a=a2. ∴正六边形与正方形的面积比a2:a2=3 �U2. (2)∵OF=EF=FG,∴∠OGF= (180°-60°-90°)=15°. 24.解:(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB. ∵AB=AC,∴∠ABC=∠ACB.∴∠ODB=∠ACB.∴OD∥AC. ∵DF是⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°.∴∠BAC=45°. ∵OA=OE,∴∠AOE=90°.∵⊙O的半径为4,∴S扇形AOE= 4π,S△AOE= ×4×4=8 ,∴S阴影=4π-8. 25.解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠B=∠D=60°. (2)∵A B是⊙O的直径,∴∠ACB=90°.又∠B=60°∴∠BAC=30°. ∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE. ∴AE是⊙O的切线. (3)如图,连接OC,∵∠ABC=60°,∴∠AOC=120°. ∴劣弧AC的长为=π.附加题 26.解:(1)当∠PO A=90°时,根据弧长公式可知点P运动的路程为⊙O周长的或,设点P运动的时间为ts. 当点P运动的路程为⊙O周长的时,2π•t= •2π•12,解得t=3;当点P运动的路程为⊙O周长的时,2π•t= •2π•12,解得t=9. ∴当∠POA=90°时,点P运动的时间为3s或9s.(2)如图,当点P运动的时间为2s 时,直线BP与⊙O相切.理由如下:当点P运动的时间为2s时,点P运动的路程为4πcm,连接OP,PA. ∵半径AO=12,∴⊙O的周长为24π. ∴ 的长为⊙O周长的.∴∠POA=60°. ∵OP=OA,∴△OAP是等边三角形.∴OP=OA=AP,∠OAP=60°. ∵AB=OA,∴AP=AB.∵∠OAP=∠APB+∠B,∴∠APB=∠B=30°.∴∠OPB=∠OPA+∠APB=90°.∴OP⊥BP,∴直线BP与⊙O相切.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档