固溶处理和时效处理
固溶与时效处理名词解释

固溶与时效处理名词解释固溶与时效处理是金属材料加工中常用的两种热处理方法,旨在改进金属材料的性能,提高其力学性能和耐蚀性等方面。
固溶处理是指将金属加热至一定温度,使合金中的固溶体溶解为均匀的固溶液,然后在适当的条件下冷却,使固溶体重新凝固。
时效处理则是在固溶处理之后,将金属再次加热至较低的温度,并保持一定的时间,以促使金属中形成一定的沉淀物或固溶体,从而使合金的性能进一步提高。
固溶与时效处理的原理在于金属材料的结构变化。
在固溶处理时,金属中的固溶体因为高温而变得不稳定,可以溶解更多的合金元素,使合金组织均匀化。
而在时效处理时,通过控制温度和时间,促使合金中的溶质原子在金属基体中析出,形成均匀的沉淀相或固溶体粒子,从而增加材料的硬度和强度。
固溶与时效处理对金属材料性能的影响是多方面的。
固溶处理可以改善合金的应力腐蚀开裂和晶界腐蚀倾向,提高合金的强度和塑性,减少合金的点蚀和腐蚀疲劳敏感性。
而时效处理则可以使合金的硬度、抗拉伸强度、抗屈服强度等性能得到提高,同时提高了合金的抗疲劳性和耐久性,延长了材料的使用寿命。
在实际工程中,固溶与时效处理常常被广泛应用于各种金属材料的生产和加工过程中。
例如,航空航天领域中常用的高强度铝合金和钛合金,通过固溶与时效处理可以使其具有良好的强度和疲劳性能,提高材料的使用寿命。
其他行业中,如汽车制造、机械加工等领域也常采用固溶与时效处理来改善材料性能,满足不同工程需求。
在固溶与时效处理中,温度、时间、冷却速率等参数的控制至关重要。
合适的处理工艺可以使合金达到理想的结构和性能,而处理不当则可能导致材料性能变差甚至失效。
因此,在实际操作中需要严格遵循处理工艺要求,确保每个步骤的准确执行,以保证材料的质量和性能。
综上所述,固溶与时效处理是一种重要的金属热处理方法,通过调控金属材料的结构和组织,实现提高材料性能的目的。
在金属材料加工和生产中,固溶与时效处理的合理应用能够改善材料的力学性能、耐磨性和耐腐蚀性等方面,为各行业的发展提供了重要支撑。
固溶处理和时效处理

1、固溶处理所谓固溶处理,是指将合金加热到低温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺.固溶处理的主要目的是改良钢或合金的塑性和韧性,为沉淀硬化处理作好准备等.适用多种特殊钢,低温合金,特殊性能合金,有色金属.尤其适用:1.热处理后须要再加工的零件.2.消除成形工序间的冷作硬化.3.焊接后工件.原理序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、散布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金产生再结晶.其次,固溶处理是为了获得适宜的晶粒度,以包管合金低温抗蠕变性能.固溶处理的温度规模大约在980~1250℃之间,主要按照各个合金中相析出和溶解规律及使用要求来选择,以包管主要强化相需要的析出条件和一定的晶粒度.对于长期低温使用的合金,要求有较好的低温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采取较低的固溶温度,包管较小的晶粒度.低温固溶处理时,各类析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不但有主要强化相的溶解,并且可能有某些相的析出.对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却.不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响.奥氏体不锈钢在经400℃~850℃的温度规模内时,会有高铬碳化物析出,当铬含量降至耐腐化性界限之下,此时存在晶界贫铬,会产生晶间腐化,严重时能酿成粉末.所以有晶间腐化倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理.固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态.这种热处理办法为固溶热处理.固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不合的,前者是软化处理,后者是淬硬.后者为获得不合的硬度所采纳的加热温度也不一样,但没到1100℃. 淬火钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下进行马氏体转变的热处理工艺.通常也将铝合金、铜合金、钛合金、钢化玻璃等资料的固溶处理或带有快速冷却过程的热处理工艺称为淬火.淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不合温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各类机械零件和东西的不合使用要求.也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能.淬火能使钢强化的根来源根底因是相变,即奥氏体组织通过相变而成为马氏体组织.固溶处理与时效处理的区别固溶热处理将合金加热至低温单相区恒温坚持,使过剩相充分溶速冷却,以得到过饱和固溶体的热处理工艺时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地产生形,从而使残存应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残存应力去除较为完全.2、时效处理——为了消除精密量具或模具、零件在长期使用中尺寸、形状产生变更,常在低温回火后(低温回火温度150-250℃)精加工前,把工件重新加热到100-150℃,坚持5-20小时,这种为稳定精密制件质量的处理,称为时效.对在低温或动载荷条件下的钢材构件进行时效处理,以消除残存应力,稳定钢材组织和尺寸,尤为重要.时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温坚持其性能,形状,尺寸随时间而变更的热处理工艺.若采取将工件加热到较低温度,并较短时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而产生的时效现象,称为自然时效处理.时效处理的目的,消除工件的内应力,稳定组织和尺寸,改良机械性能等.在机械生产中,为了稳定铸件尺寸,常将铸件在室温下长期放置,然后才进行切削加工.这种措施也被称为时效.但这种时效不属于金属热处理工艺.20世纪初叶,德国工程师A.维尔姆研究硬铝时发明,这种合金淬火后硬度不高,但在室温下放置一段时间后,硬度便显著上升,这种现象后来被称为沉淀硬化.这一发明在工程界引起了极大兴趣.随后人们相继发明了一些可以采取时效处理进行强化的铝合金、铜合金和铁基合金,开创了一条与一般钢铁淬火强化有实质差别的新的强化途径——时效强化.绝大多数进行时效强化的合金,原始组织都是由一种固溶体和某些金属化合物所组成.固溶体的溶解度随温度的上升而增大.在时效处理前进行淬火,就是为了在加热时使尽量多的溶质溶入固溶体,随后在快速冷却中溶解度虽然下降,但过剩的溶质来不及从固溶体中阐发出来,而形成过饱和固溶体.为达到这一目的而进行的淬火常称为固溶热处理.经过长期频频研究证实,时效强化的实质是从过饱和固溶体中析出许多很是细小的沉淀物颗粒(一般是金属化合物,也可能是过饱和固溶体中的溶质原子在许多微小地区聚集),形成一些体积很小的溶质原子富集区.在时效处理前进行固溶处理时,加热温度必须严格控制,以便使溶质原子能最大限度地固溶到固溶体中,同时又不致使合金产生熔化.许多铝合金固溶处理加热温度容许的偏差只有5℃左右.进行人工时效处理,必须严格控制加热温度和保温时间,才干得到比较理想的强化效果.生产中有时采取分段时效,即先在室温或比室温稍高的温度下保温一段时间,然后在更高的温度下再保温一段时间.这样作有时会得到较好的效果.马氏体时效钢淬火时会产生组织转变,形成马氏体.马氏体就是一种过饱和固溶体.这种钢也可采取时效处理进行强化.低碳钢冷态塑性变形后在室温下长期放置,强度提高,塑性降低,这种现象称为机械时效.。
固溶处理和时效处理

固溶处理和时效处理之宇文皓月创作1、固溶处理所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
固溶处理的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等。
适用多种特殊钢,高温合金,特殊性能合金,有色金属。
尤其适用:1.热处理后须要再加工的零件。
2.消除成形工序间的冷作硬化。
3.焊接后工件。
原理序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工发生的应力,使合金发生再结晶。
其次,固溶处理是为了获得适宜的晶粒度,以包管合金高温抗蠕变性能。
固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以包管主要强化相需要的析出条件和一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采取较低的固溶温度,包管较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不但有主要强化相的溶解,而且可能有某些相的析出。
对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。
不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会发生晶间腐蚀,严重时能酿成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是分歧的,前者是软化处理,后者是淬硬。
固溶处理与时效处理的区别

固溶处理固溶处理(solution treatment):指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
目录序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。
其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。
固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。
对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。
不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。
后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。
淬火钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下进行马氏体转变的热处理工艺。
固溶处理和时效处理

固溶处理和时效处理1、固溶处理所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
固溶处理的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等。
适用多种特殊钢,高温合金,特殊性能合金,有色金属。
尤其适用:1.热处理后须要再加工的零件。
2.消除成形工序间的冷作硬化。
3.焊接后工件。
原理序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。
其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。
固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。
对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。
不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。
固溶处理和时效处理

固溶处理和时效处理之袁州冬雪创作1、固溶处理所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后疾速冷却,以得到过饱和固溶体的热处理工艺.固溶处理的主要目标是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等.适用多种特殊钢,高温合金,特殊性能合金,有色金属.尤其适用:1.热处理后须要再加工的零件.2.消除成形工序间的冷作硬化.工件.原理序言固溶处理是为了溶解基体内碳化物、γ’相等以得到平均的过饱和固溶体,便于时效时重新析出颗粒细小、分布平均的碳化物和γ’等强化相,同时消除由于冷热加工发生的应力,使合金发生再结晶.其次,固溶处理是为了获得适宜的晶粒度,以包管合金高温抗蠕变性能.固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以包管主要强化相需要的析出条件和一定的晶粒度.对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采取较低的固溶温度,包管较小的晶粒度.高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不但有主要强化相的溶解,而且能够有某些相的析出.对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却.不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响.奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性边界之下,此时存在晶界贫铬,会发生晶间腐蚀,严重时能变成粉末.所以有晶间腐蚀倾向的奥氏体不锈钢应停止固溶热处理或稳定化处理.固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后疾速冷却至室温,使碳达到过饱和状态.这种热处理方法为固溶热处理.固溶热处理中的疾速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是分歧的,前者是软化处理,后者是淬硬.后者为获得分歧的硬度所采纳的加热温度也纷歧样,但没到1100℃.淬火钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下停止马氏体转变的热处理工艺.通常也将铝合金、铜合金、钛合金、钢化玻璃等资料的固溶处理或带有疾速冷却过程的热处理工艺称为淬火.淬火的目标是使过冷奥氏体停止马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以分歧温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而知足各种机械零件和工具的分歧使用要求.也可以通过淬火知足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能.淬火能使钢强化的根来历根基因是相变,即奥氏体组织通过相变而成为马氏体组织.固溶处理与时效处理的区别固溶热处理将合金加热至高温单相区恒温坚持,使过剩相充分溶速冷却,以得到过饱和固溶体的热处理工艺时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生形,从而使残存应力消除或减少,人工时效是将铸件加热到550~650℃停止去应力退火,它比自然时效节俭时间,残存应力去除较为完全.2、时效处理——为了消除紧密量具或模具、零件在长期使用中尺寸、形状发生变更,常在低温回火后(低温回火温度150-250℃)精加工前,把工件重新加热到100-150℃,坚持5-20小时,这种为稳定紧密制件质量的处理,称为时效.对在低温或动载荷条件下的钢材构件停止时效处理,以消除残存应力,稳定钢材组织和尺寸,尤为重要.时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温坚持其性能,形状,尺寸随时间而变更的热处理工艺.若采取将工件加热到较高温度,并较短时间停止时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理.时效处理的目标,消除工件的内应力,稳定组织和尺寸,改善机械性能等.在机械生产中,为了稳定铸件尺寸,常将铸件在室温下长期放置,然后才停止切削加工.这种措施也被称为时效.但这种时效不属于金属热处理工艺.20世纪初叶,德国工程师A.维尔姆研究硬铝时发现,这种合金淬火后硬度不高,但在室温下放置一段时间后,硬度便显著上升,这种现象后来被称为沉淀硬化.这一发现在工程界引起了极大兴趣.随后人们相继发现了一些可以采取时效处理停止强化的铝合金、铜合金和铁基合金,创始了一条与一般钢铁淬火强化有实质差别的新的强化途径——时效强化.绝大多数停止时效强化的合金,原始组织都是由一种固溶体和某些金属化合物所组成.固溶体的溶解度随温度的上升而增大.在时效处理前停止淬火,就是为了在加热时使尽能够多的溶质溶入固溶体,随后在疾速冷却中溶解度虽然下降,但过剩的溶质来不及从固溶体中分析出来,而形成过饱和固溶体.为达到这一目标而停止的淬火常称为固溶热处理.颠末长期反复研究证实,时效强化的实质是从过饱和固溶体中析出许多非常细小的沉淀物颗粒(一般是金属化合物,也能够是过饱和固溶体中的溶质原子在许多微小地区堆积),形成一些体积很小的溶质原子富集区.在时效处理前停止固溶处理时,加热温度必须严格节制,以便使溶质原子能最大限度地固溶到固溶体中,同时又不致使合金发生熔化.许多铝合金固溶处理加热温度容许的偏差只有5℃左右.停止人工时效处理,必须严格节制加热温度和保温时间,才干得到比较抱负的强化效果.生产中有时采取分段时效,即先在室温或比室温稍高的温度下保温一段时间,然后在更高的温度下再保温一段时间.这样作有时会得到较好的效果.马氏体时效钢淬火时会发生组织转变,形成马氏体.马氏体就是一种过饱和固溶体.这种钢也可采取时效处理停止强化.低碳钢冷态塑性变形后在室温下长期放置,强度提高,塑性降低,这种现象称为机械时效.。
固溶处理和时效处理

固溶处理和时效处理之杨若古兰创作1、固溶处理所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺.固溶处理的次要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好筹办等.适用多种特殊钢,高温合金,特殊功能合金,有色金属.特别适用:1.热处理后必要再加工的零件.2.清除成形工序间的冷作硬化.工件.道理序文固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时从头析出颗粒粗大、分布均匀的碳化物和γ’等强化相,同时清除因为冷热加工发生的应力,使合金发生再结晶.其次,固溶处理是为了获得适宜的晶粒度,以包管合金高温抗蠕变功能.固溶处理的温度范围大约在980~1250℃之间,次要根据各个合金中相析出和溶解规律及使用请求来选择,以包管次要强化相须要的析出条件和必定的晶粒度.对于持久高温使用的合金,请求有较好的高温持久和蠕变功能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并请求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采取较低的固溶温度,包管较小的晶粒度.高温固溶处理时,各种析出相都慢慢溶解,同时晶粒长大;低温固溶处理时,不但有次要强化相的溶解,而且可能有某些相的析出.对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却.不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响.奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会发生晶间腐蚀,严重时能酿成粉末.所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或波动化处理.固溶热处理:将奥氏体不锈钢加热到1100℃摆布,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和形态.这类热处理方法为固溶热处理.固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是分歧的,前者是软化处理,后者是淬硬.后者为获得分歧的硬度所采纳的加热温度也纷歧样,但没到1100℃.淬火钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下进行马氏体改变的热处理工艺.通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火.淬火的目的是使过冷奥氏体进行马氏体或贝氏体改变,得到马氏体或贝氏体组织,然后配合以分歧温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度和韧性等,从而满足各种机械零件和工具的分歧使用请求.也能够通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学功能.淬火能使钢强化的根来源根基因是相变,即奥氏体组织通过相变而成为马氏体组织.固溶处理与时效处理的区别固溶热处理将合金加热至高温单相区恒温坚持,使过剩相充分溶速冷却,以得到过饱和固溶体的热处理工艺时效处理可分为天然时效和人工时效两种天然时效是将铸件置于露天场地半年以上,便其缓缓地发生形,从而使残存应力清除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比天然时效节省时间,残存应力去除较为完整.2、时效处理——为了清除精密量具或模具、零件在持久使用中尺寸、外形发生变更,常在低温回火后(低温回火温度150-250℃)精加工前,把工件从头加热到100-150℃,坚持5-20小时,这类为波动精密制件质量的处理,称为时效.对在低温或动载荷条件下的钢材构件进行时效处理,以清除残存应力,波动钢材组织和尺寸,尤其次要.时效处理:指合金工件经固溶处理,冷塑性变形或锻造,锻造后,在较高的温度放置或室温坚持其功能,外形,尺寸随时间而变更的热处理工艺.若采取将工件加热到较高温度,并较短时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或天然条件下长时间存放而发生的时效景象,称为天然时效处理.时效处理的目的,清除工件的内应力,波动组织和尺寸,改善机械功能等.在机械生产中,为了波动铸件尺寸,常将铸件在室温下持久放置,然后才进行切削加工.这类措施也被称为时效.但这类时效不属于金属热处理工艺.20世纪初叶,德国工程师A.维尔姆研讨硬铝时发现,这类合金淬火后硬度不高,但在室温下放置一段时间后,硬度便明显上升,这类景象后来被称为沉淀硬化.这一发此刻工程界惹起了极大爱好.随后人们接踵发现了一些可以采取时效处理进行强化的铝合金、铜合金和铁基合金,开创了一条与普通钢铁淬火强化有实质差别的新的强化途径——时效强化. 绝大多数进行时效强化的合金,原始组织都是由一种固溶体和某些金属化合物所构成.固溶体的溶解度随温度的上升而增大.在时效处理前进行淬火,就是为了在加热时使尽量多的溶质溶入固溶体,随后在快速冷却中溶解度虽然降低,但过剩的溶质来不及从固溶体平分析出来,而构成过饱和固溶体.为达到这一目的而进行的淬火常称为固溶热处理.经过持久反复研讨证明,时效强化的实质是从过饱和固溶体中析出很多非常粗大的沉淀物颗粒(普通是金属化合物,也可能是过饱和固溶体中的溶质原子在很多巨大地区聚集),构成一些体积很小的溶质原子富集区.在时效处理前进行固溶处理时,加热温度必须严酷控制,以便使溶质原子能最大限制地固溶到固溶体中,同时又不导致合金发生熔化.很多铝合金固溶处理加热温度容许的偏差只要5℃摆布.进行人工时效处理,必须严酷控制加热温度和保温时间,才干得到比较理想的强化后果.生产中有时采取分段时效,即先在室温或比室温稍高的温度下保温一段时间,然后在更高的温度下再保温一段时间.如许作有时会得到较好的后果.马氏体时效钢淬火时会发生组织改变,构成马氏体.马氏体就是一种过饱和固溶体.这类钢也可采取时效处理进行强化.低碳钢冷态塑性变形后在室温下持久放置,强度提高,塑性降低,这类景象称为机械时效.。
固溶处理和时效处理

固溶处理和时效处理1、固溶处理所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
固溶处理的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等。
适用多种特殊钢,高温合金,特殊性能合金,有色金属。
尤其适用:1.热处理后须要再加工的零件。
2.消除成形工序间的冷作硬化。
3.焊接后工件。
原理序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。
其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。
固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。
对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。
不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固溶处置和时效处置之公保含烟创作
1、固溶处置
所谓固溶处置,是指将合金加热到高温奥氏体区保温,使过剩相充沛溶解到固溶体中后疾速冷却,以失掉过饱和固溶体的热处置工艺.
固溶处置的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处置作好准备等.适用
多种特殊钢,高温合金,特殊性能合金,有色金属.
尤其适用:1.热处置后须要再加工的零件.
2.消除成形工序间的冷作硬化.
工件.
原理
序言
固溶处置是为了溶解基体内碳化物、γ’相等以失掉平均的过饱和固溶体,便于时效时重新析出颗粒细小、散布平均的碳化物和γ’等强化相,同时消除由于冷热加工发作的应力,使合金发作再结晶.其次,固溶处置是为了取得适宜的晶粒度,以担保合金高温抗蠕变性能.固溶处置的温度范围年夜约在980~1250℃之间,主要依据各个合金中相析出和溶解规律及使用要求来选择,以担保主要强化相需要的析出条件和一定的晶粒度.关于临时高温使用的合金,要求有较好的高温耐久和蠕变性能,应选择较高的固溶温度以取得较年夜
的晶粒度;关于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,担保较小的晶粒度.高温固溶处置时,各种析出相都逐步溶解,同时晶粒长年夜;高温固溶处置时,不只有主要强化相的溶解,而且能够有某些相的析出.关于过饱和度低的合金,通常选择较快的冷却速度;关于过饱和度高的合金,通常为空气中冷却.
不锈钢固溶热处置
碳在奥氏体不锈钢中的溶解度与温度有很年夜影响.奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界线之下,此时存在晶界贫铬,会发作晶间腐蚀,严重时能酿成粉末.所以有晶间腐蚀倾向的奥氏体不锈钢应停止固溶热处置或稳定化处置.
固溶热处置:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或根本溶解,碳固溶于奥氏体中,然后疾速冷却至室温,使碳到达过饱和状态.这种热处置办法为固溶热处置.
固溶热处置中的疾速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是分歧的,前者是软化处置,后者是淬硬.后者为取得分歧的硬度所采用的加热温度也纷歧样,但没到1100℃.
淬火
钢的淬火是将钢加热莅临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或局部奥氏体化,然后以年夜于临界冷却速度的冷速快冷到Ms以下停止马氏体转变的热处置工艺.
通常也将铝合金、铜合金、钛合金、钢化玻璃等资料的固溶处置或带有疾速冷却进程的热处置工艺称为淬火.
淬火的目的是使过冷奥氏体停止马氏体或贝氏体转变,失掉马氏体或贝氏体组织,然后配合以分歧温度的回火,以年夜幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的分歧使用要求.也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能.
淬火能使钢强化的根来源根基因是相变,即奥氏体组织通过相变而成为马氏体组织.
固溶处置与时效处置的区别
固溶热处置
将合金加热至高温单相区恒温坚持,使过剩相充沛溶速冷却,以失掉过饱和固溶体的热处置工艺
时效处置可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发作形,从而使残存应力消除或增加,人工时效是将铸件加热到550~
650℃停止去应力退火,它比自然时效节省时间,残存应力去除较为完全.
2、时效处置——为了消除精细量具或模具、零件在临时使用中尺寸、形状发作变卦,常在高温回火后(高温回火温度150-250℃)精加工前,把工件重新加热到100-150℃,坚持5-20小时,这种为稳定精细制件质量的处置,称为时效.对在高温或动载荷条件下的钢材构件停止时效处置,以消除残存应力,稳定钢材组织和尺寸,尤为重要.
时效处置:指合金工件经固溶处置,冷塑性变形或铸造,锻造后,在较高的温度放置或室温坚持其性能,形状,尺寸随时间而变卦的热处置工艺.若采用将工件加热到较高温度,并较短时间停止时效处置的时效处置工艺,称为人工时效处置,若将工件放置在室温或自然条件下长时间寄存而发作的时效现象,称为自然时效处置.时效处置的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等.
在机械生产中,为了稳定铸件尺寸,常将铸件在室温下临时放置,然后才停止切削加工.这种办法也被称为时效.但这种时效不属于金属热处置工艺.
20世纪初叶,德国工程师A.维尔姆研究硬铝时发现,这种合金淬火后硬度不高,但在室温下放置一段时间后,硬度便显著上升,这种现象后来被称为沉淀硬化.这一发现在工程界引起了极年夜兴趣.随先人们相继发现了一些可以采用时
效处置停止强化的铝合金、铜合金和铁基合金,创始了一条与一般钢铁淬火强化有实质差异的新的强化途径——时效强化.
绝年夜少数停止时效强化的合金,原始组织都是由一种固溶体和某些金属化合物所组成.固溶体的溶解度随温度的上升而增年夜.在时效处置前停止淬火,就是为了在加热时使尽量多的溶质溶入固溶体,随后在疾速冷却中溶解度虽然下降,但过剩的溶质来不及从固溶体中剖析出来,而形成过饱和固溶体.为到达这一目的而停止的淬火常称为固溶热处置. 经过临时重复研究证实,时效强化的实质是从过饱和固溶体中析出许多十分细小的沉淀物颗粒(一般是金属化合物,也能够是过饱和固溶体中的溶质原子在许多微小地域聚集),形成一些体积很小的溶质原子富集区.
在时效处置前停止固溶处置时,加热温度必需严格控制,以便使溶质原子能最年夜限度地固溶到固溶体中,同时又不致使合金发作熔化.许多铝合金固溶处置加热温度容许的偏差只有5℃左右.停止人工时效处置,必需严格控制加热温度和保温时间,才华失掉比拟理想的强化效果.生产中有时采用分段时效,即先在室温或比室温稍高的温度下保温一段时间,然后在更高的温度下再保温一段时间.这样作有时会失掉较好的效果.
马氏体时效钢淬火时会发作组织转变,形成马氏体.马氏体就是一种过饱和固溶体.这种钢也可采用时效处置停止强化. 低碳钢冷态塑性变形后在室温下临时放置,强度提高,塑性降低,这种现象称为机械时效.。