固溶处理和时效处理
固溶与时效处理名词解释

固溶与时效处理名词解释固溶与时效处理是金属材料加工中常用的两种热处理方法,旨在改进金属材料的性能,提高其力学性能和耐蚀性等方面。
固溶处理是指将金属加热至一定温度,使合金中的固溶体溶解为均匀的固溶液,然后在适当的条件下冷却,使固溶体重新凝固。
时效处理则是在固溶处理之后,将金属再次加热至较低的温度,并保持一定的时间,以促使金属中形成一定的沉淀物或固溶体,从而使合金的性能进一步提高。
固溶与时效处理的原理在于金属材料的结构变化。
在固溶处理时,金属中的固溶体因为高温而变得不稳定,可以溶解更多的合金元素,使合金组织均匀化。
而在时效处理时,通过控制温度和时间,促使合金中的溶质原子在金属基体中析出,形成均匀的沉淀相或固溶体粒子,从而增加材料的硬度和强度。
固溶与时效处理对金属材料性能的影响是多方面的。
固溶处理可以改善合金的应力腐蚀开裂和晶界腐蚀倾向,提高合金的强度和塑性,减少合金的点蚀和腐蚀疲劳敏感性。
而时效处理则可以使合金的硬度、抗拉伸强度、抗屈服强度等性能得到提高,同时提高了合金的抗疲劳性和耐久性,延长了材料的使用寿命。
在实际工程中,固溶与时效处理常常被广泛应用于各种金属材料的生产和加工过程中。
例如,航空航天领域中常用的高强度铝合金和钛合金,通过固溶与时效处理可以使其具有良好的强度和疲劳性能,提高材料的使用寿命。
其他行业中,如汽车制造、机械加工等领域也常采用固溶与时效处理来改善材料性能,满足不同工程需求。
在固溶与时效处理中,温度、时间、冷却速率等参数的控制至关重要。
合适的处理工艺可以使合金达到理想的结构和性能,而处理不当则可能导致材料性能变差甚至失效。
因此,在实际操作中需要严格遵循处理工艺要求,确保每个步骤的准确执行,以保证材料的质量和性能。
综上所述,固溶与时效处理是一种重要的金属热处理方法,通过调控金属材料的结构和组织,实现提高材料性能的目的。
在金属材料加工和生产中,固溶与时效处理的合理应用能够改善材料的力学性能、耐磨性和耐腐蚀性等方面,为各行业的发展提供了重要支撑。
何为固溶处理和时效硬化分别适用于哪些材料

何为固溶处理和时效硬化分别适用于哪些材料固溶处理和时效硬化是常见的金属材料热处理工艺,适用于不同类型的合金材料,以提高其机械性能和耐热性。
这两种热处理方法在金属材料加工中扮演着重要的角色,下面将详细介绍它们的特点和适用范围。
固溶处理固溶处理是一种热处理方法,主要用于固溶处理可形成固溶体的金属合金材料。
在这一过程中,合金材料被加热至固溶温度,使固溶体内的溶解相尽可能地溶解于固溶体中,形成均匀的固溶结构。
然后通过快速冷却固定组织结构,有效提高材料的硬度和强度。
固溶处理适用于许多金属合金材料,如不锈钢、铜合金、铝合金等。
在这些材料中,固溶处理可以细化晶粒、消除合金元素的析出相,提高材料的强度和耐腐蚀性能。
例如,铝合金在固溶处理后可以获得较好的塑性和强度,适用于航空航天、汽车制造等领域。
时效硬化时效硬化是一种在固溶处理后对金属合金材料进行的热处理方法。
在固溶处理后,通过将材料加热至较低的温度,使合金元素重新析出,形成更加稳定的析出相,从而提高材料的硬度和强度。
时效硬化适用于许多高强度、高强度-韧性比的金属材料,如铝合金、镁合金、钛合金等。
在这些材料中,时效硬化可以引入弥散分布的析出相,限制晶界移动,提高抗拉强度和耐疲劳性能。
例如,铝-锂合金经过时效硬化后,具有出色的强度与韧性平衡,广泛用于航空航天领域。
综上所述,固溶处理和时效硬化是针对金属合金材料进行的两种重要热处理方法。
固溶处理适用于形成固溶体的合金材料,可以提高材料的强度和耐腐蚀性能;时效硬化适用于高强度材料,可以提高材料的硬度和韧性。
通过合理选择和控制这两种热处理方法,可以使金属材料达到更好的性能表现,满足不同工程领域的需求。
1。
固溶处理与时效处理的区别

固溶处理固溶处理(solution treatment):指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
目录序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。
其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。
固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。
对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。
不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。
后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。
淬火钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下进行马氏体转变的热处理工艺。
固溶处理和时效处理

固溶处理和时效处理1、固溶处理所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺;固溶处理的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等;适用多种特殊钢,,特殊性能合金,有色金属;尤其适用:1.热处理后须要再加工的零件;2.消除成形工序间的冷作硬化;3.焊接后;原理序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶;其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能;固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度;对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度;高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出;对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却;不锈钢固溶热处理碳在中的溶解度与温度有很大影响;奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末;所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理;固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态;这种热处理方法为固溶热处理;固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬;后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃;淬火钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于的冷速快冷到Ms以下进行马氏体转变的热处理工艺;通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火;淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求;也可以通过淬火满足某些特种钢材的的铁磁性、等特殊的物理、化学性能;淬火能使钢强化的根本原因是相变,即奥氏体组织通过相变而成为马氏体组织;固溶处理与时效处理的区别固溶热处理将合金加热至高温单相区恒温保持,使过剩相充分溶速冷却,以得到过饱和固溶体的热处理工艺时效处理可分为自然时效和两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生形,从而使残余应力消除或减少,人工时效是将铸件加热到550~650℃进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底.2、时效处理——为了消除精密量具或模具、零件在长期使用中尺寸、形状发生变化,常在低温回火后低温回火温度150-250℃精加工前,把工件重新加热到100-150℃,保持5-20小时,这种为稳定精密制件质量的处理,称为时效;对在低温或动载荷条件下的钢材构件进行时效处理,以消除残余应力,稳定钢材组织和尺寸,尤为重要;时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温保持其性能,形状,尺寸随时间而变化的热处理工艺;若采用将工件加热到较高温度,并较短时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理;时效处理的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等;在机械生产中,为了稳定铸件尺寸,常将铸件在室温下长期放置,然后才进行切削加工;这种措施也被称为时效;但这种时效不属于金属热处理工艺;20世纪初叶,德国工程师A.维尔姆研究硬铝时发现,这种合金淬火后硬度不高,但在室温下放置一段时间后,硬度便显着上升,这种现象后来被称为沉淀硬化;这一发现在工程界引起了极大兴趣;随后人们相继发现了一些可以采用时效处理进行强化的铝合金、铜合金和铁基合金,开创了一条与一般钢铁淬火强化有本质差异的新的强化途径——时效强化;绝大多数进行时效强化的合金,原始组织都是由一种固溶体和某些金属化合物所组成;固溶体的溶解度随温度的上升而增大;在时效处理前进行淬火,就是为了在加热时使尽量多的溶质溶入固溶体,随后在快速冷却中溶解度虽然下降,但过剩的溶质来不及从固溶体中分析出来,而形成过饱和固溶体;为达到这一目的而进行的淬火常称为固溶热处理;经过长期反复研究证实,时效强化的实质是从过饱和固溶体中析出许多非常细小的沉淀物颗粒一般是金属化合物,也可能是过饱和固溶体中的溶质原子在许多微小地区聚集,形成一些体积很小的溶质原子富集区;在时效处理前进行固溶处理时,加热温度必须严格控制,以便使溶质原子能最大限度地固溶到固溶体中,同时又不致使合金发生熔化;许多铝合金固溶处理加热温度容许的偏差只有5℃左右;进行人工时效处理,必须严格控制加热温度和保温时间,才能得到比较理想的强化效果;生产中有时采用分段时效,即先在室温或比室温稍高的温度下保温一段时间,然后在更高的温度下再保温一段时间;这样作有时会得到较好的效果;马氏体时效钢淬火时会发生组织转变,形成马氏体;马氏体就是一种过饱和固溶体;这种钢也可采用时效处理进行强化;低碳钢冷态塑性变形后在室温下长期放置,强度提高,塑性降低,这种现象称为机械时效;。
固溶处理和时效处理

固溶处理和时效处理1、固溶处理所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
固溶处理的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等。
适用多种特殊钢,高温合金,特殊性能合金,有色金属。
尤其适用:1.热处理后须要再加工的零件。
2.消除成形工序间的冷作硬化。
3.焊接后工件。
原理序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。
其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。
固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。
对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。
不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。
固溶与时效

一、合金的固溶与时效处理
固溶与时效处理的工艺过程
(一)固溶处理
把某一成分的合金加热到固溶度曲线以上,在 某一温度保持一定时间,使得B组元充分溶入α固 溶体中,然后迅速冷却,抑制B元素析出,得到过 饱和α固溶体,这就是固溶处理。 (二)时效处理 经固溶处理后的合金在室温下放置或加热到 低于溶解度曲线的某一温度保温,合金将产生脱 溶析出,即B将以新相的形式从过饱和α相中弥散 析出,这个过程即是时效。通常将在室温下放置 产生的时效称为自然时效;将加热到室温以上某 一温度进行的时效称为人工时效。
Байду номын сангаас
二、时效对合金组织结构及性能的影响 随着时效时间的延长,由于弥散新相 的析出而使合金的强度、硬度升高,这种 现象称为时效硬化时效硬化即脱溶沉淀引 起的沉淀硬化。
Al-Cu合金在130℃时效曲线及其结构变化
Al-Cu合金在130℃时效时结构变化: 过饱和固溶体→G..P(Ⅰ)区→G.P(Ⅱ)区→θ' 相 (共格)→θ相(非共格) 1. 形成溶质原子偏聚区(即G.P区) 2. 形成过渡相( θ') 3. 形成平衡相( θ) 硬度提高
一合金的固溶与时效处理二时效对合金组织结构及性能的影响一合金的固溶与时效处理固溶与时效处理的工艺过程把某一成分的合金加热到固溶度曲线以上在某一温度保持一定时间使得b组元充分溶入固溶体中然后迅速冷却抑制b元素析出得到过饱和固溶体这就是固溶处理
第四节 合金的固溶与时效
一、合金的固溶与时效处理 二、时效对合金组织结构及性能的影响
硬度提高减缓 硬度降低 过时效
固溶处理和时效处理

固溶处理和时效处理1、固溶处理所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
固溶处理的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等。
适用多种特殊钢,高温合金,特殊性能合金,有色金属。
尤其适用:1.热处理后须要再加工的零件。
2.消除成形工序间的冷作硬化。
3.焊接后工件。
原理序言固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。
其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。
固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。
对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。
不锈钢固溶热处理碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400℃~850℃的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。
铜材料热处理方式及其要求

铜材料热处理方式及其要求简介热处理是一种通过改变材料的结构和性能来提高其力学性能的过程。
本文将介绍铜材料的热处理方式及其要求。
热处理方式1. 固溶处理:固溶处理是将铜材料加热至高温,使固溶体中的溶质均匀溶解,并保持一段时间,然后迅速冷却。
这种处理方式能够改善铜材料的塑性、韧性和抗腐蚀性能。
2. 时效处理:时效处理是在固溶处理后,将铜材料保持在一定温度下,一定时间,以使溶质析出,形成团聚、均匀分布的沉淀物。
通过时效处理,铜材料的强度、硬度和抗疲劳性能得到提高。
3. 冷加工硬化:冷加工硬化是通过冷变形使铜材料的晶粒细化和位错增加,来提高其强度和硬度。
这种处理方式能够增加材料的强度和韧性,但会减少其塑性。
4. 热加工软化:热加工软化是将冷加工的铜材料加热至高温,使其晶粒长大并消除位错,从而降低材料的强度和硬度,增加其塑性和韧性。
热处理要求1. 温度控制:热处理过程中的温度要求精确控制,并按照规定的温度保持一定时间,以确保热处理效果的稳定性和一致性。
2. 冷却速率:在固溶处理后,要迅速冷却材料,以避免溶质重新析出。
冷却速率应根据具体材料和处理方式的要求进行调整。
3. 时效时间:时效处理的时间应根据材料的要求确定,以保证溶质充分析出且均匀分布。
4. 表面清洁:在热处理前,铜材料的表面应该清洁,以避免污染和氧化对热处理效果的影响。
5. 保持装置:热处理中的保持装置应具备良好的散热性能和温度控制功能,以确保热处理过程中的温度稳定性和均匀性。
结论铜材料的热处理方式包括固溶处理、时效处理、冷加工硬化和热加工软化。
在进行热处理时,需要注意温度控制、冷却速率、时效时间、表面清洁和保持装置等要求,以确保热处理效果的良好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固溶处理和时效处理
1、固溶处理
所谓固溶处理,是指将合金加热到高温奥氏体区保温,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
固溶处理的主要目的是改善钢或合金的塑性和韧性,为沉淀硬化处理作好准备等。
适用
多种特殊钢,高温合金,特殊性能合金,有色金属。
尤其适用:1.热处理后须要再加工的零件。
2.消除成形工序间的冷作硬化。
3.焊接后工件。
原理
序言
固溶处理是为了溶解基体内碳化物、丫’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和丫’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。
其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。
固溶处理的温度范围大约在
980~1250C之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。
对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。
高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。
对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气中冷却。
不锈钢固溶热处理
碳在奥氏体不锈钢中的溶解度与温度有很大影响。
奥氏体不锈钢在经400C〜850C的温度范围内时,会有高铬碳化物析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时能变成粉末。
所以有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理。
固溶热处理:将奥氏体不锈钢加热到1100C左右,使碳化物相全部或基
本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态。
这种热处理方法为固溶热处理。
固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬。
后者为获得不同的硬度所采取的加热温度也不一样,但没到1100C。
淬火
钢的淬火是将钢加热到临界温度Ac3或Ac1以上某一温度,保温一段时
间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms
以下进行马氏体转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。
也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学
性能。
淬火能使钢强化的根本原因是相变,即奥氏体组织通过相变而成为马氏体组织。
固溶处理与时效处理的区别
固溶热处理
将合金加热至高温单相区恒温保持,使过剩相充分溶速冷却,以得到过饱和固溶体的热处理工艺
时效处理可分为自然时效和人工时效两种自然时效是将铸件置于露天场地半年以上,便其缓缓地发生形,从而使残余应力消除或减少,人工时效是将铸件加热到550〜650C进行去应力退火,它比自然时效节省时间,残余应力去除较为彻底.
2、时效处理一一为了消除精密量具或模具、零件在长期使用中尺寸、形状发生变化,常在低温回火后(低温回火温度150-250 C)精加工前,把工件重新加热到100-150 C,保持5-20小时,这种为稳定精密制件质量的处理,称为时效。
对在低温或动载荷条件下的钢材构件进行时效处理,以消除残余应力,稳定钢材组织和尺寸,尤为重要。
时效处理:指合金工件经固溶处理,冷塑性变形或铸造,锻造后,在较高的温度放置或室温保持其性能,形状,尺寸随时间而变化的热处理工艺。
若采用将工件加热到较高温度,并较短时间进行时效处理的时效处理工艺,称为人工时效处理,若将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。
时效处理的目的,消除工件的内应力,稳定组织和尺寸,改善机械性能等。
在机械生产中,为了稳定铸件尺寸,常将铸件在室温下长期放置,然后才进行切削加工。
这种措施也被称为时效。
但这种时效不属于金属热处理工艺。
20世纪初叶,德国工程师 A.维尔姆研究硬铝时发现,这种合金淬火后硬度不高,但在室温下放置一段时间后,硬度便显著上升,这种现象后来被称为沉淀硬化。
这一发现在工程界引起了极大兴趣。
随后人们相继发现了一些可以采用时效处理进行强化的铝合金、铜合金和铁基合金,开创了一条与一般钢铁淬火强化有本质差异的新的强化途径一一时效强化。
绝大多数进行时效强化的合金,原始组织都是由一种固溶体和某些金属化合物所组成。
固溶体的溶解度随温度的上升而增大。
在时效处理前进行淬火,就是为了在加热时使尽量多的溶质溶入固溶体,随后在快速冷却中溶解度虽然下降,但过剩的溶质来不及从固溶体中分析出来,而形成过饱和固溶体。
为达到这一目的而进行的淬火常称为固溶热处理。
经过长期反复研究证实,时效强化的实质是从过饱和固溶体中析出许多非常细小的沉淀物颗粒(一般是金属化合物,也可能是过饱和固溶体中的溶质原子在许多微小地区聚集),形成一些体积很小的溶质原子富集区。
在时效处理前进行固溶处理时,加热温度必须严格控制,以便使溶质原子能最大限度地固溶到固溶体中,同时又不致使合金发生熔化。
许多铝合金固溶处理加热温度容许的偏差只有5C左右。
进行人工时效处理,必须严格控制加热温度和保温时间,才能得到比较理想的强化效果。
生产中有时采用分段时效,即先在室温或比室温稍高的温度下保温一段时间,然后在更高的温度下再保温一段时间。
这样作有时会得到较好的效果。
马氏体时效钢淬火时会发生组织转变,形成马氏体。
马氏体就是一种过饱和固溶体。
这种钢也可采用时效处理进行强化。
低碳钢冷态塑性变形后在室温下长期放置,强度提高,塑性降低,这种现象称为机械时效。