习题解答
部分习题解答

1
1.5 这个基本问题开始研究传播时延和传输时延,这是数据网络中两个重要概 这个基本问题开始研究传播时延和传输时延,
由一条速率为R 的链路相连。 念。考虑两台主机A和B由一条速率为 bit/s的链路相连。假定这两台主机 考虑两台主机 和 由一条速率为 的链路相连 相隔m米 沿该链路的传播速率为s 向主机B发送长度为 相隔 米,沿该链路的传播速率为 m/s。主机 向主机 发送长度为 比特 。主机A向主机 发送长度为L比特 的分组。 的分组。 a)根据 和s表达传播时延 表达传播时延dprop。 )根据m和 表达传播时延 。 b)根据 和R确定分组的传输时间 确定分组的传输时间dtrans。 )根据L和 确定分组的传输时间 。 c)忽略处理时延和排队时延,得出端到端时延的表达式。 )忽略处理时延和排队时延,得出端到端时延的表达式。 d)假定主机 在时刻 开始传输该分组。在时刻 在时刻t=0开始传输该分组 )假定主机A在时刻 开始传输该分组。在时刻t=dtrans,该分组的最后 , 一个比特在什么地方? 一个比特在什么地方? e)假定 大于dtrans。在时刻 dtrans,该分组的第一个比特的何处? )假定dprop大于 大于 。在时刻t= ,该分组的第一个比特的何处? f)假定 小于dtrans。在时刻 dtrans,该分组的第一个比特的何处? )假定dproc小于 小于 。在时刻t= ,该分组的第一个比特的何处? g)假定 等于dtrans的距离 。 的距离m。 )假定s=2.5×108,L=100b,R=28kb/s。求出 × , , 。求出dpro等于 等于 的距离
2
1.13 考虑在路由器缓存中的排队时延(在输出链路的前端)。假定所有 考虑在路由器缓存中的排队时延(在输出链路的前端)。 )。假定所有 分组有L比特 比特, 分组有 比特,传输 速率是R 个分组同时到达缓存。 速率是 bit/s,每隔 ,每隔LN/R s有N个分组同时到达缓存。求出分组的平均 有 个分组同时到达缓存 排队时延。(提示: 。(提示 排队时延。(提示: 对第一个分组的排队时延是0,对第二个分组的排队时延是L/R;对第三 对第一个分组的排队时延是 ,对第二个分组的排队时延是 ; 个分组的排队时延是2L/R。当第二批分组到达时,第N个分组已经传 个分组的排队时延是 。当第二批分组到达时, 个分组已经传 输。)
习题解答

( A B) AB D D (0001 ,0011 ,0101 ,0111 ,1001 ,1011 ,1101 ,1111 )
(3)F ( A AC)D ( A B)CD AD AC D AB C D AB C D C 0, D 0或AB为01时,F 1 即:0000,0001,0010,0100,0101,0110, 0111,1000,1001,1010,1100,1101,1110时
∴按从小到大顺序排序为:
(27)10 , (00111000)8421BCD ,(135.6)8,(11011001)2 (3AF)16,
第二章 逻辑代数基础
2.1 分别指出变量(A,B,C,D)在何种取值时,下列函数 的值为1?
(1)F BD ABC (0100,0111,1100,1101,1111)
1.12 将下列一组数按从小到大顺序排序 (11011001)2,(135.6)8,(27)10,(3AF)16,(00111000)8421BCD
(11011001)2=(217)10 (135.6)8=(93.75)10 (3AF)16=(431)10
(00111000)8421BCD=(38)10
2.2 用逻辑代数的公理、定理和规则证明下列表达式
(1)(AB AC) AB AC
证明:( AB AC) (A B)(A C) AB AC BC AB AC
(2) AB AB AB AB 1
证明:AB AB AB AB A A 1
∴537-846=-309
1.10 将下列8421BCD码转换成十进制数和二进制数 (1)011010000011 (2)01000101.1001
第7章习题详细解答

第7章习题解答7—1判断题(对的打√,不对的打×)1。
数字电路分为门电路和时序逻辑电路两大类。
(× )2。
边沿触发器和基本RS触发器相比,解决了空翻的问题.(×)3. 边沿触发器的状态变化发生在CP上升沿或下降沿到来时刻,其他时间触发器状态均不变。
(√)4. 基本RS 触发器的输入端就是直接置0端和直接置1端。
(√)23 的计数器。
(×)5。
3位二进制计数器可以构成模为16。
十进制计数器最高位输出的周期是输入CP脉冲周期的10倍。
(√)7. 构成一个7进制计数器需要7个触发器。
(×)8.当时序电路存在无效循环时该电路不能自启动.( √)9。
寄存器要存放n位二进制数码时,需要n2个触发器。
(×)10.同步计数器的计数速度比异步计数器快。
(√)11。
在计数器电路中,同步置零与异步置零的区别在于置零信号有效时,同步置零还需要等到时钟信号到达时才能将触发器置零,而异步置零不受时钟的控制。
(√)12。
计数器的异步清零端或异步置数端在计数器正常计数时应置为无效状态。
(√)13。
自启动功能是任何一个时序电路都具有的。
(× )14。
无论是用置零法还是用置数法来构成任意N进制计数器时,只要置零或置数控制端是异步的,则在状态循环过程中一定包含一个过渡状态;只要是同步的,则不需要过渡状态。
(√)15。
用置零法或置位法可以设计任意进制的计数器.(×)7—2 由或非门组成的基本RS触发器如图7—38所示,已知R、S的电压波形,试画出与之对应的Q和Q的波形。
图7—38 题7-2图解:由或非门组成的基本RS触发器的特性表,可得该题的输出端波形如下图所示:或非门RS 触发器特性表 题7—2 波形图7—3由与非门组成的基本RS 触发器如图7-39所示,已知R 、S 的电压波形,试画出与之对应的Q 和Q 的波形。
图7-39 题7-3图解:由与非门组成的基本RS 触发器的特性表,可得该题的输出端波形如下图所示:与非门RS 触发器特性表 题7—3波形图7-4已知如图7-40所示的各触发器的初始状态均为0,试对应画出在时钟信号CP 的连续作用下各触发器输出端Q 的波形。
习题解答

而在1873K时
F =1.70 10
' i 热
-4
所以此时热缺陷占优势。
3. 解:缺陷反应式为:
3 ZrO2 3 Zr V 6OO
Al2O3 ''' Al
Al
3 x 因此,其固溶分子式如下
1
1 x 3
Al
4 2 x 3
ZrxO3
x=0.002时,其固溶分子式为Al1.997Zr0.002O3
4. 解:萤石单胞中有 4 个ZrO2。当 15 mol% CaO溶入 ZrO2时,设形成氧离子空位固溶体,则固溶体可以表示 为Zr0.85Ca0.15O1.85。按此式求d0 :
d1
ZM 4 (0.85 91.22 0.15 40.08 1.85 16) 3 a N0 (0.513 107 )3 6.02 102 3
n -Ev ) 知,Frenkel缺陷浓度高,因而 是主要的。 由 exp( N 2 KT
FF×→Fi′ + VF
在298K时, 在1873K时,
n -2.8 1.602 10-19 -24 exp( ) = 2.06 10 N 2 1.38 10-23 298
19 n - 2.8 1.602 10- -4 exp( ) 1 . 70 10 N 2 1.38 10-23 1873
= 5.564 g/cm3
如形成钙离子填隙固溶体,则固溶体可以表示为 Zr0.925Ca0.15O2,按此式计算d:
ZM 4 (0.925 91.22 0.15 40.08 2 16) d2 3 a N0 (0.513 107 )3 6.02 102 3
习题1及解答

习题一1.设n 为大于1的正整数.证明:44nn +是一个合数.【答案】当n 为偶数时,n 4+4n 是大于2的偶数,从而它是合数.当n 为奇数时,设n =2k +1,则 n 4+4n =n 4+4×(2k )4.利用 x 4+4y 4=(x 2+2y 2) 2-4 x 2y 2=(x 2-2xy +2y 2)( x 2+2xy +2y 2), 可得出n 4++4×(2k )4为合数.2.求使得241227x x --为素数的所有整数x .【答案】由|4x 2-12x -27|=|(2x +3)(2x -9)|,可知只有|2x +3|=1或|2x -9|=1时,数|4x 2-12x -27|才可能为素数.依此可得所求的x =-2,-1,4或5,对应的|4x 2-12x -27|分别为13,11,11或13,都是素数.3.设m 为大于1的正整数,且()|11m m -!+. 证明:m 是一个素数.【答案】若m 为合数,则存在正整数p ,使2≤p <m ,且p |m ,此时有p |(m -1)!,但m |(m -1)!+1,故p |(m -1)!+1,这导致p |1,矛盾.4.是否存在3个不同的素数p 、q 、r ,使得下面的整除关系都成立?2|qr p d +,2|rp q d +,2|pq r d +,其中(1)d =10;(2)d =11.【答案】不妨设p <q <r ,则 q ≥p +1,r ≥q +2≥p +3. 对d =10的情形,由qr |p 2+10,应有p 2+10≥(p +1)( p +3),这要求4p ≤7,即p ≤1,矛盾.故d =10时不存在符合要求的p 、q 、r . 当d =11时,p =2,q =3,r =5满足条件.5.设p 为正整数,且21p-是素数.求证:p 为素数.【答案】若p 为合数,设p =qr ,2≤q ≤r ,则2p -1=(2q )r -1=(2q -1)(( 2q )r -1+(2q )r -2+…+1) , 这导致2q -1|2p -1,与2p -1是素数矛盾.故p 为素数.6.设n 为正整数,且21n +是素数.证明:存在非负整数k ,使得2kn =. 【答案】由算术基本定理知,可写n =2k ·q ,k ≥0,q 为奇数.若q >1,则 2n +1=2(2)kq +1=(x +1)(x q -1-x q -2+…-x +1),是两个大于1的正整数之积,不是素数,其中x =22k.依此可知,由2n +1为素数可得q =1,即命题成立.7.求所有形如1nn +且不超过1910的素数,这里n 为正整数.【答案】当n =1时,n n +1=2满足条件.当n >1时,设n =2k q ,q 为奇数,若q >1,同上题可知为n n +1不是素数,故n =2k ,k 为正整数.此时n n +1=22k k -+1=2(2)kk +1, 进一步的分析,可知存在非负整数m ,使得k =2m ,故 n n +1=222m m++1.当m ≥2时,2m +m ≥6,故22mm+≥26,因此n n +1≥622+1=264+1=16×(1024)6+1>16×(103)6+1>1019. 故由n n +1≤1019知m ≤1.分别令m =0,1,知n n +1=5,257,这两个数都是素数. 综上,所求的素数为2,5和257.8.设a 、b 、c 、d 都是整数,且a ≠c ,|a c ab cd +-.证明:|a c ad bc +-.【答案】利用 (ad +bc ) -(ab +cd )=d (a -c )-b (a -c )=(d -b )(a -c ), 及a -c |ab +cd ,可得a -c |ad +bc .9.设a 、b 、c 、d 为整数,且ac 、bc +ad 、bd 都是某个整数u 的倍数.证明:数bc 和ad 也是u 的倍数. 【答案】由恒等式(bc +ad )2+(bc -ad )2=4abcd =4(ac )(bd ), ① 结合条件,可知u 2|(bc -ad )2,故u |bc -ad .现在,我们设bc +ad =ux ,bc -ad =uy ,则由①知,x 2+y 2=4()ac u ()bdu, 故x 2+y 2为偶数,进而x +y 与x -y 都是偶数,所以,由bc =2x y +·u ,ad =2x y-·u , 可得bc 、ad 都是u 的倍数.10.设a 、b 、n 为给定的正整数,且对任意正整数k (≠b ),都有|nb k a k --.证明:na b =.【答案】注意到,对任意正整数k (≠b ),都有b -k |b n -k n ,结合b -k |a -k n ,可知b -k |a -b n ,这表明a -b n =0,得a =b n .11.已知正整数n 的正因数中,末尾数字为0,1,2,…,9的正整数都至少有一个.求满足条件的最小的n .【答案】满足条件的最小的n =270.事实上,由条件知10|n ,从n 的末尾数字为9的因数出发来讨论.若9|n ,则90|n ,此时直接验证可知90和180都不是某个末尾为7的数的倍数;若19|n ,则190|n ,而270分别是10,1,2,3,54,5,6,27,18,9的倍数,符合条件.故n 最小为270.12.求一个9位数M ,使得M 的数码两两不同且都不为零,并对m =2,3,…,9,数M 的左边m 位数都是M 的倍数. 【答案】设M =129a a a ⋯是一个满足条件的数,由条件可知a 5=5,并且a 2、a 4、a 6 、a 8是2、4、6、8的一个排列,进而a 1a 2…a 9是1、3、7、9的排列.依此可知 a 4=2或6(因为4|34a a ), 而进一步,还有 8|78a a ,因此 a 8=2,6,故 (a 4,a 8)=(2,6)( 6,2).对这两种情况作进一步的分析,就可找到一个满足条件的M =381654 729.13.对于一个正整数n ,若存在正整数a 、b ,使得n =ab +a +b ,则称n 是一个“好数”,例如3=1×1+1+1,故3为一个“好数”.问:在1,2,…,100中,有多少个“好数”?【答案】设n 是一个好数,则n +1=(a +1)(b +1)为一个合数,反过来,若n +1为合数,则可写 n +1≤pq ,2≤p ≤q ,于是a =p -1,b =q -1,就有n =ab +a +b 是一个好数.所以,只需求1,2,…,100中使n +1为合数的n 的个数,依此可知恰好有74个好数.14.设素数从小到大依次为1p ,2p ,3p ,….证明:当n ≥2时,数n p +1n p +可以表示为3个大于1的正整数(可以相同)的乘积的形式.【答案】当n ≥2时,p n 与p n +1都是奇数,于是,q =12n n p p ++是正整数,又p n <q <p n +1,p n 与p n +1是两个相邻的素数,故q 必为合数.从而q 可以写为两个大于1的正整数之积,依此可知命题成立.15.设n 为大于1的正整数.证明:n 为合数的充要条件是存在正整数a 、b 、x 、y ,使得n =a +b ,1xy a b+=. 【答案】若存在a 、b 、x 、y ,使得 n =a +b ,且x a +yb=1. 我们记d =(a ,b ),若d =1,由x a +yb=1, 知 bx +ay =ab , 所以 a |bx ,b |ay , 结合(a ,b )=1,导出a |x ,b |y ,从而ab =bx +ay ≥ab +ba =2ab ,矛盾.所以d >1,这时n =a +b =d (a d +bd)为合数. 反过来,设n 为合数,设n =pq ,2≤p ≤q ,则令(a ,b ,x ,y )=(p ,p (q -1),1,(p -1)(q -1)),就有 n =a +b ,且x a +yb=1.16.证明:数列10001,100010001,1000100010001,… 中,每一个数都是合数. 【答案】注意到10 001=73×137为合数,而从第二项起,我们有a n =00011000100010001n 个=104n +104(n -1)+…+104+1=41)4101101n +--(=21)2(1)4(101)(101)101n n ++-+-(,由于n ≥2时,104-1<102(n+1)-1<102(n+1)+1,所以,a n 是一个合数.17.设a 、b 、c 、d 都是素数,且a >3b >6c >12d ,22221749a b c d -+-=. 求2222a b c d +++的所有可能值.【答案】a 2-b 2+c 2-d 2=1749为奇数,知a 、b 、c 、d 中必有一个数为偶数,这表明d =2.进而 a 2-b 2+c 2=1753. 再由 a >3b >6c >12d , 可知c ≥5,b ≥2c +1,a ≥3b +1,所以a 2-b 2+c 2≥(3b +1)2-b 2+c 2=8b 2+6b +c 2+1≥8(2c +1)2+6(2c +1)+1=33c 2+44c +15. 故 33c 2+44c +15≤1735,于是,c <7,结合c ≥5及c 为素数,可知c =5,进而 a 2-b 2=1728=26×33. 利用 b ≥2c +1=11,a ≥3b +1,可知 a -b ≥2b +1≥23,a +b ≥4b +1≥45, 由(a -b )( a +b )=26×33及a 、b 都是奇素数,可知 (a -b ,a +b )=(32,54), 因此 (a ,b )=(43,11) . a 2+b 2+c 2+d 2=1749+2×(112+22)=1999.18.数列{}n a 的每一项都是正整数,1a ≤2a ≤3a ≤…,且对任意正整数k ,该数列中恰有k 项等于k .求所有的正整数n ,使得1a +2a +…+n a 是素数. 【答案】对正整数n ,设正整数k 满足(1)2k k +≤n <(1)(2)2k k ++,则 a 1+a 2+…+a n =1×1+2×2+…+k ×k +(k +1)×(1)2k k n +⎡⎤-⎢⎥⎣⎦=16k (k +1)(2k +1)+2(1)2n k k -+(k +1) =16(k +1)[]6(2)n k k -+. 由于当k ≥6时,k +1>6,有6n -k (k +2)≥3k (k +1)-k (k +2)=2k 2+k >6,所以,此时a 1+a 2+…+a n 为合数,即只需考虑k ≤5的情形,考虑数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6 ,从第一项起求和得到的素数分别是:3,5,11,61,67,73,79,共7个.所以仅当n =2,3,5,61,17,18,19,时,a 1+a 2+…+a n 为素数.19.由正整数组成的数列{}n a 满足:对任意正整数m 、n ,若|m n ,m <n ,则|m n a a ,且 m n a a <.求2000a 的最小可能值.【答案】由条件可知,当m |n ,且m <n 时,有a n ≥2a m .所以,a 1≥1,a 2≥2,a 4≥2a 2≥22,类似地,a 8≥23,a 16≥24,a 80≥25,a 400≥26,a 2000≥27,即a 2000≥128. 另一方面,对任意正整数n ,设n 的素因数分解因式为n =1212k k p p p ααα,其中p 1<p 2<…p k 为素数,α1,α2,…αk 为为正整数,定义 a n =122k ααα+++, 则数列{a n }符合题中的要求,并且a 2000=24+3 ≤27. 所以,a 2000的最小值为128.20.设p 为奇数,正整数m 、n 满足11121m p n =++…+-.证明:|p m .【答案】由条件,可知2m n =(1+12+...+11p -)+(11p -+12p -+ (1)=(1+11p -)+(12+12p -)+…+(11p -+1) =1(1)p p ⨯-+2(2)p p ⨯-+…+(1)1pp -⨯.上式将右边通分后,可知存在正整数M ,使得2mn =()1!pM p -,即pnM =2m (p -1)!,由p 为奇素数,可知p 2,p (p -1)!,所以,p |m .21.设a 、m 、n 为正整数,a >1,且1|1m na a ++.证明:|m n . 【答案】若m n ,由a m +1|a n +1及a >1,可知m <n .故可设n =mq +r ,其中q 、r 为正整数,0<r <m .此时,利用a m +1|a n +1,可知a m +1|(a n +1)-(a m +1),即 a m +1|(a m -n +1)a m , 而 (a m +1,a m )=(1,a m )=1,依次递推,可得 a m +1|a n -2m +1,…,a m +1|a n -mq +1, 即有 a m +1|a r +1, 但a >1时,a m +1>a r +1,矛盾. 所以,m |n .22.证明:对任意正整数n 及正奇数m ,都有()211m n-1,2+=. 【答案】设d =(2m -1,2n +1),则 d |2m -1, 故 d |(2m )n -1n , 即 d |2nm -1, 另外d |2n +1,又m 为奇数,故2n +1|(2n ) m +1m , 所以, d |2mn +1.对比所得的两个式子,知d |2, 又2m -1为奇数,故d =1.23.费马数n F 定义为n F =221n+.证明:对任意两个不同的正整数m 、n ,都有()1n m F F ,= 【答案】不妨设m <n ,利用平方差公式知F n -2=22n-1=(122n --1)(122n -+1)=(222n --1)(222n -+1)(122n -+1) =…=(22m-1)(22m+1)(122m ++1)…(122n -+1),所以,F m |F n -2,从而(F n ,F m )=(2,F m ),而F m 为奇数,故(2,F m )=1,即(F n ,F m )=1.24.已知正整数a 、b 、c 、d 的最小公倍数为a +b +c +d .证明:abcd 是3或5的倍数. 【答案】由条件可知a 、b 、c 、d 不全相等,不妨设d 是其中最大的数,则 d <a +b +c +d <4d , 又a +b +c +d 为a 、b 、c 、d 的最小公倍数,故d |a +b +c +d ,于是 a +b +c +d =2d 或3d .如果a +b +c +d =3d ,那么由abcd 为a 、b 、c 、d 的公倍数,可知a +b +c +d |abcd ,即 3d |abcd , 故 3|abcd .如果a +b +c +d =2d ,那么a +b +c =d .不妨设a ≤b ≤c ,由a +b +c +d 为a 、b 、c 、d 的最小公倍数,可知 a |2d ,b |2d ,c |2d . 设2d =ax =by =cz ,则x ≥y ≥z ≥3,并且2x +2y +2z =1,即1x +1y +1z =12. 又当z =3时,有3|2d ,进而3|d ,故abcd 为3的倍数,因此只需考虑z >3的情形. 而当z ≥6时,有 1x +1y +1z ≤16+16+16=12,故只能是x =y =z =6,此时abcd 为3的倍数.所以,只需z =4或5的情形,注意到z =5时,有5|2d ,可知abcd 为5的倍数,进而只需考虑z =4的情形,此时 1x +1y =14,即 xy -4x -4y =0,(x -4)(y -4)=16.结合x >y ,可知 (x -4,y -4)=(16,1),(8,2),(4,4), 分别对应 2d =20a =5b =4c ,2d =12a =6b =4c ,2d =8a =8b =4c ,第一种情形要求5|d ,第一种情形要求3|d ,第一种情形要求a =b ,c =2a ,d =4a ,此时a 、b 、c 、d 的最小公倍数为d ,而不是a +b +c +d ,矛盾. 综上可知,abcd 是3或5的倍数.25.记n M 为正整数 1,2,…,n 的最小公倍数.求所有的正整数n (>1),使得n M = 1n M -.【答案】如果n 至少有两个不同的素因子,那么可记n =pq ,其中2≤p ≤q ,p 、q 为正整数,且(p ,q )=1.此时,2≤p <q <n -1,从而n |M n -1.所以,当且仅当n 有至少两个不同的素因子时,M n =M n -1.26.设a 、m 、n 为正整数,a >1.证明:()()111m n m n a a a,-,-=-.【答案】不妨设m >n ,则 (a m -1,a n -1)=(a m -a n ,a n -1)=(a n (a m -n -1),a n -1), 而 (a n ,a n -1)=1,故 (a m -1,a n -1)=(a m -n -1),a n -1), 依次递推,对指数进行“辗转相除”,可知结论成立.27.设a 、n 为正整数,a >1,且1na +是素数.证明:()1n d a n -≥.【答案】由a n +1为素数,可知a 为偶数,与第6题类似,可知存在非负整数k ,使得为n =2k ,于是 a n -1=2ka -1=(12k a --1)(12k a -+1)=…=(a -1)(a +1)(a 2+1)…(12k a -+1) .进一步,(12k a --1,12k a -+1)=(12k a --1,2)=1(最后一步用到a 为偶数),依次倒推,可知a +1,a 2+1,22a +1,…,12k a -+1两两互素,从而它们中任取若干个数作乘积形成的2k 个数两两不同,当然,这2k 个数都是a n -1的因数,所以,d (a n -1)≥2k =n .28.对怎样的正整数n (>2),存在n 个连续正整数,使得其中最大的数是其余n -1个数的最小公倍数的因数?【答案】当n =3时,对任意三个连续正整数a -1,a ,a +1,若 a +1|[]1,a a -,则 a +1|a (a -1), 而 (a +1,a )=1,故 a +1|a -1,矛盾.当n >3时,若n 为偶数,记n =2m ,则数2m -1,2m ,…,2(2m -1)中,最大的数2(2m -1)是其余2m -1个数(它们中有2m -1与2m )的最小公倍数的因数;若n 为奇数,记n =2m +1,则数2m -2,2m -1,…,2(2m -1)是n 个连续正整数(注意,这里用到m >1),它们中最大的数是其余n -1个数的最小公倍数的因数.所以,n >3时,正整数n 符合条件.29.设正整数a 、b 、m 、n 满足:(a ,b )=1,a >1,且|mmnna b a b ++.证明:|m n .【答案】利用 a n +b n =(a n -m +b n -m )(a m +b m )-(a m b n -m +a n -m b m ), 知若n ≥2m ,则 a n +b n =(a n -m +b n -m )(a m +b m )-a m b m (a n -2m +b n -2m ), 于是 a m +b m |a m b m (a n -2m +b n -2m ). 得 (a ,b )=1, 由 (a m ,b m )=1,进而 (a m +b m ,a m )=(a m +b m ,b m )=1, 故 (a m +b m ,a m b m )=1, 因此 a m +b m |a n -2m +b n -2m .用n -2m 代替n ,重复上述讨论,最终可将n 变为小于2m 的正整数.此时,由a m +b m |a n +b n 及a >1,知n ≥m .如果n =m ,那么命题已经成立;如果m <n <2m ,那么由a n +b n =(a n -m +b n -m )(a m +b m )-a n -m (a 2m -n +b 2m -n ),同上讨论,将有 a m +b m |a 2m -n +b 2m -n , 而2m -n <m ,这在a >1时是不可能的.综上可知m |n (注意:事实上推出了n 为m 的奇数倍) .30.证明:存在2012个不同的正整数,使得其中任意两个不同的数a 、b 都满足()2|a b ab -. 【答案】将命题一般化,可证:对任意n (≥2),都存在n 个不同的正整数,使得齐总任意两个不同的数a 、b 满足(a -b )2|ab .证明如下:当n =2时,取a 1=1,a 2=2,则它们满足条件.现在设a 1<a 2<…<a n 是n (≥2)个满足要求的正整数,即对1≤i <j ≤n ,都有(a i -a j ) 2|a i a j . 考虑下面的n +1个数 a n !,a n !+a 1,a n !+a 2,…,a n !+a n , 容易证明这n +1个正整数满足要求.31.设a 、b 为正整数,且(a ,b )=1.证明:对任意正整数m ,数列 a ,a +b ,a +2b ,…,a +nb ,… 中,有无穷多个数与m 互素.【答案】对任意正整数m ,由(a ,b )=1,可写m =m 1m 2,使得m 1的素因子都是a 的素因子,且 (a ,m 2)=1,(m 1,b )=1,(m 1,m 2)=1(这只需将m 、a 、b 作为素因数分解后,各部分予以恰当分配即可达到要求).取正整数k ,使得(k ,m 1)=1,这样的k 有无穷多个,令n =m 2k ,我们证明:(a +nb ,m 1)=1. 事实上,设d =(a +nb ,m 1),若d >1,取d 的素因子p ,则p |m 1,进而p |a ,所以,p |nb . 但由 (m 1,k )=(m 1,m 2)=(m 1,b )=1, 知p m 2kb ,即p nb .矛盾.所以(a +nb ,m 1)=1.又 (a +nb ,m 2)=(a +m 2kb ,m 2)=(a ,m 2)=1, 从而 (a +nb ,m 1m 2)=1,即 (a +nb ,m )=1,命题获证.32.已知正整数数对(a ,b )满足:数aba b •在十进制表示下,末尾恰有98个零.求ab 的最小值. 【答案】设a 、b 的素因数分解式中2、5的幂次分别为α1,β1和α2,β2,则 12129898a b a b ααββ⋅+⋅⎧⎪⎨⋅+⋅⎪⎩≥,①≥,②并且①与②中必有一个取等号.如果②取等号,即a ·β1+b ·β2=98,那么当β1与β2都是正整数时,左边为5的倍数,当β1或β2中有一个为零时,另一个必大于零,此时左边仍然是5的倍数,都导致矛盾.所以①取等号.由a ·α1+b ·α2=98,知若α1、α2中有一个为零,不妨设α2=0,则α1>0.此时α·α1=98,若α1≥2,则4|a ,矛盾.故α1=1,进而a =98.代入②,由a =98知β1=0,从而b ·β2>98,结合α2=0,求得b ·最小为75.如果α1与α2都是正整数,不妨设α1≥α2,若α2≥2,则有4|a ,4|b ,导致4|98,矛盾,故α2=1.进一步,若α1=1,则a +b =98,但2a 与2b 都是奇数,故2a +2b为偶数,矛盾,故α1>1.此时,若β1与β2都是正整数,则5|a ,5|b ,与a ·α1+b ·α2=98矛盾,故β1与β2中有一个为零.若β1=0,则由②知b ·β2>98,此时b b 的末尾零的个数大于98(因为,此时10|b .当β2=1时,b ≥100,此时100100|b b .而当β2≥2时,50|b ,若b >50,100100|b b ;若b =50,则a ·α1=48,这时当α1≥4时,25|a ·α1,而α1≤3时,24a ·α1,都导致矛盾,所以,b b 的末尾零的个数大于98) . 类似地,若β2=0,则a ·β1>98,同样可知a a 的末尾零的个数大于98,矛盾. 综上可知,ab 的最小值为7350(当(a 、b )=(98,75)或(75,98)时取到) .33.求所有的正整数m ,使得()4m d m =.【答案】由条件可知m 为一个4次方数,因此,可设m =357244442357αααα⋅⋅⋅, 其中α2,α3,α5,α7,…都是非负整数.而 d (m )=(4α2+1)( 4α3+1)… 是一个奇数,故α2=0,并且1=33413αα+·55415αα+·77417αα+…=x 3·x 5·x 7…, 这里 x 3=33413αα+,x 5=55415αα+,…. 当α3=1时,x 3=53;α3=0或2时,x 3=1;而α3≥3时,33α>4α3+1,故此时x 3<1.当α5=0或1时,x 5=1;α5≥2时,55α≥12α5+1,故55α≥259(4α5+1),即x 5<925. 当p >5,p >为素数时,在αp =0时,x p =1,而αp =1时,pp α>5=4αp +1,故x p <1;而αp >1时,x p<925. 上述讨论表明:若α3≠1,则x 3=x 5=x 7=...=1, 故 α3=0或2,α5=0或1, 而 α7=α11= 0即 m =1,38,54或454. 若α3=1,则3|m ,此时,由m =d (m ) 4,知m =54×(4α5+1) 4×(4α7+1) 4…, 于是存在素数p ≥5,使得3|4αp +1,这要求αp ≥2,从而x p <925.此导致 x 3x 5x 7…≤53×925=35<1,矛盾.所以 m =1,54,38,38·54.(直接验证,可知它们确实满足条件) .34.证明:每一个正整数都可以表示为两个正整数之差,且这两个正整数的素因子个数相同.【答案】设n 为正整数,如果n 为偶数,那么表示n =(2n )-n 符合要求.如果n 为奇数,设p 是不整除n 的最小奇素数,那么表示n =pn -(p -1)n 中,pn 的素因子个数等于n 的素因子个数加上1;而p -1是偶数,且由p 的定义,知p -1的每个奇素因子都是n 的素因子,所以,(p -1)n 的素因子个数也等于n 的素因子个数加上1.命题获证.35.求所有的正整数a 、b 、c ,使得21a +和21b +都是素数,且满足 ()()222111a b c ++=+.【答案】不妨设a ≤b ,由条件知a 2(b 2+1)=c 2+1-b 2-1=(c -b )( c +b ),故b 2+1|c -b 或者b 2+1|c +b (这里用到b 2+1为素数) . 若 b 2+1|c -b ,则 c -b ≥b 2+1(注意c >b 是显然的), 即 c ≥b 2+b +1,此时 c 2+1≥(b 2+b +1)+1>(b 2+1)2≥(a 2+1)(b 2+1),矛盾. 若 b 2+1|c +b , 则 c +b ≥b 2+1, 即 c ≥b 2-b +1,于是 c 2+1≥(b 2-b +1)2+1=(b 2+1)2-2b (b 2+1)+b 2+1=(b 2+1)((b -1)2+1) .注意到,若a =b ,则c 2+1=(a 2+1)2,这在a 、c 都是正整数时不能成立(因为两个正整数的平方差至少为3),所以,a <b ,即有a ≤b -1,因此c 2+1≥(b 2+1)((b -1)2+1)≥(b 2+1)( a 2+1),结合条件,可知 a =b -1,c =b 2-b +1.此时,由a 2+1与b 2+1都是素数,知b 2+1为奇数,b 为偶数,从而a =b -1为奇数,a 2+1为偶数,所以a =1,进而b =2,c =3.又当(a ,b ,c )=(1,2,3)或(2,1,3)时,条件满足,它们就是要求的答案.36.用()p k 表示正整数的最大奇因数.证明:对任意正整数n ,都有()123nk p k n k ∑=<<()213n +. 【答案】记S n =1()n k p k k=∑,则由p (k )的定义可知 S 2n =21()n k p k k =∑=1(21)21n k p k k =--∑+1(2)2nk p k k =∑=n +11(2)2n k p k k =∑=n +12S n .① 类似可知 S 2n +1= n +1+12S n . ② 回到原题,当n =1时,命题显然成立.现设命题对1≤n ≤m 都成立,考虑n =m +1的情形. 如果m +1为偶数,那么,由①结合归纳假设,可知12m ++12·12()23m +<12m ++1212m S +=S m +1<12m ++12·12(1)23m ++.即有23( m +1)<S m +1<23( m +2),知命题对m +1亦成立. 如果m +1为奇数,同上利用②亦可知命题对m +1成立.所以,结论成立.37.设a 、b 、c 都是大于1的正整数.求代数式[][][]2a b b c c a a b c a b c++++,,,-++的最小可能值. 【答案】由对称性,不妨设a ≥b ≥c ,注意到,当(a ,b ,c )=(2,2,2),(3,2,2) ,(3,3,2) ,(4,2,2)时,所给代数式A 的值分别为2,32,178,114.这表明:当a +b +c ≤8时,A ≥32. 下证:当a +b +c ≥9时,有A ≥32. 事实上,A ≥32⇔(a +b +c ) 2-2([]a b ,+[]b c ,+[]c a ,)≥3(a +b +c ) ⇔ a 2+b 2+c 2+2[]()ab a b -∑,≥3(a +b +c ) .由于对正整数x 、y ,都有xy ≥[]x y ,,因此,只要证明:a 2+b 2+c 2≥3(a +b +c ). ①结合a +b +c ≥9,可知为证明①成立,只要证明:a 2+b 2+c 2≥13(a +b +c ) 2⇔3(a 2+b 2+c 2)≥(a 2+b 2+c 2) ⇔2(a 2+b 2+c 2)-2(ab +bc +ca )≥0⇔(a -b )2+(b -c )2+(c -a )2≥0.最后一式显然成立. 所以,所求代数式的最小值为32.38.对任意给定的素数p ,有多少个整数组(a ,b ,c ),使得(1)1≤a ,b ,c ≤22p ; (2)[][]2212a cbc p c a p •+,+,=+b +. 【答案】记u =(a ,c ),v =(b ,c ),则条件⑵变为ac bc u v a b ++=2212p p ++·c , 即 a u +b v =2212p p ++(a +b ). ① 由于12<1-212p +=2212p p ++<1,结合①知2a b +<a u +b v<a +b . ② 若u ,v 都不小于2,则②的左边不等式不成立;若u =v =1,则②的右边不等式不成立.因此u 、v 中恰好有一个等于1.由对称性,不妨设u =1,v ≥2.并记b 1=b v,代入①得(p 2+2)(a +b 1)=(p 2+1)(a +b 1v ),于是, a =b 1((p 2+1)v -(p 2+2)). ③若v≥3,则由③得a≥3(p2+1)-(p2+2)=2p2+1,与条件⑴不符,故v=2.此时③式变为a=p2b1,结合a≤2p2,知b1≤2.注意到,(a,c)=u=1,(b,c)=v=2,知c是一个偶数,且与p2b1互素.这表明p为奇素数,且b1为奇数,结合b1≤2,知b1=1,进而为b=2.所以,(a,b,c)=(p2,2,c),其中c为偶数但不是p的倍数,这样的数组共有p2-p组.综上可知,当p=2时,不存在符合条件的数组;当p>2时,满足条件的数组共有p2-p组.39.黑板上写着数1,2,…,33.每次允许进行下面的操作:从黑板上任取两个满足|x y的数x、y,将它们从黑板上去掉,写上数yx.直至黑板上不存在这样的两个数.问:黑板上至少剩下多少个数?【答案】考虑目标函数S=黑板上所有数之积.最初S=33!=231·315·57·74·113·17·19·23·29·31,每一步操作针对x、y(x|y),记y=kx,去掉x、y代之以k后,S变为Skxy⋅=2Sx,这表明每次操作,S的每个素因子的幂次的奇偶性保持不变,特别地,2,3,5,11都整除每次操作后所得的S.而2×3×5×11>33,因而,最后留下的数中,至少需要两个数,使得它们之积为2×3×5×11的倍数.又注意到,素数17,19,23,31的每一个大于自身的倍数都大于33,因而,任何一次操作都不能去掉其中的任何一个数.上述讨论表明:黑板上至少剩下7个数.下面的例子表明可以恰好剩下7个数:(32,16)→2,(30,15) →2,(28,14) →2,(26,13) →2,(24,12) →2,(22,11) →2;(27,9) →3,(21,7) →3,(18,6) →3;(25,5) →5,(20,4) →5;(8,2) →4.(5,5)→1;(4,2) →2;(3,3) →1,(3,3) →1,(2,2) →1,(2,2) →1,(2,2)→1,(2,2)→1.这样,黑板上留下10,17,19,23,29,31,33共7个数和7个1,而7个1再经与17搭配操作7次即可全部去掉.综上可知,至少有7个数被留下.40.设n是一个正整数.证明:数1+5n+25n+35n+45n是一个合数.【答案】当n为偶数时,设n=2m,x=5m,则A=1+5 n+52n+53n+54n=1+x2+x4+x6+x8=10211xx--=55(1)(1)(1)(1)x xx x-+-+=(x4+x3+x2+x+1)(x4-x3-x2-x+1) .由于x=5m>1,可知上式右边两个式子中的数都大于1,因此,A为合数.当n为奇数时,设n=2m+1,x=5m,z=5y2,则A=1+z+z2+z3+z4=(1+3z+z2)2-5z3-10z2-5z=(1+3z+z2)2-5z(z+1)2=(1+5y2+25y4)2-25y2(1+5y2)2=(1+5y2+25y4-5y(1+5y2))(1+5y2+25y4+5y(1+5y2)) .当m>0,即y≥5时,上式右边两式都大于1,此时,A为合数,当m=0时,A=1+5+52+53+54=11×71也是合数.所以,对任意正整数n,A为合数,命题获证.。
2-3-习题(含解答)

2-3 习题(含解答)目录第1章编译原理概述 (1)第2章PL/O编译程序的实现 (4)第3章文法和语言 (4)第4章词法分析 (13)第5章自顶向下语法分析方法 (28)第6章自底向上优先分析 (39)第7章LR分析 (42)第8章语法制导翻译和中间代码生成 (60)第9章符号表 (67)第10章目标程序运行时的存储组织 (70)第11章代码优化 (73)第12章代码生成 (76)综合练习一 (79)综合练习二 (84)综合练习三 (90)综合练习四 (95)综合练习五 (101)综合练习六 (107)第1章编译原理概述一、选择题1.一个编译程序中,不仅包含词法分析,语法分析,中间代码生成,代码优化,目标代码生成等五个部分,还应包括 (1) 。
其中, (2) 和代码优化部分不是每个编译程序都必需的。
词法分析器用于识别 (3) ,语法分析器则可以发现源程序中的 (4) 。
(1) A.模拟执行器 B.解释器 C.表格处理和出错处理 D.符号执行器(2) A.语法分析 B.中间代码生成 C.词法分析 D.目标代码生成(3) A.字符串 B.语句 C.单词 D.标识符(4) A.语义错误 B.语法和语义错误 C.错误并校正 D.语法错误2.程序语言的语言处理程序是一种 (1) 。
(2) 是两类程序语言处理程序,他们的主要区别在于 (3) 。
(1) A.系统软件 B.应用软件 C.实时系统 D.分布式系统(2) A.高级语言程序和低级语言程序 B.解释程序和编译程序C.编译程序和操作系统D.系统程序和应用程序(3) A.单用户与多用户的差别 B.对用户程序的查错能力C.机器执行效率D.是否生成目标代码3.汇编程序是将翻译成,编译程序是将翻译成。
A.汇编语言程序B.机器语言程序C.高级语言程序D. A 或者BE. A 或者CF. B或者C4.下面关于解释程序的描述正确的是。
(1) 解释程序的特点是处理程序时不产生目标代码(2) 解释程序适用于COBOL 和 FORTRAN 语言(3) 解释程序是为打开编译程序技术的僵局而开发的A. (1)(2)B. (1)C. (1)(2)(3)D.(2)(3)5.高级语言的语言处理程序分为解释程序和编译程序两种。
《初等数论》各章习题参考解答

《初等数论》各章习题参考解答第一章习题参考解答1.解:因为25的最小倍数是100,9的最小倍数是,所以满足条件的最小正整数11111111100a =。
2.解:3在100!的分解式中的指数()1001001001003100!33113148392781⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 在100!的分解式中的指数()1001001001001002100!50251261942481664⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,∴ ()9448474847100!2343123,,61k k k k =⋅⋅=⋅⋅=⋅=。
故 max 47n =,min 3M k =,(),61k =。
故 当M 最小值是3的倍数,但不是2的倍数。
3.解:112121n n n n x x ++++++等价于()()21221n n n x x x ++-+-,从而3x ³(n 就不会太大,存在反向关系)。
由()()22121n nn x x x -+-?+,得()()2212n n n x x -+?,即()()()121122nn x x -+?。
若2n ³,则()()()()251221114242nn x xx x-?+??,导致25140x x -+?,无解。
所以,只有1n =,335314x x x +-?,只能是37,14x +=,从而4,11x =。
综上所述,所求正整数对()()(),4,111,1x n =、。
4.解:按题意,2m n >>,记*,m n k k N =+?;则()222211111n n k nk n k k a a a a a a a a a a a a +++-+-?-+--++-22211111n k k n k k a a a a a a a a a ++?---+?-+-,故 存在无穷多个正整数a 满足2111n k k a a a a ++-+-。
习题解答_

11
c Px 0.4 (7 1 4.5 3 2.8 1) 9.32kW c Px tan 9.32 1.73 16.12kvar
Q30 b PS tan c Px tan 20.59 16.12 36.71kvar
2737.2kvar
2 2 S30 P30 Q30 24002 2737.22 3640.4kVA
17
' Q30
P30 tan / Qc
0.8 2400 1.169 / 0.82 1638 1099.2kvar
' S30
2 P30
22
3)电阻炉组
b = 0.7,c = 0 ,cos = 1.0 ,tan = 0.0
b PS 3 2.0 2.0kW b PS .3 tan 2.0 0.0 0.0kvar
23
4)总的计算负荷
P30
S i
Q30
(12.1 7.93 0.0) 14.9 34.93kvar
P30 K x PS 0.35 843 295.05kW Q30 P30 tan 295.05 0.88 260.21kvar S30 P30 / cos 295.05 / 0.75 393.4kVA
15
2-5.某三班制生产厂的有功计算负荷为2400kW,平 均功率因数为 0.65。现拟在厂变电所10kV母线上 装设YY型移相电容器,使功率因数提高到0.95。试 计算所需电容器的总容量。如采用YY10.5-14-1型 电容器,问需装设多少个?装设以后该厂的视在负 荷为多少?比未装设时的视在功率减少了多少? 解 三班制,取 = 0. 8, = 0. 82
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章汇编语言基础知识习题解答1.1 什么是汇编语言?汇编语言的特点是什么?答:为了克服机器语言难以记忆、表达和阅读的缺点,人们采用具有一定含义的符号作为助忆符,用指令助忆符、符号地址等组成的符号指令称为汇编格式指令(或汇编指令)。
汇编语言是汇编指令集、伪指令集和使用它们规则的统称。
汇编语言的特点是:(1)执行速度快。
(2)程序短小。
(3)可以直接控制硬件。
(4)可以方便地编译。
(5)辅助计算机工作者掌握计算机体系结构。
(6)程序编制耗时,可读性差。
(7)程序可移植性差。
1.2 把下列十进制数转换成二进制数、八进制数、十六进制数。
① 127 ② 1021 ③ 0.875 ④ 6.25答:① 1111111B;177Q;7FH ② 1111111101;1775Q;3FDH③ 0.111 B;0.7Q;0.EH ④ 110.01B;6.2Q;6.4H1.3把下列二进制数转换成十进制数。
① 1001.11 ② 101011.10011 ③ 111.011 ④1011.1答:① 9.75D ② 43.59375D ③ 7.375D ④ 11.5D1.4 把下列八进制数转换成十进制数。
① 573.06 ② 75.23 ③ 431.7 ④ 123.45答:① 379.09375D ② 61.296875D ③ 281.875 ④83.5781251.5 把下列十六进制数转换成十进制数。
① 0D5.F4 ② 8BA.7C ③ 0B2E.3A ④ 6EC.2D答:① 213.953125D ②2234.484375 ③2862.2265625 ④1772.175781251.6 把下列英文单词转换成ASCII编码的字符串。
① Upper ② Blow ③ Computer ④ What答:① 55H,70H,70H,65H,72H ② 53H,6CH,6FH,77H③ 43H,6FH,6DH,70H,75H,74H,65H,72H ④ 57H,68H,61H,74H1.7求下列带符号十进制数的8位基2码补码。
① +127 ②−2 ③−128 ④ +2答:① 01111111B ② 11111110B ③ 10000000B ④ 00000010B1.8 求下列带符号十进制数的16位基2码补码。
① +628 ②−9 ③−1234 ④ +3249答:① 0000001001110100B ② 1111111111110111B③ 1111101100101110B ④ 110010110001B1.9 下列各数均为十进制数,请用8位二进制补码计算下列各题,并用十六进制数表示其运算结果。
① 68+(―53)② 68―53 ③ 68―(―53)④(―68)―53答:① 0FH ②0FH ③ 0A1H ④87H1.10 汉字在输入、存储、输出过程中所使用的汉字编码是否一样?使用的是什么编码?答:在汉字的输入、存储、输出过程中所使用的汉字编码是不一样的,输入时有输入编码,存储时有汉字机内码,输出时有汉字字形码。
第2章IBM-PC系统结构习题解答2.1什么是微型计算机?微型计算机主要由哪几部分组成?其主要功能是什么?答:微型计算机是指以大规模、超大规模集成电路为主要部件,以集成了计算机主要部件——控制器和运算器的微处理器为核心所构造出的计算机系统。
微型计算机主要由微处理器、存储器、系统总线、I/O接口电路和I/O设备组成。
微处理器用来执行程序指令,完成所有的算术和逻辑运算及全机的控制工作;存储器用来存放程序和数据;系统总线是计算机各功能部件之间进行信息传输的通道;I/O设备是指微型计算机配备的输入输出设备,也称外围设备(简称外设),用来提供具体的输入输出手段。
2.2 8086/8088CPU由哪两部分组成?它们的主要功能是什么?答:8086/8088CPU由总线接口部件BIU(Bus Interface Unit)和执行部件EU(Execution Unit)两部分组成。
总线接口部件BIU是8086与系统总线的接口,负责CPU与存储器、I/O端口传送数据;执行部件EU负责指令的执行和数据的运算。
2.3 8086/8088CPU有哪些寄存器?各有什么用途?答:8086/8088内部的寄存器可分为通用寄存器、专用寄存器和段寄存器。
8086/8088有8个16位的通用寄存器,包括4个数据寄存器(AX、BX、CX、DX)、2个变址寄存器(SI和DI)和2个指针寄存器(BP和SP)。
它们均可以用于保存算术逻辑运算中的操作数和运算结果,但每个寄存器又有各自规定的专门用途。
AX通常称为累加器(Accumulator),用于算术运算、逻辑运算以及与外设传送信息等,它是汇编编程中使用频率最高的一个寄存器。
BX称为基址寄存器(Base Address Register) ,常用来存放存储器地址。
CX称为计数寄存器(Count Register) ,常用来保存计数值。
DX称为数据寄存器(Data Register) ,常用来存放双字长数据的高16位,也用于存放I/O的端口地址。
SI称为源变址(Source Index)寄存器,DI称为目的变址(Destination Index)寄存器,主要用于存储器寻址方式时提供偏移地址。
SI和DI一般与数据段寄存器DS联用,用来确定数据段中某存储单元的地址。
在串操作指令中,还有专用的用法:SI和数据段寄存器DS联用,DI和附加段寄存器ES联用,分别用来寻址数据段中的源操作数和附加段的目的操作数。
BP称为基址指针(Base Pointer)寄存器,SP称为堆栈指针(Stack Pointer)寄存器,它们主要用于指向堆栈段中的存储单元。
BP与堆栈段寄存器SS联用,用来确定堆栈段中某存储单元的地址,BP主要用于给出堆栈中基地址,用它可直接存取堆栈中的数据;SP与堆栈段寄存器SS联用,用来确定堆栈段中栈顶的地址,SP保存堆栈栈顶的偏移地址,用它只可访问栈顶。
IP(Instruction Pointer)为指令指针寄存器,用来存将要执行的指令在代码段中的偏移地址。
它和代码段寄存器CS一起可以确定下一条的指令的物理地址。
标志寄存器FLAGS也被称为程序状态寄存器PSW,用来存放状态标志和控制标志的寄存器。
8086/8088有4个16位段寄存器,分别为代码段寄存器CS、数据段寄存器DS、堆栈段寄存器SS和附加段寄存器ES。
段寄存器是根据内存分段的管理模式而设置的,专门用于存放段地址。
CS(Code Segment Register)称为代码段寄存器,用来存放代码段的段地址;DS(Data Segment Register)称为数据段寄存器,用来存放数据段的段地址;ES(Extra Segment Register)称为附加段寄存器,用来存放附加段的段地址;SS(Stack Segment Register)称为堆栈段寄存器,用来存放堆栈段的段地址。
2.4 8086/8088CPU哪些寄存器可以用来指示存储器地址?答:BX、SI、DI、BP、SP、IP、CS、DS、ES、SS。
2.5标志寄存器中有哪些状态标志和控制标志?它们每一位所表示的含义是什么?答:标志寄存器中有6个状态标志(CF、PF、AF、ZF、SF、OF)和3个控制标志(TF、IF、DF)。
状态标志用来记录程序运行结果的状态信息,它们是根据有关指令的执行结果由CPU自动设置的,常用作条件转移指令的转移控制条件。
CF(Carry Flag)进位标志,主要用来反映运算是否产生进位或借位,如果运算结果的最高位有效位产生进位或借位时,进位标志置1,即CF=1,否则置0。
PF(Parity Flag)奇偶标志,用于反映运算结果中“1”的个数的奇偶性,当运算结果最低字节中“1”的个数为零或偶数时,PF=1,否则PF=0。
AF(Auxiliary carry Falg)辅助进位标志,记录运算时第3位(低半字节)产生的进位值,辅助进位标志一般在BCD 码运算中作为是否进行十进制调整的判断依据。
ZF(Zero Flag)零标志,用来反映运算结果是否为0,运算结果为0时ZF位置1,否则置0。
SF(Sign Flag)符号标志,记录运算结果的符号,它与运算结果的最高位相同,结果为负时置1,否则置0。
OF(Overflow Flag)溢出标志,用于反映有符号数运算结果是否溢出,在运算过程中,如操作数超出了机器能表示的范围,则称为溢出,此时OF位置1,否则置0。
控制标志用于控制处理器的操作,可根据需要用指令设置。
TF(Trap Flag)追踪标志,也称单步标志,当追踪标志TF为1时,CPU进入单步方式即CPU 每执行一条指令后,产生一个单步中断,通常用于程序的调试;当追踪标志TF 为0时,处理器正常工作。
IF(Interrupt Flag)中断标志,当IF=1时,CPU可以响应可屏蔽中断请求;当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。
DF(Direction Flag)方向标志,用于在串处理指令中控制地址的变化方向,当DF位为1时,每次操作后变址寄存器SI和DI自动减少,串处理从高地址向低地址方向处理;当DF为0时,则使SI和DI自动增加,使串处理从低地址向高地址方向处理。
2.6有两个16位数3A4BH和10EFH分别存放在2000H和2004H存储单元中,请用图表示出它们在存储器里的存放情况。
答:2000H2001H2002H2003H2004H2005H2.7一个存储单元的物理地址、段地址、偏移地址三者之间有何关系?答:20位的物理地址由16位的段地址和16位的段内偏移地址组成。
物理地址PA(Physical Address)的计算方法如下:物理地址PA=段地址×10H+偏移地址2.8在DEBUG程序中,一条指令语句表示为2000:0030 MOV AL,8。
请问:段地址、偏移地址和物理地址分别为多少?存放段地址和偏移地址的寄存器是哪两个?答:段地址:2000H。
偏移地址:0030H。
物理地址:20030H。
存放段地址的寄存器是CS。
存放偏移地址的寄存器是IP。
第3章 8086/8088寻址方式和指令系统习题解答一、填空3.1 指出下列指令源操作数的寻址方式:MOV AX,ARRAY[SI] ;MOV AX,ES:[BX] ;MOV AX,[100] ;MOV AX,[BX+DI] ;MOV AX,BX ;MOV AX,2000H ;MOV AX,ARRAY[BX][SI] ;MOV AX,[DI+20H] ;答:寄存器相对寻址;寄存器间接寻址;直接寻址;基址变址寻址;寄存器寻址;立即数寻址;相对基址变址寻址;寄存器相对寻址。