第5章 参数估计基础
统计学第五章课后题及答案解析

第五章练习题一、单项选择题1.抽样推断的目的在于()A.对样本进行全面调查B.了解样本的基本情况C.了解总体的基本情况D.推断总体指标2.在重复抽样条件下纯随机抽样的平均误差取决于()A.样本单位数B.总体方差C.抽样比例D.样本单位数和总体方差3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差()A.一年级较大B.二年级较大C.误差相同D.无法判断4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将()A.高估误差B.低估误差C.恰好相等D.高估或低估5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()A.扩大到原来的2倍B.扩大到原来的4倍C.缩小到原来的1/4D.缩小到原来的1/26.当总体单位不很多且差异较小时宜采用()A.整群抽样B.纯随机抽样C.分层抽样D.等距抽样7.在分层抽样中影响抽样平均误差的方差是()A.层间方差B.层内方差C.总方差D.允许误差二、多项选择题1.抽样推断的特点有()A.建立在随机抽样原则基础上 B.深入研究复杂的专门问题C.用样本指标来推断总体指标 D.抽样误差可以事先计算E.抽样误差可以事先控制2.影响抽样误差的因素有()A.样本容量的大小 B.是有限总体还是无限总体C.总体单位的标志变动度 D.抽样方法E.抽样组织方式3.抽样方法根据取样的方式不同分为()A.重复抽样 B.等距抽样 C.整群抽样D.分层抽样 E.不重复抽样4.抽样推断的优良标准是()A.无偏性 B.同质性 C.一致性D.随机性 E.有效性5.影响必要样本容量的主要因素有()A.总体方差的大小 B.抽样方法C.抽样组织方式 D.允许误差范围大小E.要求的概率保证程度6.参数估计的三项基本要素有()A.估计值 B.极限误差C.估计的优良标准 D.概率保证程度E.显著性水平7.分层抽样中分层的原则是()A.尽量缩小层内方差 B.尽量扩大层内方差C.层量扩大层间方差 D.尽量缩小层间方差E.便于样本单位的抽取三、填空题1.抽样推断和全面调查结合运用,既实现了调查资料的_______性,又保证于调查资料的 _______性。
统计第五章练习题

第五章参数估计(一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内)1.在抽样推断中,必须遵循( )抽取样本。
①随意原则②随机原则③可比原则④对等原则2.抽样调查的主要目的在于( )。
①计算和控制抽样误差②了解全及总体单位的情况③用样本来推断总体④对调查单位作深入的研究3.抽样误差是指()。
①计算过程中产生的误差②调查中产生的登记性误差③调查中产生的系统性误差④随机性的代表性误差4.在抽样调查中( )。
①既有登记误差,也有代表性误差②既无登记误差,也无代表性误差③只有登记误差,没有代表性误差④没有登记误差,只有代表性误差5.在抽样调查中,无法避免的误差是( )。
①登记误差②系统性误差③计算误差④抽样误差6.能够事先加以计算和控制的误差是( )。
①抽样误差②登记误差③系统性误差④测量误差7.抽样平均误差反映了样本指标与总体指标之间的( )。
①可能误差范围②平均误差程度③实际误差④实际误差的绝对值8.抽样平均误差的实质是( )。
①总体标准差②全部样本指标的平均差③全部样本指标的标准差④全部样本指标的标志变异系数9.在同等条件下,重复抽样与不重复抽样相比较,其抽样平均误差( )。
①前者小于后者②前者大于后者③两者相等④无法确定哪一个大10.在其他条件保持不变的情况下,抽样平均误差( )。
①随着抽样数目的增加而加大②随着抽样数目的增加而减小③随着抽样数目的减少而减小④不会随抽样数目的改变而变动11.允许误差反映了样本指标与总体指标之间的( )。
①抽样误差的平均数②抽样误差的标准差③抽样误差的可靠程度④抽样误差的可能范围12.极限误差与抽样平均误差数值之间的关系为( )。
①前者一定小于后者②前者一定大于后者③前者一定等于后者④前者既可以大于后者,也可以小于后者13.所谓小样本一般是指样本单位数()。
①30个以下②30个以上③100个以下④100个以上14.样本指标和总体指标( )。
统计第五章练习题

统计第五章练习题部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第五章参数估计<一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内>1.在抽样推断中,必须遵循( >抽取样本。
①随意原则②随机原则③可比原则④对等原则2.抽样调查的主要目的在于( >。
①计算和控制抽样误差②了解全及总体单位的情况③用样本来推断总体④对调查单位作深入的研究b5E2RGbCAP3.抽样误差是指< )。
①计算过程中产生的误差②调查中产生的登记性误差③调查中产生的系统性误差④随机性的代表性误差4.在抽样调查中( >。
①既有登记误差,也有代表性误差②既无登记误差,也无代表性误差③只有登记误差,没有代表性误差④没有登记误差,只有代表性误差5.在抽样调查中,无法避免的误差是( >。
①登记误差②系统性误差③计算误差④抽样误差6.能够事先加以计算和控制的误差是( >。
①抽样误差②登记误差③系统性误差④测量误差7.抽样平均误差反映了样本指标与总体指标之间的( >。
①可能误差范围②平均误差程度③实际误差④实际误差的绝对值8.抽样平均误差的实质是( >。
①总体标准差②全部样本指标的平均差③全部样本指标的标准差④全部样本指标的标志变异系数p1EanqFDPw9.在同等条件下,重复抽样与不重复抽样相比较,其抽样平均误差( >。
①前者小于后者②前者大于后者③两者相等④无法确定哪一个大10.在其他条件保持不变的情况下,抽样平均误差( >。
①随着抽样数目的增加而加大②随着抽样数目的增加而减小③随着抽样数目的减少而减小④不会随抽样数目的改变而变动DXDiTa9E3d11.允许误差反映了样本指标与总体指标之间的( >。
①抽样误差的平均数②抽样误差的标准差③抽样误差的可靠程度④抽样误差的可能范围12.极限误差与抽样平均误差数值之间的关系为( >。
第五章 参数估计

1
X 2 t n1 n2 2
2
2 Sp
n1
n2
X
1
X 2 z
2
2 S12 S 2 n1 n2
2 Sp
2 2 n1 1S1 n2 1S 2
n1 n2 2
20
例题:
分别在城市1和城市2中随机抽取n1=400, n2=500的职工进行调查,经计算两城市职工的 平均月收入及标准差分别为X1=1650元,
22
思考题:
一个研究机构做了一项调查,以确定稳定的吸 烟者每周在香烟上的消费额。他们抽取49位固 定的吸烟者,发现均值为20元,标准差5元。
1.总体均值的点估计是多少?
2.总体均值μ的95%置信区间是什么?
23
思考题解答:
1.总体均值的点估计是20元。
2.总体均值μ的95%置信区间: 随机变量X表示每周香烟消费额,由题意可知,X=20, S=5,1-α=0.95,α=0.05;n=49 属于大样本,σ 未知以S估计。总体均值μ的95%置信区间为
P z Z z 1 2 2
P L U 1
X P z z 1 2 2 n
Step3:将上面等式进行等价变换即可。
P L U 1
第五章 参数估计
第五章 参数估计
利用样本数据对总体特征进行推断,通常在以下 两种情况下进行:
当总体分布类型已知(如:正态),根据样本数据对 总体分布的未知参数进行估计或检验。参数估 计或参数检验。(如:μ或σ为何?) 当总体分布类型未知或知道很少,根据样本数据 对总体的未知分布的形状或特征进行推断。非参 数检验。(如:是否正态分布?是否随机?)
统计习题——精选推荐

卫生统计学习题第二章定量资料的统计描述1. 1985年某省农村30例6-7岁正常男童胸围(cm)测量结果如下:51.6 54.1 54.0 56.9 57.7 55.558.3 55.4 53.8 57.7 51.3 53.8 57.3 54.8 52.1 55.3 54.8 54.7 53.4 57.1 53.1 55.9 51.4 54.6 56.1 61.859.3 56.8 59.8 53.9(1)试编制以上数据的频数表,绘制直方图,概括其分布特征。
(2)用合适的统计量描述其集中趋势和离散趋势。
(3)对样本进行正态性检验第三章定性资料的统计描述1.某地通过卫生服务的基线调查得到如下资料,试作如下分析:(1)计算全人口的性别比;(2)计算育龄妇女(15~49岁)占总人口的百分比;(3)计算总负担系数;(4)计算老年人口系数某地人口构成情况年龄组(岁)男(%)女(%)年龄组(岁)男(%)女(%)0~ 4.2 4.0 45~ 2.4 2.75~ 3.2 3.1 50~ 2.1 2.410~ 4.4 4.2 55~ 1.2 2.215~ 5.5 5.3 60~ 1.3 2.420~ 5.1 5.2 65~ 1.1 1.425~ 6.0 6.1 70~ 0.8 1.230~ 4.3 4.5 75~ 0.5 0.935~ 3.2 3.3 80~ 0.2 0.540~ 2.3 2.5 85~ 0.1 0.2第四章常用概率分布1.假定虚症患者中,气虚型占30%。
现随机抽查30名虚症患者,求其中没有1名气虚型的概率、有4名气虚型的概率。
2.某溶液平均1毫升中含有大肠杆菌3个。
摇均后,随机抽取1毫升该溶液,内含大肠杆菌2个和低于2个的概率各是多少?3.某人群中12岁男童身高的分布近似正态分布,均数为144.00cm,标准差为5.77cm,试估计(1)该人群中12岁男童身高集中在哪个范围?(2)求人群中12岁男童身高的95%和99%参考值范围;(3)求人群中12岁男童身高低于140cm的概率;(4)求人群中12岁男童身高超过160cm的概率;第五章参数估计基础1.某研究表明新研制的一种安眠药比旧安眠药增加睡眠时间。
卫生统计学七版 第五章参数估计基础电子教案

P0.05
第三节 总体均数及总体概率的估计
一、参数估计的基础理论
参数估计区 点间 估估 计计
对总体参数估计 称的 为范 置围 信区C间( I , co用 nfidenicneterv)al
表示,其置信1度 )为,(一般取置95信 %,度即为取 为0.05,此区
间的较小值称为 限置 ,信 较下 大值称为 限置 。信 一上 般进行双 区侧 间的估计。
卫生统计学七版 第五ຫໍສະໝຸດ 参数估 计基础第一节 抽样分布与抽样误差
一、样本均数的抽样分布与抽样误差
……
x15 .55 1 sx0.9617
样本均数的标准差越,大抽样误差就越大
样本均数的标准差称标为准误
x
n
sx
s n
sx称为标准误估计值,简也称标准误
标准误与标准差成正比 ,与样本含量成反比
标准误越大,抽样误差越大。
2、正态近似法
当已知时X: u
n
当未知但n足够大时X:u0.05
s n
X1.96 s n
或:X1.96s X
例5-3(P95) 某医生于2000年在某市随机抽取90名 19岁的健康男大学生,测量了他们的身高,得样本均数 为172.2cm,标准差为4.5cm,试估计该市2000年19岁健 康男性大学生平均身高的95%置信区间 。
对任意分布,在样本含量足够大时,其样本均数的分布都 近似正态分布,且样本均数的均数等于原分布的均数。
二、样本频率的抽样分布与抽样误差
总体率的标准误:
p
(1 )
n
率的标准误的估计值:
sp
p(1 p) n
标准误大抽样误差就大。
第二节 t分布
一、t分布的概念
参数估计

例:确定样本容量1 确定样本容量
• 对某批木材进行检验,根据以往经验,木材长度的标准差 为0.4米,而合格率为90%。现采用重复抽样方式,要求 在95.45%的概率保证程度下,木材平均长度的极限误差 不超过0.08米,抽样合格率的极限误差不超过5%,问必 要的样本单位数应该是多少?
σ = 0. 4
p ± zµ
• 大样本的条件:np≥5且n(1-p) ≥5,由于总体成数 p通常未知,可以用样本成数来近似判断。
对总量指标的区间估计
• 在对总体平均数进行区间估计的基础上, 可进一步推断相应的总量指标,即用总体 单位总数N分别乘以总体平均数的区间下限 和区间上限,便得到相应总量(Nµ)的区 间范围。
1 2
点估计完全正确的概率通常为0。因此, 点估计完全正确的概率通常为 。因此,我们更多的是考虑用 区间估计。 样本统计量去估计总体参数的范围 区间估计。
三、参数区间估计
• 参数区间估计的含义:估计总体参数的区间范围,并给出 区间估计成立的概率值。
∧ ∧
p (θ 1 ≤ θ ≤ θ 2 ) = 1 − α
• 对某批木材进行检验,根据以往经验,木材的合格率为 90%、92%、95%。现采用重复抽样方式,要求在 95.45%的概率保证程度下,抽样合格率的极限误差不超 过5%,问必要的样本单位数应该是多少?
样本成数的单位数
22 ×0.9×0.1 n = z p(12− p) = = 144(棵) 2 ∆x 0.05
• 有两种模式: – 1、根据置信度1-α,求出极限误差∆,并指出总体平均 数的估计区间。 – 2、给定极限误差,求置信度。
成数的区间估计
• 由于总体的分布是(0,1)分布,只有在大样本 的情况下,才服从正态分布。总体成数可以看成 是一种特殊的平均数,类似于总体平均数的区间 估计,总体成数的区间估计的上下限是:
统计学(李荣平)2014-5

P{t>tα(n)}= h(t;n)dt
t (n)
的数tα(n)为t(n)分布的上α分为点。 例:查表求:t0.05(8), t0.95(8)
o
t (n)
第一节 抽样分布
(三)F 分布
设 U ~ 2(n1 ),V ~ 2(n2 ), 且设 U,V 独立,则称随机变量
F U / n1 V / n2
保证质量,规定σ≤0.6mm时,认为生产过程处于良好控制
状态。为此,每隔一定时间抽取20个零件作为一个样本,并
计算样本方差S2。若P{S2≥c } ≤0.01(此时σ=0.6mm),
则认为生产过程失去控制,必须停产检查,问:
(1)C为何值时,S2≥c的概率才小于或等于0.01? (2)若取得的一个样本的标准差S=0.84,生产过程是
第五章 抽样分布与参数估计
主
第一节 抽样分布
要 内
第二节 参数点估计
容
第三节 区间估计
第一节 抽样分布
一、随机样本
总体与个体:试验全部可能的观测值叫总体;试验的 每一个观测值叫个体。
样本容量与样本个数:样本中包含的单位数叫样本容 量;从一个总体中可能抽取多少个样本叫样本个数。
总体容量:总体中所包含的个体数。 有限总体和无限总体:总体容量可数的称有限总体, 不可数的称无限总体。 重置抽样(重复抽样)和无重置抽样(不重复抽样)
X
1 n
n i 1
Xi
为样本均值;称统计量
S 2
1 n1
n i1
(Xi
X )2
为 样本方差 ,称统计量 S
S2
1n
( X X ) 2 为样本标准差 ;统计量
n 1 i1 i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 参数估计基础一、样本均数的抽样分布与抽样误差内 容1. 抽样误差和抽样分布2. 样本均数抽样分布和抽样误差1. 抽样误差和抽样分布n误差泛指实测值和真实值之差。
按其产生原因与性质分两 大类:系统误差和随机误差。
抽样误差是一种随机误差。
n抽样误差由于生物固有的个体变异,从某一总体中随机抽取一个样 本,所得样本统计量与相应总体参数往往是有差异的,这种 差异称为抽样误差(sampling error)。
n误差产生的原因n系统误差:由受试对象、研究者、仪器设备、研究方法等确定性 原因造成,有倾向性,可避免。
n随机误差:由多种无法控制的偶然因素引起的,无倾向性,不可 避免。
n抽样误差:产生的根本原因是个体变异、产生的直接原因是抽样。
n抽样分布n由于抽样误差存在,从同一总体中随机抽取若干份样本, 所得样本统计量是不一致的,差异无法避免但其存在一定的分布规律。
n 正态分布总体样本均数抽样分布的电脑试验n假定某年某地所有13岁女生的身高服从总体均数为155.4 cm ,总 体标准差为5.3cm 的正态分布 。
用计算机从该总体中 随机抽样,每次抽取30例组成一份样本,重复抽样100次,计算 每份样本的平均身高。
() 2 155.4,5.3 N 2. 样本均数抽样分布和抽样误差n电脑试验表明,正态分布总体样本均数抽样分布具有以 下特点:n样本均数恰好等于总体均数极其罕见;n样本均数之间存在差异;n样本均数围绕总体均数,中间多、两边少,左右基本对称,呈 近似正态分布;n样本均数间的变异小于原始变量值间的变异。
PERCENT30x MIDPOINT0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0n 非正态分布总体样本均数抽样分布的电脑实验n图 (a ) 是正偏峰分布原始数据对应的直方图,用计算机随机抽取 样本量分别为5, 10, 30和50的样本各1000份,计算样本均数并绘 制4个直方图。
(a ) 原始数据n =5P E RC E N T30m m MI D P O I NT0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0n=10PERCENT30mm MIDPOINT0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0n=30PERCENT30mm MIDPOINT0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0n=50PERCENT30mm MIDPOINT0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 . 0 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3 . 0 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5 3 . 6 3 . 7 3 . 8 3 . 9 4 . 0 4 . 1 4 . 2 4 . 3 4 . 4 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 0(d ) n =30 (e ) n =50(b ) n =5 (c ) n =10n 中心极限定理表明n从正态总体 中随机抽取例数为 n 的多个样本,样本均数服从正态分布;即使是从偏态总体中随机抽样,当 n 足够大时(如 n >30),样本均数也近似正态分布,且样本均数的均数等于原分 布的均数。
( ) 2, N m sn均数抽样误差n由固然存在的个体变异和抽样造成的样本均数与样本均数 及样本均数与总体均数之间的差异称为均数的抽样误差。
小 结1. 抽样分布和抽样误差n样本统计量抽样分布n误差含义及误差产生原因2. 样本均数抽样分布和抽样误差n正态分布总体样本均数抽样分布规律n非正态分布总体样本均数抽样分布规律第五章 参数估计基础二、样本频率的抽样分布与抽样误差内 容1. 样本均值抽样分布和抽样误差回顾2. 样本频率抽样分布和抽样误差1. 样本均值抽样分布和抽样误差 (1)正态分布总体样本均数抽样分布特点(2)非正态分布总体样本均数抽样分布规律(3)均值标准误的含义和计算(1)正态分布总体样本均数抽样分布特点n样本均数等于总体均数的情况极其罕见; n样本均数之间存在差异;n样本均数围绕总体均数,呈近似正态分布; n样本均数标准误小于原始变量的标准差。
(2)非正态分布总体样本均数抽样分布规律n虽然原分布是偏态分布,但当抽取样本量n足够大时(如 n>30) 样本均数也近似正态分布,且样本均数的均数等 于原分布的均数。
(3)均值标准误的含义和计算2. 样本频率的抽样分布与抽样误差 电脑摸球实验,表% 20 = p 时的随机抽样结果( 50 = i n )黑球比例(%)样本频数 样本频率(%) 8 2 2.00 10 4 4.00 12 8 8.00 14 7 7.00 16 11 11.00 18 13 13.00 20 19 19.00 22 11 11.00 24 11 11.00 26 6 6.00 28 3 3.00 30 4 4.00 32 1 1.00 合计100100.00n样本频率抽样误差n从同一总体中随机抽出观察单位相等的多个样本,样本率与总体 率及各样本率之间都存在差异,称为频率的抽样误差。
n样本频率的标准误n表示样本频率抽样误差大小的指标即为频率的标准误。
小 结1. 样本均值抽样分布和抽样误差知识回顾2. 样本频率抽样分布和抽样误差n样本频率分布规律n频率标准误含义和计算第五章 参数估计基础三、t 分布的概念与特征正态分布在统计应用中,可以把任何一个均数为µ,标准差为σ的正态分布N (µ , σ 2 )转变为 µ=0 σ=1的标准正态分布,即将正态变量值X 用 来代替。
由于 服从正态分布,故 服从标准正态分布N (0,1)。
X XX Z s m- = sm- = X Z 一、t 分布的概念3实际资料的分析中,由于σ 往往未知,故标准化转换演变为:服从 υ = n 1 的 t 分布,即:XS X t m - = nS X S X X / m m - = - 45υ=∞(标准正态分布)υ=5υ=1 0 1 2 3 4 51 2 3 4 5 f (t )0.10.20.3 61. t 分布曲线是单峰分布,它以0为中心,左右对称。
2. t 分布的形状与样本例数 n 有关。
自由度越小,则越大,t 值越分散,曲线的峰部越矮,尾部则偏高。
3. 当 n →∞时,则 S 逼近 σ,t 分布逼近标准正态分布。
t 分布不是一条曲线,而是一簇曲线。
t 分布曲线特点:X S 8与单侧概率相对应的 t 值用 表示,与双侧概率相对应的t 值用 表示。
由于 t 分布是以0为中心的对称分布,表中只列出了正值, 故查表时,不管 t 值正负只用绝对值表示。
正确使用 t 界值表( ) n a , t ( ) n a , 2 / t 9第五章 参数估计基础四、总体均数和概率的区间估计一、参数估计的概念统计推断包括参数估计和假设检验。
参数估计就是用样本指 标(统计量)来估计总体指标(参数)。
点估计(point estimation)参数估计区间估计(interval estimation)1. 点估计用样本统计量直接作为总体参数的估计值。
例如 于2000年测得某地27例健康成年男性血红蛋白量的 样本均数为125g/L ,试估计其总体均数。
,即认为2000年该地所有健康成年男性血红蛋白 量的总体均数为125g/L 。
X μ ®2. 区间估计按预先给定的概率(1-α)估计总体参数的可能范围,该范围 就称为总体参数的1-α置信区间(confidence interval, CI)。
预先给定的概率(1-α)称为置信度,常取95%或99%。