二倍角的三角函数教学设计

合集下载

《6.2二倍角公式》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一上册

《6.2二倍角公式》教学设计教学反思-2023-2024学年中职数学高教版21拓展模块一上册

《二倍角公式》教学设计方案(第一课时)一、教学目标1. 掌握二倍角公式的概念和基本形式。

2. 能够运用二倍角公式进行简单的三角函数计算。

3. 培养数学思维和问题解决能力。

二、教学重难点1. 教学重点:理解二倍角公式的推导过程及实际应用。

2. 教学难点:灵活运用二倍角公式解决复杂的三角函数问题。

三、教学准备1. 准备教学素材:包括PPT、图片、例题等。

2. 制定教学计划:根据学生水平和教材内容,合理安排教学内容和时间。

3. 准备数学工具:准备计算器,以便学生计算和验算。

4. 提醒学生:提前预习,准备好笔记本和笔,积极参与课堂讨论。

四、教学过程:本节课是《二倍角公式》教学设计方案(第一课时)的主要部分,主要分为以下几个环节:1. 导入环节:首先,我会引导学生回顾什么是二倍角,让学生明白二倍角是在一个角的基础上再乘以2得到的。

这个过程可以通过简单的问答形式进行,让学生通过回忆旧知识来为新知识的理解做好准备。

2. 探索新知:接下来,我会引导学生探索二倍角公式。

首先,我会给出一些简单的练习题,让学生通过自己的思考和计算来验证二倍角公式的正确性。

在这个过程中,我会鼓励学生提出自己的疑问和困惑,并给予及时的解答。

3. 讲解和演示:在学生探索新知的过程中,我会适时进行讲解和演示。

我会详细解释二倍角公式的数学原理,并通过图形和图表等形式来帮助学生更好地理解。

同时,我也会展示一些相关的公式应用实例,让学生了解二倍角公式在实际问题中的应用。

4. 实践活动:为了进一步巩固学生对二倍角公式的理解和应用,我会设计一些实践活动。

例如,让学生自己探索三倍角、四倍角等其他倍角公式,或者让学生应用二倍角公式解决一些实际问题。

这些实践活动可以帮助学生将理论知识转化为实际应用能力。

5. 反馈与评价:最后,我会收集学生的反馈,了解学生对本节课的掌握情况。

同时,我也会根据学生的表现和反馈来调整教学策略,以提高教学效果。

教学设计方案(第二课时)一、教学目标1. 理解二倍角公式的推导过程,掌握其基本应用。

教案二倍角的三角函数

教案二倍角的三角函数
例3求函数 的值域。
例4求证: 的值是与α无关的定值。
例5化简:
例6求证:
例7利用三角公式化简:sin50°(1+ )
达标ห้องสมุดไป่ตู้测
1.若 ≤α≤ ,则 等于.
2. 的值等于.
°cos24°sin78°cos48°的值为.
4. 的值等于.
5.已知 ,则 的值等于.
6.已知 (0<α< )的值等于.
7.求值tan70°cos10°( tan20°-1).
导入示标
1.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次)
2.特别注意公式的三角表达形式,且要善于变形:

这两个形式今后常用
目标三导
(一)预习指导
1.有关公式:
(1) =;
(2) =;
(3) =;
(二)典型例题选讲:
例1化简:
例2求证:[sin (1+sin )+cos (1+cos )]×[sin (1-sin )+cos (1-cos )]=sin2
格一课堂教学方案
课题名称
3.2.1二倍角的三角函数(2)
三维目标
1.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次)
2.特别注意公式的三角表达形式,且要善于变形:

这两个形式今后常用
重点目标
理解倍角公式,用单角的三角函数表示二倍欠的三角函数
难点目标
灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式
8.求 的值。
9.已知 , ,求sin4α的值。
反思总结
1.知识建构
2.能力提高
3.课堂体验
课后练习
章节:课时:2备课人:陈清二次备课人:

二倍角公式教学设计整理版

二倍角公式教学设计整理版

二倍角公式教学设计整理版【教学设计整理版】二倍角公式的教学设计教学目标:1.理解二倍角的概念和性质;2.掌握二倍角的计算方法;3.能够灵活运用二倍角公式解决实际问题。

教学重点:1.二倍角概念的理解;2.二倍角公式的掌握;3.实际问题的解决能力。

教学难点:1.灵活运用二倍角公式解决实际问题;2.将角度问题转化为二倍角公式求解。

教具准备:1. PowerPoint课件;2.白板、白板笔。

教学过程:Step 1 引入新知识(5分钟)1.引导学生回顾正弦定理和余弦定理的内容。

2.提问:在解决三角函数问题中,有没有一些特殊的角度,比如原来的角度的两倍?3.导入二倍角的概念,并与学生共同探讨二倍角的性质。

Step 2 二倍角公式的推导(10分钟)1. 在白板上写出正弦和余弦函数的定义式:$sin\theta =\frac{a}{c}$, $cos\theta = \frac{b}{c}$。

2.提问:如何将正弦和余弦函数的角度变为原来的两倍?3. 导出正弦函数的二倍角公式:$sin2\theta = 2sin\thetacos\theta$。

4.提问:如何将余弦函数的角度变为原来的两倍?5. 导出余弦函数的二倍角公式:$cos2\theta = cos^2\theta -sin^2\theta$ 或 $cos2\theta = 2cos^2\theta - 1$。

Step 3 二倍角公式的运用(15分钟)1.使用示例和图像演示二倍角公式的计算过程,引导学生掌握二倍角公式的具体运用方法。

2.解答学生提出的相关问题,并进行再次强调和巩固。

Step 4 实际问题的解决(20分钟)1.准备一些和角度有关的实际问题,让学生运用二倍角公式进行求解。

2.学生个人或小组合作解决问题,鼓励他们灵活运用二倍角公式并进行推理推导。

Step 5 拓展与应用(15分钟)1.引导学生思考:二倍角公式可以用于什么实际问题的求解中?2.探究二倍角公式在几何图形中的运用。

教学设计2:二倍角的三角函数【区一等奖】

教学设计2:二倍角的三角函数【区一等奖】

二倍角的三角函数(第2课时)教学目标:1. 理解化归思想在公式推导中的作用2.灵活运用二倍角公式进行三角恒等变换。

重点:二倍角公式的灵活运用难点: 灵活运用二倍角公式进行三角恒等变换教学过程:一、回顾:二倍角公式. sin2α=2sinαcosα,(S2α)cos2α=cos2α-sin2α,(C2α)二、学生活动(数学应用):例1 化简.sin )6(sin )6(sin 222απαπα-++-例2 求证:1)10tan 31(50sin 00=+例 3 在半圆形钢板上截取一块矩形材料,怎样截取能使这个矩形的面积最大?解 如图,设 ∠AOB =θ,且θ为锐角,半圆的半径为R ,则面积最大的矩形ABCD 必内接于半圆O,且两边长分别为AB =Rsinθ,DA =2OA =2Rcosθ.这个矩形的面积为S矩形ABCD=AB·DA =Rsinθ·2Rcosθ=R2sin2θ.所以,当sin2θ=1(θ为锐角),即θ=45°时,矩形ABCD 的面积取得最大值R2.答 2时,所截矩形的面积最大.例4 已知5sin 2,,1342ππαα=<<求sin 4,cos 4,tan 4ααα的值. 解:由,42ππα<<得22παπ<<. 又因为5sin 2,13α=22512cos 21sin 211313αα⎛⎫=--=-=- ⎪⎝⎭. 于是512120sin 42sin 2cos 221313169ααα⎛⎫==⨯⨯-=- ⎪⎝⎭; 225119cos 412sin 21213169αα⎛⎫=-=-⨯= ⎪⎝⎭;120sin 4120169tan 4119cos 4119169ααα-===-.三 练习:课本122页 练习1,2,3。

四 小结:二倍角公式进行三角恒等变换,体会化归转化思想和函数思想在解题中的应用。

五 作业:课本 123页 习题 4,5,6,7。

二倍角的正弦余弦正切公式教学设计

二倍角的正弦余弦正切公式教学设计

二倍角的正弦余弦正切公式教学设计一、教学目标:1.理解二倍角的概念及其在三角函数中的应用。

2.掌握二倍角的正弦、余弦、正切公式。

3.能够灵活运用二倍角公式解决相关的三角函数题目。

二、教学重点:1.二倍角的概念及应用。

2.二倍角的正弦、余弦、正切公式。

三、教学难点:1.理解并应用二倍角公式解决复杂的三角函数问题。

四、教学过程:Step 1:导入引入(10分钟)1.利用平时学过的知识,复习一下三角函数的基本概念和公式,引导学生回忆起正弦、余弦、正切的定义。

2.提问:二倍角是什么?它在三角函数中有什么应用?Step 2:引出二倍角公式(15分钟)1.导入:给学生出示一道题目:已知角A的正弦值是0.5,求角2A 的正弦值。

学生尝试解答,引导他们思考角2A和角A之间的关系。

2.引导发现:令角2A为B,可知2A=B,角A=A/23. 定义:将A/2称为角A的二倍角(denote:2A)。

4.解题思路:利用三角函数的定义,将角A的正弦值解析成二倍角的正弦值,然后求解。

Step 3:二倍角正弦公式的推导和应用(25分钟)1. 推导:由三角函数的定义,我们可以得到正弦的二倍角公式:sin(2A)=2sinAcosA。

通过几何分析和三角函数的性质,可以推导出该公式。

2.例题:给学生出示几道题目,要求用二倍角公式计算正弦的值。

让学生在计算过程中理解公式的应用和意义。

3.错题讲解:对学生在计算过程中容易出错的题目进行整理和讲解,加深学生对二倍角公式的理解和应用能力。

Step 4:二倍角余弦公式的推导和应用(25分钟)1. 推导:利用三角函数的关系,可以推导出余弦的二倍角公式:cos(2A)=cos2A-2sin²A。

2.例题:给学生出示几道题目,要求用二倍角公式计算余弦的值。

让学生在计算过程中理解公式的应用和意义。

3.错题讲解:对学生在计算过程中容易出错的题目进行整理和讲解,加深学生对二倍角公式的理解和应用能力。

二倍角公式教案

二倍角公式教案

二倍角公式教案教学目标:1. 掌握二倍角公式的概念和基本形式。

2. 理解二倍角公式的几何意义和代数意义。

3. 能够应用二倍角公式解决相关的几何和代数问题。

教学重点:1. 二倍角公式的数学表达。

2. 二倍角公式在几何中的应用。

教学难点:1. 二倍角公式的推导和应用。

2. 二倍角公式与其他三角函数公式的关系。

教学准备:1. 教师准备一份二倍角公式的笔记和示例。

2. 学生准备纸和笔。

教学过程:一、导入(5分钟)教师简单回顾一下学生之前学过的三角函数公式,如正弦、余弦、正切的基本关系等。

二、讲解(20分钟)1. 教师引入二倍角公式的概念,即将角的角度倍增,得到的新角称为二倍角。

2. 教师给出二倍角公式的几何意义和代数意义。

几何意义:将角A的角度倍增得到角B,角A与角B的关系是什么?代数意义:将三角函数的角度加倍得到新的三角函数,如sin2A、cos2A等。

3. 教师给出二倍角公式的具体形式和推导过程。

sin2A = 2sinAcosAcos2A = cos²A - sin²A = 2cos²A - 1 = 1 - 2sin²Atan2A = 2tanA / (1 - tan²A)4. 教师通过几个具体的示例,向学生展示二倍角公式的应用。

三、练习(15分钟)学生完成教师布置的练习题,巩固对二倍角公式的理解和应用。

四、巩固(10分钟)教师提出几个综合性问题,让学生结合二倍角公式进行解答,检验学生的应用能力。

五、总结和拓展(5分钟)教师对本节课所学的二倍角公式进行总结,强调其重要性和应用场景。

同时,鼓励学生拓展学习其他有关三角函数的公式和概念。

六、作业(2分钟)布置课后作业,要求学生继续练习二倍角公式的应用题,并思考与其他三角函数公式的联系与差异。

教学反思:本节课主要介绍了二倍角公式的概念、形式和推导过程,并通过练习和示例加深了学生对二倍角公式的理解和应用。

在教学过程中,可以结合具体的问题和实例,使学生更好地理解和掌握二倍角公式的几何和代数意义。

3.2.2两倍角的三角函数(2)

3.2.2两倍角的三角函数(2)

第三章 三角恒等变换第七课时 二倍角的三角函数(2)教学目的: 1、理解倍角公式的升幂、降幂作用。

2、能灵活地运用倍角公式化简、求值、证明。

教学重点、难点:灵活地运用倍角公式化简、求值、证明。

教学过程:一、问题情境回顾二倍角公式及其结构特征。

如何灵活地运用倍角公式进行化简、求值、证明?二、学生活动试证明:ααα3sin 4sin 33sin -=试写出二倍角公式的一些变形公式。

三、数学建构变形1: αααcos sin 22sin = 变形2: 2)cos (sin 2sin 1ααα±=±变形3: ααα22sin 211cos 22cos -=-= (升幂 )变形4:22cos 1sin ,22cos 1cos 22αααα-=+= (降幂) 四、数学应用 例1、化简(1)απαπα222sin )6(sin )6(sin -++-(2)︒︒⋅︒︒144cos 72cos 36cos 18cos解题回顾:(1)降幂 (2)“1”技巧:乘上“︒⨯18sin 218sin 21”例2、已知21)4tan(=+απ,求ααα2cos 1cos 2sin 2+-的值.解题回顾:弦化切例3、求证:1)10tan 31(50sin =︒+︒解题回顾:切化弦例4、在半圆形钢板上截取一块矩形材料,怎样截取能使这个矩形的面积最大?五、课堂练习:P122 练习六、课堂小结:巩固练习七班级 学号 姓名A1.=52cos5cos ππ A2.=+=θθθ44cos sin ,532cos 则 A3. 化简: ︒⋅︒⋅︒70sin 50sin 10sinA4化简: ︒︒⋅︒80cos 40cos 20cosB5 若2tan =θ,求θθ2cos 21sin 412+的值。

B6 若θθcos 2sin -=,求θθ2cos 22sin +的值。

B7 若316sin =⎪⎭⎫⎝⎛-απ,求⎪⎭⎫ ⎝⎛+απ232cos 的值B8.化简:x x x x x 2sin 2cos sin cos sin 2244-++B9(选做).求证: θθθθθθθθθsin 2cos sin 1cos sin 1cos sin 1cos sin 1-=+---+--+-。

高中高二数学二倍角的三角函数教案设计

高中高二数学二倍角的三角函数教案设计

高中高二数学二倍角的三角函数教案设计教案设计:高中高二数学二倍角的三角函数一、教学目标:1. 理解二倍角的概念,并掌握二倍角的性质。

2. 掌握二倍角的三角函数公式。

3. 能够运用二倍角的三角函数公式解决实际问题。

二、教学内容:1. 二倍角的概念和性质。

2. 二倍角的三角函数公式。

三、教学过程:步骤一:导入新知识1. 谈论平时的学习和应用中是否有用到过二倍角的概念和公式。

2. 引出本节课的学习内容:二倍角的三角函数。

步骤二:概念讲解和性质说明1. 给出二倍角的定义:在原角的基础上,角度扩大一倍后得到的角即为二倍角。

2. 分析二倍角的正弦、余弦、正切的性质,带入图像和具体数值进行说明。

步骤三:三角函数公式的推导与运用1. 讲解二倍角的三角函数公式的推导过程,并给出公式的表达形式。

2. 讲解公式中的特殊情况,如角度为0°、90°、180°等情况下的三角函数值。

3. 运用二倍角的三角函数公式解决一些实际问题,如角度为30°、45°、60°等情况下的三角函数值的计算。

步骤四:练习与巩固1. 设计一些针对二倍角的三角函数公式的练习题,让学生进行练习并互相交流解题方法。

2. 布置相关的课后习题,供学生进行巩固和拓展。

四、教学手段:1. 板书:绘制二倍角的三角函数公式推导过程和相关例题。

2. 多媒体:播放相关的视频和动画,引导学生更好地理解和掌握知识。

五、教学评价:1. 教师针对学生在课堂上的表现进行口头评价,并及时纠正和解答学生的问题。

2. 布置课后作业,检验学生对二倍角和三角函数公式的掌握情况。

六、教学延伸:可以设计更多的实际问题和练习题,帮助学生进一步巩固和应用二倍角的三角函数知识。

也可以引导学生研究更多二倍角的性质和相关公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3 二倍角的三角函数
一、教学目标
1、知识与技能
以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用。

2、过程与方法
通过二倍角的正弦、余弦和正切公式的推导,体会转化化归、由一般到特殊的数学思想方法。

3、情感、态度、价值观
通过学习,使同学对三角函数之间的关系有更深的认识,增强学生逻辑推理和综合分析能力。

二、教学重、难点
教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用.
三、教材分析
本节在学习了两角和与差的三角函数的基础上,进一步学习具有“二倍角”关系的正弦、余弦、正切公式,它既是两角和与差的公式的特殊化,又为以后的学习提供了理论基础,因此,对这一节的学下就显得尤为重要。

四、教学流程与教学内容
(一)情景引入
生活中我们常常遇见这样一个现象:对于一件商品,刚出现的时候,价格会非常高,随着时间的推移,商品的价格会逐渐下降,甚至于出现打折的情况,反过来看其实就是原始价格是现在价格的多少倍。

对于这个“倍”字,我们自然而然的想到乘法和除法,对于乘法我们知道就是加法的另外一种运算,例如:6=3+3=3⨯2。

同样的角与角之间也有一个倍数关系,例如: 60度角是30度角的二倍,角α2是角α的二倍。

而对于角都有三角函数值,那么角α2的三角函数值怎样计算呢?由乘法我们可以知道ααα+=2,那么对于角α2就可以转换成角αα+。

首先回顾一下两角和与差的正弦、余弦和正切公式
βαβαβαsin cos cos sin )sin(+=+ ; βαβαβαsin cos cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ ;βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(⋅-+=+ ; β
αβαβαtan tan 1tan tan )tan(⋅+-=- 我们由此能否得到sin 2,cos 2,tan 2ααα的公式呢?(学生自己动手推导并说明过程)
【设计意图】高中学生已经具有丰富的生活经验和一定的科学知识,因此选择感兴趣的、与其生活实际密切相关的素材,此情景设计应该有助于学生对知识的发生发展的理解,而对于这一部分知识只有先理解了,后面对于公式的记忆和应用才能信手拈来。

(二)公式推导:
()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;
()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;
()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα
+=+=
=--. 思考:
1、把上述关于α2cos 的式子能否变成只含有αsin 或αcos 形式的式子呢? 22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;
22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.
2、把上述关于αα2sin ,2cos 的式子能否变成只含有αtan 形式的式子呢?
3、二倍角公式中,“倍”字如何理解?
(1)4sin (2)α6cos (3)α
α2tan 12tan 22- (4)2)2cos 2(sin αα+ 【设计意图】让学生深刻理解体会二倍角之间的倍数关系,学生通过自己动手检验公式是否正确,从中让学生自己发现并总结。

(三)例题讲解
例1、 (四)巩固练习
(1)= 15cos 15sin
(2)=-18cos
22π (3)=-8cos 8sin 22π
π
(4)=12cos 24cos 48cos 48sin
8ππππ (5)=-2sin 2cos
44αα (6)
=+--α
αtan 11tan 11
(五)直击高考
.2sin ,2tan ,2cos ,2sin 20,135sin 的值求,<<已知ααααπαα=
已知函数x x x x f 2cos 2cos sin 32)(+=,求)(x f 的最大值和最小正周期。

(学生在此题的基础上提出其他问题并解决)
【设计意图】:对于例题的讲解以及练习巩固和延伸,例题和练习都很简单,直接利用公式就可以解决,主要目的是帮助学生巩固三角函数倍角本质特征;而对于延伸的一个题目主要是引导学生自主探究三角函数有关问题的思想方法以及三角函数的综合应用。

(六)课堂小结:
(1)二倍角的正弦、余弦、正切公式
(2)对公式的理解以及灵活运用,注意“倍”角是相对的
(七)课后作业:
1、教材123页 练习1 题
2、4
2、思考:如何得到三倍角公式?
五、 课后反思
教学设计紧扣课程标准的要求,重点放在二倍角三角函数的理解上。

背景很简单,就是对乘法的理解,认知过程符合学生的认知特点和学生的身心发展规律,这样有利学生的思考。

通过问题引导学生自主探究二倍角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

《课标》把发展学生的数学应用意识和创新意识作为其目标之一, 在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间, 促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力, 发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断。

在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、解决实际问题,增进了他们对数学的理解和应用数学的信心。

相关文档
最新文档