数字化段修生产调度指挥系统
铁路列车调度指挥系统(TDCS)、调度集中系统(CTC)维护管理办法

铁路列车调度指挥系统(TDCS)、调度集中系统(CTC)维护管理办法第一章总则第一条铁路列车调度指挥系统(以下简称TDCS)和调度集中系统(以下简称CTC)是全路各级调度指挥的基础装备,是重要的行车设备。
为规范TDCS/CTC系统的维护管理,提高系统的稳定可靠性,确保系统正常运行,制定本办法。
第二条 TDCS/CTC系统由中国铁路总公司(以下简称总公司)、铁路局、车站三级构成,综合了铁路信号、计算机、网络通信和现代控制技术,具有点多线长、布局成网、分散维护和集中管理的特点。
第三条 TDCS/CTC系统直接涉及行车安全,必须自成体系,单独成网,独立运行,严禁与其它系统直接联网。
对外提供信息和增加标准用户外终端时,应经总公司运输局电务部批准。
第四条 TDCS/CTC系统应采用网络安全技术,在与其它系统交换信息时,应采用安全可靠的网络隔离设备和措施,确保系统网络安全和信息安全。
第五条本办法适用于普速铁路TDCS/CTC、高速铁路CTC系统的维护管理。
第二章组织机构与职责第一节组织机构第六条 TDCS/CTC系统维护管理实行总公司、铁路局、电务段三级管理。
第七条总公司运输局电务部是全路TDCS/CTC系统的业务主管部门。
电务部电务试验室负责总公司TDCS/CTC中心系统的维护管理,并指导全路TDCS/CTC系统维护工作。
第八条铁路局电务处是铁路局TDCS/CTC系统的业务主管部门。
第九条铁路局TDCS/CTC中心机房所在地应设立TDCS/CTC维护机构,维护机构一般设置在电务段,也可设置在铁路局。
第十条电务段是TDCS/CTC系统的维护单位,应设置专业技术主管人员。
第二节工作职责第十一条总公司运输局电务部负责制定TDCS/CTC系统技术政策、技术标准及规章制度,负责全路TDCS/CTC系统网络的规划。
第十二条总公司电务部电务试验室职责:(一)负责总公司TDCS/CTC中心系统的日常维护和管理。
(二)指导和协调铁路局TDCS/CTC系统维护工作。
《铁路列车调度指挥系统(TDCS)、调度集中系统(CTC)维护管理办法》(2014)330

TG /XH 211 -2014铁路列车调度指挥系统(TDCS)、调度集中系统(CTC)维护管理办法第一章总则第一条铁路列车调度指挥系统(以下简称TDCS)和调度集中系统(以下简称CTC)是全路各级调度指挥的基础装备,是重要的行车设备。
为规范TDCS/CTC系统的维护管理,提高系统的稳定可靠性,确保系统正常运行,制定本办法。
第二条 TDCS/CTC系统由中国铁路总公司(以下简称总公司)、铁路局、车站三级构成,综合了铁路信号、计算机、网络通信和现代控制技术,具有点多线长、布局成网、分散维护和集中管理的特点。
第三条 TDCS/CTC系统直接涉及行车安全,必须自成体系,单独成网,独立运行,严禁与其它系统直接联网。
对外提供信息和增加标准用户外终端时,应经总公司运输局电务部批准。
第四条 TDCS/CTC系统应采用网络安全技术,在与其它系统交换信息时,应采用安全可靠的网络隔离设备和措施,确保系统网络安全和信息安全。
第五条本办法适用于普速铁路TDCS/CTC、高速铁路CTC系统的维护管理。
第二章组织机构与职责第一节组织机构第六条 TDCS/CTC系统维护管理实行总公司、铁路局、电务段三级管理。
第七条总公司运输局电务部是全路TDCS/CTC系统的业务主管部门。
电务部电务试验室负责总公司TDCS/CTC中心系统的维护管理,并指导全路TDCS/CTC系统维护工作。
第八条铁路局电务处是铁路局TDCS/CTC系统的业务主管部门。
第九条铁路局TDCS/CTC中心机房所在地应设立TDCS/CTC维护机构,维护机构一般设置在电务段,也可设置在铁路局。
第十条电务段是TDCS/CTC系统的维护单位,应设置专业技术主管人员。
第二节工作职责第十一条总公司运输局电务部负责制定TDCS/CTC系统技术政策、技术标准及规章制度,负责全路TDCS/CTC系统网络的规划。
第十二条总公司电务部电务试验室职责:(一)负责总公司TDCS/CTC中心系统的日常维护和管理。
生产指挥系统方案

生产指挥系统方案引言生产指挥系统是一个用于管理和控制生产任务的软件系统。
它集成了生产计划、物料管理、设备调度、质量控制等功能,旨在提高生产效率、降低成本,并确保产品质量和交货周期的稳定性。
本文档将分析生产指挥系统的需求,并提出相应的解决方案。
一、需求分析1.1 功能需求生产指挥系统应具备以下基本功能:•生成生产计划:根据客户订单和库存情况,生成生产计划并进行排程。
•物料管理:管理采购、入库、出库、退货等物料操作,确保生产所需物料的供应。
•设备调度:根据生产计划和设备利用率,进行设备的调度和维护。
•质量控制:通过检测和追溯,确保产品质量符合标准要求。
•任务分配:将生产计划转化为具体的操作任务,并分配给相应的人员执行。
•实时监控:提供实时看板和报表,监控生产状态、物料库存、设备稼动率等关键指标。
1.2 性能需求生产指挥系统的性能需求包括以下几个方面:•响应时间:系统响应用户操作的时间应控制在毫秒级别,以提供良好的用户体验。
•数据处理能力:系统应能处理大量的数据,并支持快速查询和分析能力。
•并发处理能力:系统应能同时处理多个用户的请求,保证稳定的性能表现。
•可扩展性:系统应支持灵活的扩展,以满足不同规模企业的需求。
二、系统架构生产指挥系统的架构设计如下:2.1 前端架构前端采用Web应用程序的形式实现,主要使用HTML、CSS和JavaScript技术。
前端应用通过HTTP协议与后端进行通信,并向用户提供交互界面。
2.2 后端架构后端采用三层架构,分为表现层、业务逻辑层和数据访问层。
•表现层:接收用户请求,向用户返回响应结果,并进行用户界面的渲染。
前端界面通过HTTP请求调用表现层的API接口。
•业务逻辑层:处理用户请求的业务逻辑,包括生成生产计划、物料管理、设备调度、质量控制等功能。
•数据访问层:负责与数据库进行交互,提供数据的访问和存储功能。
2.3 数据库架构系统采用关系型数据库存储数据,可选择MySQL、Oracle等数据库管理系统。
指挥调度系统解决方案

指挥调度系统解决方案
《指挥调度系统解决方案》
随着科技的不断发展,各行各业对于提高工作效率和管理能力的需求也越来越高。
在交通运输、物流配送、应急救援等需要大量协调和调度的行业中,指挥调度系统成为了一种重要的解决方案。
指挥调度系统是一种利用信息技术实现对人、车、物等资源进行有效调度和管理的系统。
通过集成GPS定位、移动通信、
数据分析和人工智能等技术,可以实现对车辆位置、运输路线、货物状态等信息的实时监控和管理,从而提高工作效率、降低成本、减少事故风险。
在交通运输行业,指挥调度系统可以帮助企业实现对车辆的实时监控和调度,提高运输效率和安全性。
在物流配送行业,系统可以帮助企业优化路线规划和货物跟踪,提高配送效率和客户满意度。
在应急救援行业,系统可以帮助相关部门对资源进行快速调配和协调,提高救援效率和响应速度。
指挥调度系统的应用不仅可以帮助企业提高管理效率,也可以为用户提供更加便捷、安全的服务体验。
随着技术的不断进步,指挥调度系统将会在更多行业中得到应用,为企业和社会带来更多的便利和效益。
铁路调度指挥系统

铁路调度指挥系统铁路调度指挥系统是指用于管理和控制铁路运输的信息化系统。
随着铁路运输的快速发展和需求的增加,传统的人工调度已经无法满足要求。
铁路调度指挥系统的出现,极大地提高了铁路运输的效率和安全性。
一、概述铁路调度指挥系统是基于计算机技术和通信技术的综合应用。
它集成了列车运行计划、列车运行控制、调度命令发布、车辆位置跟踪等功能,实现了对铁路运输全过程的监控和管理。
二、系统架构铁路调度指挥系统采用分布式架构,包括中央调度台、地方调度台和车站终端。
中央调度台负责全网的调度和控制,地方调度台负责区域内的细致管理,车站终端用于与列车进行交互。
三、功能特点1. 调度优化:铁路调度指挥系统通过模型算法和优化技术,实现列车运行计划的自动化生成和优化,减少列车之间的间隔时间,提高线路的通行能力。
2. 实时监控:系统能够实时监控列车的位置、速度、状态等信息,及时发现和处理运行异常情况,确保列车安全运行。
3. 快速响应:系统能够根据实时交通情况,快速生成调度命令并下发给相关人员和设备,以保证列车运行的平稳性和高效性。
4. 数据分析:系统可以对历史数据进行分析和统计,为运输部门提供决策支持和运营优化建议。
四、运行流程1. 列车运行计划制定:基于列车的时刻表和运行需求,系统自动生成列车运行计划。
2. 调度命令发布:中央调度台根据运输需求,生成调度命令并下发给地方调度台和车站终端。
3. 列车运行控制:地方调度台和车站终端通过系统对列车进行运行控制,包括发车、停车、调速等操作。
4. 列车状态监控:系统实时监控列车位置、速度和状态,及时发现运行异常情况。
5. 故障处理:系统能够自动检测列车故障情况,并协助调度人员进行故障处理和应急措施的调度。
五、应用效果铁路调度指挥系统的应用,使得铁路运输的效率大大提升。
它能够有效减少列车之间的间隔时间,提高线路的通行能力,降低了运输成本。
同时,系统的实时监控和快速响应能力,保障了列车的安全运行,减少了事故的发生。
建设智能化生产调度系统的工作方案

建设智能化生产调度系统的工作方案如今,随着工业化和信息化水平的不断提升,传统的生产调度方式已经不能满足现代企业生产的需求。
为了提高生产效率、降低生产成本、优化生产调度流程,建设智能化生产调度系统已成为众多企业的共同选择。
本文将从系统建设的背景与意义、关键技术及应用、工作方案执行及效果评估等方面,详细阐述建设智能化生产调度系统的工作方案。
一、背景与意义随着市场竞争日益激烈,企业需要不断提高生产效率,降低生产成本,以保持竞争力。
传统的生产调度方式主要依靠人工经验和简单的排程规则,容易受到诸多因素的影响,如订单变化、设备故障等,导致生产计划经常无法及时响应。
而建设智能化生产调度系统,可以利用先进的信息技术,实现生产过程的自动化监控、优化调度,提高生产效率,降低生产成本,增强企业市场竞争力。
二、关键技术及应用1. 数据采集与传输:智能化生产调度系统需要实时监控生产数据,包括设备运行状态、生产任务进度、人员配备等信息,可以通过传感器、RFID等技术实现数据的采集和传输。
2. 数据分析与决策:系统需要具备数据分析和算法优化能力,通过对生产数据的实时分析,对生产任务进行智能调度和优化决策,以提高生产效率。
3. 智能控制与执行:系统需要具备智能控制和执行功能,可以实现自动化生产调度、设备控制,提高生产线的利用率和效率。
4. 用户界面设计:为了方便用户操作和监控生产状态,系统还需要设计友好的用户界面,包括实时监控界面、报表查询模块等功能。
三、工作方案执行1. 系统需求分析:首先需要进行企业生产流程分析和需求调研,确定系统功能和性能需求,以及用户需求和期望。
2. 系统设计与开发:根据需求分析结果,进行系统设计和开发,包括数据模型设计、算法实现、用户界面设计等工作。
3. 系统测试与调优:系统开发完成后,需要进行全面的测试和调优工作,确保系统稳定性和性能。
4. 系统部署与培训:系统测试通过后,进行系统部署和用户培训工作,确保用户能够正确操作并熟练使用系统。
2024年指挥调度系统市场发展现状

指挥调度系统市场发展现状简介指挥调度系统是一种集成了通信、数据传输、地理信息系统(GIS)、图像识别等技术的综合性系统。
它可以实现资源调度、任务分配、指挥指挥等功能,广泛应用于交通管理、紧急救援、物流配送、安防监控等领域。
本文将对指挥调度系统市场的发展现状进行分析。
市场规模指挥调度系统市场近年来呈现快速增长的趋势。
据市场研究机构统计,全球指挥调度系统市场规模预计在2025年将达到1000亿美元。
这主要受到以下因素的影响:1.日益增长的安全与紧急救援需求:随着城市化进程的加速和人口增长,对于安全和紧急救援的需求也不断增加。
指挥调度系统可以实时监控、调度和响应各类紧急事件,提高应急处理的效率和准确性。
2.交通拥堵与物流需求增加:现代城市面临着严峻的交通拥堵问题,物流配送效率亟待提升。
指挥调度系统可以优化交通流量、指挥道路交通,并实现物流车辆的实时调度,提高交通运输的效率和运输成本的核算。
3.安全监控与防控要求增强:随着社会安全形势的复杂化,对于安全监控与防控的要求也越来越高。
指挥调度系统可以整合安防监控设备,实现对重要区域的实时监测与响应,提高安全防控的能力。
主要产品指挥调度系统市场的主要产品包括以下几类:1.通信设备:指挥调度系统依赖于稳定的通信设备进行数据传输和指挥指令的下达。
目前市场上主流的通信设备包括有线电话、移动电话、对讲机等,以及使用卫星通信技术的卫星电话。
2.数据传输设备:指挥调度系统需要实时传输大量的数据,因此需要稳定高效的数据传输设备。
目前主流的数据传输设备包括有线网络、无线网络、光纤网络等,以及近年来兴起的5G网络。
3.地理信息系统(GIS):GIS是指挥调度系统的核心技术之一,它用于实现地理位置信息的采集、存储、处理和展示。
目前市场上主流的GIS产品包括ArcGIS、Google Maps、百度地图等。
4.图像识别设备:图像识别设备可以通过摄像头、监控器等途径获取实时图像信息,并通过图像处理算法进行目标识别和分析。
调度指挥系统

调度指挥系统
调度指挥系统是一种用于协调和管理各种资源、任务和人
员的系统。
它通常用于监控和控制复杂的操作和工作流程,如交通管理、应急响应、生产调度等。
调度指挥系统的主要功能包括任务分配、资源调配、路径
规划、进度监控、决策支持等。
它可以通过集成传感器、
通信设备和数据分析技术,实时获取和分析各类信息,提
供准确的决策支持。
调度指挥系统通常具有以下特点:
1. 多模块化:系统包含多个独立的模块,每个模块负责不
同的功能,如任务管理模块、资源管理模块、通信模块等。
2. 实时性:系统能够实时获取和处理各种信息,及时调整
资源和任务分配,提高工作效率。
3. 可视化:系统通过图形界面展示各种信息,如地图、图
表等,帮助用户直观地理解和管理工作流程。
4. 安全性:系统采用加密和权限控制等技术,保障数据和
系统的安全性。
5. 可扩展性:系统可以根据需求扩展和定制功能,适应不
同的应用场景。
调度指挥系统的应用范围很广,可以用于交通管理、公共
安全、物流调度、生产调度等领域。
它可以提高工作效率、减少人工错误、提高决策精度,对于提升整体效益和减少
资源浪费具有重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实现回送检修车和管内循环车运行状态跟踪,防止已扣车源流失,掌握回送车源到达情况。对管内集结的成组挂运的检修车、管内循环车实现自动跟踪,防止车辆出局、流失。含小运转车的维护,针对这些车进行跟踪。对重点列车进行实时跟踪,及时掌握列车运行信息。
4.2.7
1、5T预警自动提示
各个5T站点发现故障时,系统自动在GIS地图上闪亮,点击后,系统弹出显示界面,提示5T具体故障。
管理流程思路:铁路货车车辆段是典型的离散为主、流程为辅单件、小批量制造维修企业。此类企业的生产作业计划及完成情况的跟踪非常复杂,来车的基本情况、配件装用情况、运行过程中的故障情况等均影响生产组织,每一个货车的检修过程可以模拟为一个项目管理过程。因此在信息化设计的管理思路中引入项目管理时间、质量、物料三要素的方法,在HMIS修车日计划的发布同时发布货车检修生产进度节点跟踪计划、货车检修质量预警控制及跟踪计划、货车检修物料配送计划,通过对时间、质量、物料的三个维度的管理,保证整车修车作业计划高质量、高效率的完成。
4.3.9
根据工位的生产进度情况展现整车的生产控制时间表。
系统程序界面
原手工管理计划执行情况跟踪
4.4
4.4.1
在每个生产工位旁边部署平板电脑,每个平板电脑展现本工位的车,实现对本车的进度、质量、物料过程监控。
进度报工及监控界面
质量反馈及控制界面
物料配送监控界面
4.4.2
现场生产物料配送及任务分配人员均采用手机进行临时用料的提报、任务分配和物料配送,可以通过手机的震动和声音提示随时知道生产现场的物料需求。
3
系统架构以货车段修数字化生产调度指挥为核心功能,满足“生产组织科学化、信息分析自动化、调度指挥智能化、基础数据网络化、设备设施标准化”的调度工作要求。提出生产关键工序及工艺流程的虚拟化货车检修模型。将生产调度指挥平台功能分为网络扣车管理拓展、5T指导检修综合应用、生产计划制定、生产进度实时监控、检修质量实时跟踪、生产物料配送、生产数据分析等模块。
系统程序界面
4.3.5
针对关键工序系统设置侧重点维护,可以根据来车的装用配件情况和加修工艺方案维护针对某个工序的检修质量侧重点,并在生产过程中工序开完工进行控制。
4.3.6
各项生产计划的制定是调度的一个重要工作,全段各车间均需按照段调度的计划进行生产检修,使用信息系统前,调度每日需通过电子邮件、电话、纸张传递等方式与各个车间进行联系,指导生产。调度工作忙碌且效率不高,以轴承质保期计划为例,调度需要针对每个车计算下次定检到期时间及本次检修是超期还是提前检修,方可确定本次装用轮对的轴承质保期,应用系统后原需要调度纸质方式、邮件形式传递的单据,包括复杂的计算全部由系统自动生成,调度不增加任何工作量,仅对原HMIS修车作业计划其他一切其他计划系统自动送达。大大节约了调度进行生产组织的时间。
数字化段修调度生产指挥系统在昆明北的应用
北京京天威科技发展有限公司
Beijing JingTianWei Science & Technology Development LTD.
1
1.1
车辆信息化检修信息化建设是保障车辆运行安全、提高生产效率和管理水平的重要手段。“铁路货车技术管理信息系统(HMIS)”已经全面推广运行10年了,在铁道部已基本实现全路货车动态技术履历信息采集和全路货车技术信息库的建设。车辆段作为货车段修、辅修、通过修一体的综合性铁路货车检修基地,目前全路大部分“HMIS系统”主要完成了货车检修信息的采集与上报,主要采用集中手工录入或半集中手工录入方式。
4.3.4
为应对离散型维修行业面临的物料准备计划性不强的特点,系统根据来车的技术状态及需要做的加装改造等特点,建立有针对性的必换配件配送模板,在车辆上台位前就实现全部必换配件的配送工作,另外对生产过程中常用料采用周转互换的管理模式,检修现场仅仅对非常用的零星料进行配送,大大降低了物料对生产进度的影响。
1.2
随着大数据时代的到来,传统产业目前正处于一个新的变革周期,以数据分析为思维的经营和管理思路将成为大多数企业进行企业日常管理的依据,而在这种以数据为标的的决策制定中,企业获取的分析数据需要是直观的,动态的,及时的,具有了大数据和全样本的优势,将能够直接指导企业进行生产和经营决策。数据资源将成为企业重要的,甚至是核心的资产组成。数据,不再是简单的报表数据,而是以搜索、定位、地图、APP、管理系统等多种渠道建立的海量的,全样本的,动态的大数据。掌握这些数据的企业将是本轮变革的胜利者。
2、5T联合查询
输入一个车号,系统支持将一段时间内全路发生的 5T故障显示出来。
4.3
生产现场的实时进度是本次调度指挥重点,能充分体现生产调度指挥的优势,并且和影响生产的关键工序转向架流水线实时动态关联,用全局的视角实时展示现场生产进度情况,因此本次增加的主要硬件费用在生产现场部分。首先以段修台位阶段计划为基础,用大屏幕及台位电脑显示,由工位作业者上传现车主要工序的实时进度,转向架各工序进度自动采集,提供管理人员日生产交车、调车的决策依据,及时干预。
பைடு நூலகம்4.5
4.5.1
4.5.2
4.5.3
4.5.4
随着生产节拍加快、数字检修设备增加、精细管理的管理思想逐步深化,车辆段的信息化建设已经不满足于仅仅作为铁道部货车检修数据库“信息采集终端”的角色,迫切希望建设一套服务于现场基础数据采集、生产过程控制、成本管理分析、支持数字化决策的智能化信息系统。满足《段规》 、《轮规》及(《关于做好2012年检修工作的通知》运辆货车函[2012] 44 号)以及“货车检修图形化管理”的要求,数字化车辆段的设计拟对HMIS系统进行整体规划,不但强化货车检修工装、工艺,更进一步从管理思路的转变、管理方式的变革,来提高生产效率、促进产业升级。
本次数字化车辆段以建立货车检修数据库为出发点,实现货车检修基础数据、生产过程数据、成本控制数据、决策分析数据的基本模型,并形成综合应用。
2
紧紧围绕“精益管理,创新发展”的企业管理核心理念,形成以GIS基础空间平台、数字化生产调度指挥、生产现场物料配送管理的数字化管理模型,以修车日计划为货车检修的出发点、派生出生产进度跟踪计划、质量跟踪计划、物料跟踪计划,形成货车检修全过程的数字化跟踪,确保货车检修安全、进度、质量,发挥信息化建设在铁路运输安全工作中的重要保证作用。
点进车号后系统自动显示某个股道台位车本工作者权限内的车及该车的工序,并自动携带该工序的计划完成时间,工作者仅仅需要对本工序开工、完工操作,就可以在生产进度大屏同步本工位作业的开完工时间,各工序之间有相互间工位的卡控顺序。
针对有5T报警,并且需要本岗位关注的故障,系统直接分配给相关岗位,相关岗位点击5T进入5T明细数界面,必须对所分配的5T故障确定施修方法,本岗位方可保存完工,将5T预报的落实细化到工位,关联到生产进度大屏的跟踪展现。对本工序需要关注的重要质量关键点,一样处理方法,将重点关注的质量点直接发送到所需注意的工位,引起加工者的重视。
4
4.1
4.1.1
根据车辆段提供的布局基础图,形成局管内线路及5T设备布点GIS图,实现5T设备、列建作业场、车辆段位置的矢量图展现,支持对地图的放大缩小,并对关键设备点的基础信息支持数据挖掘。实现管内货车线路上待扣车车辆的状态的动态展现。
4.1.2
形成车辆段内段管线的GIS布局图,结合调车车管理软件实景展现车辆段的段管线内存车的数量、状态、位置,并支持对段管线上的车辆调用扣车记录、车统-22B等检修记录,支持对车辆休时时长的颜色展现报警。
4.2.2
对管内的过期、到期、即将1月到期、即将2月到期进行统计分析。
4.2.3
对管内检修车经过的站点、实际已扣、过期未扣或已扣、到期未扣或已扣、即将一个到期未扣或已扣等情况进行统计分析。
4.2.4
实现对管内固定配属车位置及检修状态的跟踪。
4.2.5
对已扣检修车情况进行分析,掌握沿线扣车情况,实现自动显示,提示位置、数量信息,为扣车跟踪、掌握车源、甩挂作业提供数据,并有效掌握可用检修车资源,指导扣车工作。
建立在局管内:检修车进入铁路局全程跟踪扣修回送情况;重点跟踪车、管内循环车盯控运转过程及车辆状态。建立在段管内数字化调车作业流程,全程跟踪货车检修进度、质量、物料配送过程。系统架构GIS平台为支撑展现平台,建立虚拟数字化车辆段作业模型,将货车的台位、检修状态、设备位置及基本信息挂接,实景展现货车检修的大数据之间逻辑关联关系。
4.3.1
智能调车管理及股道车辆显示功能,段修生产管理功能。智能调车管理及股道车辆显示功能,根据段内股道情况及各车型的换长,验证计划员编制的作业计划是否可行,统计显示段内股道检修车、交验车、待修车实时存放情况。调车结束后,系统自动在段GIS存车线上显示出来。
4.3.2
为应对离散为主、流程为辅单件、小批量的货车维修行业无法应对来车情况,每个车的修理工艺多样性的特点,系统将原来无法预测的货车基本情况、5T故障情况、包括该车的运行典故情况及近期铁道部要求的关注质量侧重点,通过全路流转的大数据及本单位的数据管理,在调度做计划的同时生成每个货车不同的有针对性的检修指导方案,指导生产检修。
4.2
通过网络扣车系统预报数据,结合管内现车、AEI系统,实现当月厂修,段修车数量,所在位置情况的查询,实现管内检修车分析-位置,管内检修车分析-车型,运用车间分析-辖区,次月到期车数量情况查询分析,为检修车扣留组织、分析提供基础数据。
4.2.1
对于要查询的检修车在GIS图形上进行跟踪查询,形象显示其具体位置。
4.3.7
每次调车组调车作业后会直接对调度已经做好的计划进行上台位操作,保证现场工作者工位机上展现当天在台位上的全部车辆。
4.3.8
由于各项计划及预案维护的细致准确,工作者在线录入界面非常简单,登陆界面是当天的检修车列表,并且每个车按今天的修车落成时间顺序排序,每个工序工作者知道今天工作的车和车的工作顺序。