对面积曲面积分的计算法.

合集下载

高数第四节.对面积的曲面积分 (1)

高数第四节.对面积的曲面积分 (1)

1. f ( x, y, z)dS f ( x, y, z)dS f ( x, y, z)dS.
1
2
当为闭曲面时, f ( x, y, z)dS 可写成 f ( x, y, z)dS.
2. 当 f ( x, y, z) 1时, dS 是曲面的面积.
复习:
z n
设光滑曲面
M
则面积 A 可看成曲面上各点 M (x, y, z) S dA
处小切平面的面积 d A 无限积累而成. o
设它在 D 上的投影为 d , 则
x
y
d
d cos d A n ( fx( x0 , y0 ), fy( x0 , y0 ), 1 )
cos
1
1 fx2 (x, y) f y2 (x, y)
d A 1 fx2 (x, y) f y2 (x, y) d
z
h
oD xy
ay
x
因为dS
1
z
2 x
z
2 y
dxdy
a
dxdy,
a2 x2 y2
dS
a
dxdy,
a2 x2 y2
ห้องสมุดไป่ตู้
dS z
Dxy
a2
adxdy x2
y2
add Dxy a2 2
a

d
0
a2 h2 0
d a2 2
2πa
1 2
ln( a 2
2
) 0
a2
h2
2πa ln a . h
f (i ,i , i )Si
积分曲面
面积元素
积分和式
以上积分也称为第一类曲面积分或对面积的 曲面积分.

高等数学对面积曲面积分

高等数学对面积曲面积分

1 z x 2 (k ,k ) z y 2 (k ,k ) ( k ) x y
f(x,y,z)dS
f(k,k,z(k,k))
1 z x 2 (k ,k ) z y 2 (k ,k )( k ) x y
f(k,k,z(k,k))
定理 设有光滑曲面
z
f (x, y, z) 在 上连续, 则曲面积分
O
y
f(x,y,z)dS存在, 且有
x Dxy
(k)xy (k,k,k)
f(x,y, Dxy
证明 由定义知
)
n
lim
0 k 1

(k)x y 1 zx 2 (x ,y ) zy2 (x ,y )d x d y
用球面坐标
zRcos
dSR2sindd
R3
2πd
π
2sincosd
0
0
R 2πd
π
2sind
0
0
思考题: 例 3 是否可用球面坐标计算 ?
例5 计算
z22(xyz).
其中 是球面 x2 y2
解 显然球心为 (1,1,1), 半径为 3
利用对称性可知
z
1
计算 I f(x,y,z)dS.
x Dxy y
解 锥面 z x2y2与上半球面 z a2x2y2的
交线为Βιβλιοθήκη 设1为上半球面夹于锥面间的部分,它在 xOy 面上的
投影域为 D x y (x ,y )x 2 y 2 1 2 a 2 ,则
I (x2y2)dS 1

O
y
其中, 表示 n 小块曲面的直径的 x
最大值 (曲面的直径为其上任意两点间距离的最大者).

§10.4对面积的曲面积分

§10.4对面积的曲面积分

Dxy f [ x, y, z( x, y)] 1 zx2 zy2dxdy.
这就是将对面积的曲面积分化为二重积分的计算公式.
按照曲面的不同情况分为以下三种计算公式:
(1) 若曲面 为: z=z(x, y), 则
f ( x, y, z)dS
Dxy f [ x, y, z( x, y)] 1 zx2 zy2dxdy.
)
i
.
i 1
由以上假设知: 上式两边当0时的极限存在, 即
n
lim
0
i 1
f
(i
,i
,
i
)Si
n
lim
0
i 1
f
(i
,i
,
z(i
,i
))
1
z
2 x
(i
,i
)
z
2 y
(
i
,i
)
i
.
上式左边为函数f(x, y, z)在 上对面积的曲面积分, 而
右边为一个在区域Dxy上的二重积分, 因此有
f ( x, y, z)dS
对面积的曲面积分的性质:
由上述定义可知, 其性质与对弧长的曲线积分的 性质完全类似.
(1) 对函数的线性性质:
[f ( x, y, z) g( x, y, z)]dS
f ( x, y, z)dS g( x, y, z)dS.
(2) 对积分曲面的可加性:
12 f ( x, y, z)dS
0
i 1
(
i
,i
,
i
)Si
.
实例: 若曲面 是光滑的, 它的面密度(x, y, z)为
连续函数, 求它的质量. 所谓曲面光滑即曲面上各点处

对面积的曲面积分公式

对面积的曲面积分公式

对面积的曲面积分公式1. 对面积的曲面积分的概念。

- 设曲面∑是光滑的,函数f(x,y,z)在∑上有界。

把∑任意分成n小块Δ S_i(Δ S_i同时也表示第i小块曲面的面积),设(ξ_i,eta_i,ζ_i)是Δ S_i上任意取定的一点,作乘积f(ξ_i,eta_i,ζ_i)Δ S_i,并作和∑_i = 1^nf(ξ_i,eta_i,ζ_i)Δ S_i。

- 如果当各小块曲面的直径的最大值λto0时,这和式的极限存在,则称此极限为函数f(x,y,z)在曲面∑上对面积的曲面积分或第一类曲面积分,记作∬_∑f(x,y,z)dS=limlimits_λto0∑_i = 1^nf(ξ_i,eta_i,ζ_i)Δ S_i。

2. 对面积的曲面积分的计算方法。

- 一、利用曲面的方程化为二重积分计算。

- 设曲面∑的方程为z = z(x,y),∑在xOy面上的投影区域为D_xy,函数z(x,y)在D_xy上具有连续偏导数,被积函数f(x,y,z)在∑上连续,则∬_∑f(x,y,z)dS=∬_D_{xy}f[x,y,z(x,y)]√(1 + z_x)^2+z_{y^2}dxdy。

- 类似地,如果曲面∑的方程为x = x(y,z),∑在yOz面上的投影区域为D_yz,则∬_∑f(x,y,z)dS=∬_D_{yz}f[x(y,z),y,z]√(1 + x_y)^2+x_{z^2}dydz。

- 如果曲面∑的方程为y = y(z,x),∑在zOx面上的投影区域为D_zx,则∬_∑f(x,y,z)dS=∬_D_{zx}f[x,y(z,x),z]√(1 + y_z)^2+y_{x^2}dzdx。

- 二、利用曲面的参数方程计算(略高于一般要求)- 设曲面∑的参数方程为<=ft{begin{array}{l}x = x(u,v) y = y(u,v) z =z(u,v)end{array}right.,(u,v)∈ D,且x(u,v),y(u,v),z(u,v)在D上具有连续偏导数,(∂(x,y))/(∂(u,v)),(∂(y,z))/(∂(u,v)),(∂(z,x))/(∂(u,v))不全为零,则dS=√(EG - F^2)dudv,其中E=x_u^2+y_u^2+z_u^2,F = x_ux_v+y_uy_v+z_uz_v,G=x_v^2+y_v^2+z_v^2。

对面积的曲面积分

对面积的曲面积分

M = lim∑ρ(ξi ,ηi ,ζ i )∆Si
0 λ→ i=1
n

其中λ是n个小曲面 个小曲面 块的直径的最大值。 块的直径的最大值。
o x
y
2
2、对面积的曲面积分的定义 、 定义8.3.1 设曲面 是光滑的,函数 (x,y,z)在Σ上 设曲面Σ是光滑的 函数f 是光滑的, 定义 在 上 有界。 任意分成n小块 同时也代表第i小 有界 。 把 Σ任意分成 小块 ⊿ Si ( 同时也代表第 小 任意分成 小块⊿ 块的面积) 设 上任意取定的一点, 块的面积),设 (ξi ,ηi ,ζi)是⊿Si上任意取定的一点, 是 作乘积 f (ξi ,ηi ,ζi)∆si (i=1,2,3,…,n),并作和 , , , , ,
Σ
o
Dxy x
y
∫∫ f (x, y, z)dS Σ
Dxy
(∆σi )x y (ξi ,ηi ,ζ i )
)
= ∫∫
f (x, y,
7
说明 (1)计算方法可概括为“一代、二换、三投影” )计算方法可概括为“一代、二换、三投影” “一代” 将z=z(x,y)代入被积函数 (x,y,z), 一代” 代入被积函数f 一代 代入被积函数 , 得f [x,y,z(x,y)]; ; “二换”将dS换成相应的曲面面积元素的表达式: 二换” 换成相应的曲面面积元素的表达式: 二换 换成相应的曲面面积元素的表达式 如Σ:z=z(x,y),则 : ,
o x
13
y
I = 0 + 2∫∫ x x2 + y2 dxdy
Dxy
y
= 2∫ π dθ ∫
2 − 2
π
2acosθ
0
r cosθ ⋅ r ⋅ rdr

曲面积分1

曲面积分1

Dxz
(3) 若曲面Σ : x x( y, z ) 则
f ( x , y, z )dS

2 f [ x( y, z ) , y , z ] 1 x 2 xz dydz y
D yz
3
10.4 第一类(对面积)的曲面积分
例 求 x 2dS , : x 2 y 2 z 2 a 2
【思考】 两类曲面积分的定义一个与 的方向无关, 一个与
的方向有关, 上述联系公式是否矛盾 ?
机动 目录 上页 下页
返回
4. 常用计算公式及方法 面积分 第一类 (对面积) 第二类 (对坐标) 代入曲面方程 (方程不同时,分片积分) 第一类: 面积投影 第二类: 有向投影 (4) 确定积分域 把曲面积分域投影到相关坐标面 转化 二重积分
: z x 2 y 2 , dS 2d 积分曲面
zdS D

x y
2
2
2d
Dxy : x y 2 x
2 2
极 坐 标
xy
2 d
π 2 0
π 2 π 2
2 cos
0
d
16 2 cos 3 d 3
16 2 32 2 2. 3 3 9
1.对面积的曲面积分
10.4 第一类(对面积)的曲面积分
对面积的曲面积分的计算法
思想是: 化为二重积分计算. 按照曲面的不同情况分为以下四种:
(1) 若曲面Σ : z z( x , y )


曲面的面积元素
2 dS 1 z x z 2 dxdy y
f ( x , y, z )dS 将曲面方程代入被积函数

对面积的曲面积分

对面积的曲面积分
2
被柱面
x y 25
所截得的部分.
2 2
解 曲面 : z 5 y 投影域: D xy {( x , y ) | x y 25 } 故 ( x

z
O
y z )d S
x
y
2 ( x y 5 y ) dxdy
D xy
dS
的二 对重 称积 性分
z a a x y
2 2 2
O
x
y
2
投影域 Dxy : x
y a
2
2
17
对面积的曲面积分
Σ 是球面 x y z 2 az
2 2 2
对上半球 z a
dS
2 2
a x y
2 2
2
1 z x z y dxdy
2
a a x y
2 2
2
若 可分为分片光滑的曲面
1及 2 , 则


f ( x , y , z )d S

1
f ( x , y , z )d S

2
f ( x , y , z )d S
5
对面积的曲面积分
补充:第一类面积分对称性
设分片光滑的 曲面Σ 关于yOz面对称,



f ( x , y , z )d S
1
O
1
x
16
对面积的曲面积分
计算曲面积分 I



( x y z )d S
2 2 2
的值.
2 2 2 其中Σ 是球面 x y z 2 az .
(a 0)

高数 对面积的曲面积分讲解

高数 对面积的曲面积分讲解

如 : z z( x, y) ,则
dS
1

z
2 x

z
2 y
dxdy
“三投影”认清 在 二重积分是在区域上
xoy 平面上的投影区域 Dxy 进行的。
Dxy ,
10
2)如果曲面方程为 x x( y, z), ( y, z) Dyz
或 y y( x, z), ( x, z) Dxz
21
例5 设 : x2 y2 z2 a2
z 1
计算 I f ( x, y, z)dS
解 锥面 z x2 y2 与上半球面 z
x o Dx y y
a2 x2 y2 的
交线为
设 1为上半球面夹于锥面间的部分,它在 xoy 面上的
投影域为 Dx y ( x, y)

1


x x2
y2
2


y x2
y2
2
O

dxdy

a
2a x
2dxdy
I ( xy y x2 y2 x x2 y2 ) 2dxdy
Dxy
20
y
0 2 x x2 y2dxdy
Dxy

2a cos

2
两片, 则计算较繁。 解 取曲面面积元素

I

0H
2
R2
R dz z2
2 arctan H
R
H
z dz
o
y
x
28
例11 求椭圆柱面
位于xoy面上方及平面
z = y 下方那部分柱面 的侧面积 S 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D a2 x2 y2
D a2 r2
(极坐标)
=a
2
d
0
0
a2 h2
a2
r r2 dr
2 a[
1 ln(a2 2
r 2 )]0 a2 h2
2 a ln a
h
❖例2 计算 Ò xyzdS ,其中 是三个坐标面和
平面 x y z 1 围成的四面体的整个边界曲面。
z 1
1
x
O Dxy
第一型曲面积分化为二重积分的公式为
f (x, y, z)dS f (x, y, z(x, y)) 1 zx2(x, y) zy2(x, y)d
D
如果曲面 的方程由x=x(y,z)或y=y(x,z)给出,
也可类似地把第一型曲面积分化为yoz面或xoz
面上的二重积分。
: x x y, z
1
y
解 边界曲面 由四块组成: 1 2 3 4 他们的表达式分别是 x 0, y 0, z 0, x y z 1
于是
xyzdS
1
2
3 4
由于在 1 ,2 ,3 上 f (x, y, z) xyz 均为零,
所以
0
1
2
3
在 4 上 z 1 x y, dS 1 zx2 zy2 d 3d, 又 4 在xoy面上的投影区域D为 x 0, y 0, x y 1 围成的三角形
0 R2 y2
R1 R 0
lim arcsin R1
R1 R
R2
1 dy R2 y2
所以
dS x2 y2 z2
arctan H
2
R
(R1<R )
f x, y, zds
f x y, z , y, z
1
x
2 y
xz2 d
Dyz
: y y x, z
f x, y, zds
f x, y x, z , z
1
y
2 x
yz2
d
Dxz
❖例1
计算
1 z
dS
,其中
是球面 x2 y2 z2 a2
被平面 z h(0 h a) 截出的顶部。
R dydz
R2 y2
于是
dS
1
R dydz
x2 y2 z2 D R2 z2 R2 y2
R
H1
D
dy R2 y2 0
R2 z2 dz
R
0
R R2
y2
1 arctan R
Z R
|0H
dy
arctan H R 1 dy
R 0 R2 y2

R 1 dy lim R1
,其中 为圆柱面
x2 y2 R2 介于平面z =0和z =H(H>0)且在第一 卦限的部分。
解 由于 不能表示成z=z(x,y)的形式
现写成 x R2 y2 ,这样就需投影到yoz面上,
投影区域D为矩形 0 y R,0 z H

xy
y R2
y2
, xz
0

dS 1 zx2 zy2 dydz
称为函数f x, y, z在曲面上的
对面积的曲面积分(第一类曲面积分)
计算对面积的曲面积分
——化为二重积分
f ( x, y, z)dS

x, y, z在上变化
f ( x, y, z)dS
用切平面小块 dA 来代替dS ,而
dA d cos
曲面积分元素为
dA
d
ds d cos
1 zx2 (x, y) zy2 (x, y)d
z a h
O Dxy
a
x
a
y
解 的方程为 z a2 x2 y2 ,它在xoy面上的
投影区域D为 x2 y2 a2 h2 , 的曲面面积元素

dS 1 zx2 zy2 d
a
d
a2 x2 y2
所以
1
z
dS
1
D a2 x2 y2
a
d
a2xyzdS
xyzdS xy(1 x y) 3d
4
D
1
1 x
30 xdx0 y(1 x y)dy
3
1
x[(1 x)
0
y2 2
y3 3
]10
x
dx
3 1 x (1 x)3 dx
0
6
3 1(x 3x2 3x3 x4 )dx
60
3 120
❖例3
计算
dS
x2 y2 z2
第五节 对面积曲面积分的计算法
几何形体上的积分 G f P dg
重积分
f x, yd ; f x, y, zdv
D
对弧长的曲线积分
L f x, yds; f x, y, zds
当G为一光滑曲面 , 被积函数
f x, y, z在上连续,
有 f ( x, y, z)dS 曲面面积元素 积分曲面
相关文档
最新文档