对面积的曲面积分

合集下载

高数第四节.对面积的曲面积分 (1)

高数第四节.对面积的曲面积分 (1)

1. f ( x, y, z)dS f ( x, y, z)dS f ( x, y, z)dS.
1
2
当为闭曲面时, f ( x, y, z)dS 可写成 f ( x, y, z)dS.
2. 当 f ( x, y, z) 1时, dS 是曲面的面积.
复习:
z n
设光滑曲面
M
则面积 A 可看成曲面上各点 M (x, y, z) S dA
处小切平面的面积 d A 无限积累而成. o
设它在 D 上的投影为 d , 则
x
y
d
d cos d A n ( fx( x0 , y0 ), fy( x0 , y0 ), 1 )
cos
1
1 fx2 (x, y) f y2 (x, y)
d A 1 fx2 (x, y) f y2 (x, y) d
z
h
oD xy
ay
x
因为dS
1
z
2 x
z
2 y
dxdy
a
dxdy,
a2 x2 y2
dS
a
dxdy,
a2 x2 y2
ห้องสมุดไป่ตู้
dS z
Dxy
a2
adxdy x2
y2
add Dxy a2 2
a

d
0
a2 h2 0
d a2 2
2πa
1 2
ln( a 2
2
) 0
a2
h2
2πa ln a . h
f (i ,i , i )Si
积分曲面
面积元素
积分和式
以上积分也称为第一类曲面积分或对面积的 曲面积分.

§10.4对面积的曲面积分

§10.4对面积的曲面积分

Dxy f [ x, y, z( x, y)] 1 zx2 zy2dxdy.
这就是将对面积的曲面积分化为二重积分的计算公式.
按照曲面的不同情况分为以下三种计算公式:
(1) 若曲面 为: z=z(x, y), 则
f ( x, y, z)dS
Dxy f [ x, y, z( x, y)] 1 zx2 zy2dxdy.
)
i
.
i 1
由以上假设知: 上式两边当0时的极限存在, 即
n
lim
0
i 1
f
(i
,i
,
i
)Si
n
lim
0
i 1
f
(i
,i
,
z(i
,i
))
1
z
2 x
(i
,i
)
z
2 y
(
i
,i
)
i
.
上式左边为函数f(x, y, z)在 上对面积的曲面积分, 而
右边为一个在区域Dxy上的二重积分, 因此有
f ( x, y, z)dS
对面积的曲面积分的性质:
由上述定义可知, 其性质与对弧长的曲线积分的 性质完全类似.
(1) 对函数的线性性质:
[f ( x, y, z) g( x, y, z)]dS
f ( x, y, z)dS g( x, y, z)dS.
(2) 对积分曲面的可加性:
12 f ( x, y, z)dS
0
i 1
(
i
,i
,
i
)Si
.
实例: 若曲面 是光滑的, 它的面密度(x, y, z)为
连续函数, 求它的质量. 所谓曲面光滑即曲面上各点处

对面积的曲面积分公式

对面积的曲面积分公式

对面积的曲面积分公式1. 对面积的曲面积分的概念。

- 设曲面∑是光滑的,函数f(x,y,z)在∑上有界。

把∑任意分成n小块Δ S_i(Δ S_i同时也表示第i小块曲面的面积),设(ξ_i,eta_i,ζ_i)是Δ S_i上任意取定的一点,作乘积f(ξ_i,eta_i,ζ_i)Δ S_i,并作和∑_i = 1^nf(ξ_i,eta_i,ζ_i)Δ S_i。

- 如果当各小块曲面的直径的最大值λto0时,这和式的极限存在,则称此极限为函数f(x,y,z)在曲面∑上对面积的曲面积分或第一类曲面积分,记作∬_∑f(x,y,z)dS=limlimits_λto0∑_i = 1^nf(ξ_i,eta_i,ζ_i)Δ S_i。

2. 对面积的曲面积分的计算方法。

- 一、利用曲面的方程化为二重积分计算。

- 设曲面∑的方程为z = z(x,y),∑在xOy面上的投影区域为D_xy,函数z(x,y)在D_xy上具有连续偏导数,被积函数f(x,y,z)在∑上连续,则∬_∑f(x,y,z)dS=∬_D_{xy}f[x,y,z(x,y)]√(1 + z_x)^2+z_{y^2}dxdy。

- 类似地,如果曲面∑的方程为x = x(y,z),∑在yOz面上的投影区域为D_yz,则∬_∑f(x,y,z)dS=∬_D_{yz}f[x(y,z),y,z]√(1 + x_y)^2+x_{z^2}dydz。

- 如果曲面∑的方程为y = y(z,x),∑在zOx面上的投影区域为D_zx,则∬_∑f(x,y,z)dS=∬_D_{zx}f[x,y(z,x),z]√(1 + y_z)^2+y_{x^2}dzdx。

- 二、利用曲面的参数方程计算(略高于一般要求)- 设曲面∑的参数方程为<=ft{begin{array}{l}x = x(u,v) y = y(u,v) z =z(u,v)end{array}right.,(u,v)∈ D,且x(u,v),y(u,v),z(u,v)在D上具有连续偏导数,(∂(x,y))/(∂(u,v)),(∂(y,z))/(∂(u,v)),(∂(z,x))/(∂(u,v))不全为零,则dS=√(EG - F^2)dudv,其中E=x_u^2+y_u^2+z_u^2,F = x_ux_v+y_uy_v+z_uz_v,G=x_v^2+y_v^2+z_v^2。

曲面积分

曲面积分

4: z=1-x-y, Dxy: x+y =1, x=0, y=0所围, ds= 3 dxdy ,
I= = 3 xy(1-x-y)dxdy = 3 D
4 xy
1 1-x xdx 0 y(1-x-y)dy 0
3 . 120
8
1 例3. 计算 I = ––––––––– ds , : x2+y2=R2 被 z=0, 2 2 2 x +y +z z 1 z=1所夹的第一卦限部分。(补充) 解: : x R y , x y
1
x
R
dydz; R 0
R
1
R 1 1 dz dy 2 2 2 2 0 R z R y
1 1 z y arctan . R arctan arcsin R R R0 R0 2
10
对坐标的曲面积分(P159)
一、对坐标的(第二类)曲面积分的概念与性质
1. 有向曲面: 指定了侧的曲面叫有向曲面, 其方向
4. 规定: 若 =1+2 ,
则: f(x, y, z)ds= 1 f(x, y, z)ds+ 2 f(x, y, z)ds ;
5. 若f(x, y, z)1,则: f(x, y, z)ds=曲面 的面积;
6. 若为闭曲面, 积分记为: f(x , y , z)ds 。
对面积的曲面积分有与对弧长的曲线积分类似的性 质;
4
1 ds , 其中 是x2+y2+z2=a2 被 z=h 例1. 计算 I = —— z 截出的顶部, 0< h < a 。
解: : z= a2 -x2-y2 , Dxy: x2+y2 a2-h2,

对面积的曲面积分

对面积的曲面积分
z x, y在Dxy上偏导数连续, z
用平行于坐标轴的直线网 dS M
将 Dxy分割为若干小区域, o
任取一个小矩形 d x
相应地上有小曲面块dS,
Dxy
y
(x, y)
d
T为 上过 M( x, y, z( x, y))的切平面.
以 d 边界为准线,母线平行于z 轴的
小柱面,截曲面 为 dS;
z
对面积的曲面积分(或第一型曲面积分) 若积分曲面是封闭的,则相应的曲面积分
记为 f (x, y, z)dS
计算对面积的曲面积分 ——化为二重积分
f ( x, y, z)dS
x, y, z 在上变化 曲面面积元素

一、曲面的面积
设曲面 : z z x, y, x, y Dxy
Dxy是有界闭区域,
1 2 3
2 1
O Dxy
1
3
x
4
1
y
在4上:z 1 x y,
dS
1
z
2 x
z
2 y
d
3d
又 4 在xoy面上的投影区域 Dxy
z
是由 x 0, y 0, x y 1 1
4
围成的三角形.
Dxy : 0 y 1 x,0 x 1
1
x
O Dxy
1
y
x y 1
在4上:z 1 x y,
x,
y
z
2 y
x,
y
d
对面积的曲面积分的计算公式为

f x, y, zdS
f x, y, z x, y
1
z
2 x
z
2 y
d
Dxy
化为二重积分

对面积的曲面积分

对面积的曲面积分

M = lim∑ρ(ξi ,ηi ,ζ i )∆Si
0 λ→ i=1
n

其中λ是n个小曲面 个小曲面 块的直径的最大值。 块的直径的最大值。
o x
y
2
2、对面积的曲面积分的定义 、 定义8.3.1 设曲面 是光滑的,函数 (x,y,z)在Σ上 设曲面Σ是光滑的 函数f 是光滑的, 定义 在 上 有界。 任意分成n小块 同时也代表第i小 有界 。 把 Σ任意分成 小块 ⊿ Si ( 同时也代表第 小 任意分成 小块⊿ 块的面积) 设 上任意取定的一点, 块的面积),设 (ξi ,ηi ,ζi)是⊿Si上任意取定的一点, 是 作乘积 f (ξi ,ηi ,ζi)∆si (i=1,2,3,…,n),并作和 , , , , ,
Σ
o
Dxy x
y
∫∫ f (x, y, z)dS Σ
Dxy
(∆σi )x y (ξi ,ηi ,ζ i )
)
= ∫∫
f (x, y,
7
说明 (1)计算方法可概括为“一代、二换、三投影” )计算方法可概括为“一代、二换、三投影” “一代” 将z=z(x,y)代入被积函数 (x,y,z), 一代” 代入被积函数f 一代 代入被积函数 , 得f [x,y,z(x,y)]; ; “二换”将dS换成相应的曲面面积元素的表达式: 二换” 换成相应的曲面面积元素的表达式: 二换 换成相应的曲面面积元素的表达式 如Σ:z=z(x,y),则 : ,
o x
13
y
I = 0 + 2∫∫ x x2 + y2 dxdy
Dxy
y
= 2∫ π dθ ∫
2 − 2
π
2acosθ
0
r cosθ ⋅ r ⋅ rdr

曲面积分1

曲面积分1

Dxz
(3) 若曲面Σ : x x( y, z ) 则
f ( x , y, z )dS

2 f [ x( y, z ) , y , z ] 1 x 2 xz dydz y
D yz
3
10.4 第一类(对面积)的曲面积分
例 求 x 2dS , : x 2 y 2 z 2 a 2
【思考】 两类曲面积分的定义一个与 的方向无关, 一个与
的方向有关, 上述联系公式是否矛盾 ?
机动 目录 上页 下页
返回
4. 常用计算公式及方法 面积分 第一类 (对面积) 第二类 (对坐标) 代入曲面方程 (方程不同时,分片积分) 第一类: 面积投影 第二类: 有向投影 (4) 确定积分域 把曲面积分域投影到相关坐标面 转化 二重积分
: z x 2 y 2 , dS 2d 积分曲面
zdS D

x y
2
2
2d
Dxy : x y 2 x
2 2
极 坐 标
xy
2 d
π 2 0
π 2 π 2
2 cos
0
d
16 2 cos 3 d 3
16 2 32 2 2. 3 3 9
1.对面积的曲面积分
10.4 第一类(对面积)的曲面积分
对面积的曲面积分的计算法
思想是: 化为二重积分计算. 按照曲面的不同情况分为以下四种:
(1) 若曲面Σ : z z( x , y )


曲面的面积元素
2 dS 1 z x z 2 dxdy y
f ( x , y, z )dS 将曲面方程代入被积函数

对面积的曲面积分

对面积的曲面积分

| xyz| dS 4 xyzdS d S 1 (2 x )2 (2 y )2 d x d y
1
4 xy (x2 y2) 1(2x)2(2y)2d xd y
D x y
42d1r2co ssinr21 4 r2rd r 00
极 坐 标
22sin2d1r5 14r2dr
0
0
u
(3) 若曲面 :xx(y,z)
则 f(x,y,z)dS f [x(y,z), y, z] 1x2 yxz2dydz D yz
对面积的曲面积分
计算面积的曲面积分的解题步骤:
1、应根据曲面Σ选好投影面. 2、确定投影域并写出 曲面Σ的显函数形式,
并算出曲面面积元素dS.
3、将曲面方程代入被积函数,化为二 重积分进行计算.
Dxy
对面积的曲面积分
补充
设分片光滑的 曲面Σ关于yOz面对称,则
f(x, y,z)dS
0,
当f(x,y,z)为x的奇函数
2f(x,y,z)dS.
当f(x,y,z)为x的偶函数
1
其中 1 :x x (y ,z ) 0 .
对面积的曲面积分
例 计算 |xy|zdS,
其为 中抛 zx 2物 y2 (0 面 z 1 ).
1 5 u(u1)2du 125 51
41
4
420
对面积的曲面积分
例 计算xdS, 其中 是圆x2柱 y2面 1,
平 z 面 x 2 及 z 0 所围成的空间立体的表面.
z
z
z
O
x
y
O
x
y
O
x
y
对面积的曲面积分
例 计算xdS, 其中 是圆x2柱 y2面 1,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对面积的曲面积分
第四节对面积的曲面积分
学习目标
了解对面积的曲面积分的概念、性质,掌握对面积的曲面积分的计算方法,会用曲面积分求一些几何量与物理量.
内容提要
1.定义设函数 在光滑曲面 上有界,将曲面 任意分成n小块 ( 也表示第 小块曲面的面积),在 上任取一点 ,作乘积 ( ),并作和 ,记各小曲面直径的最大值为 ,如果对曲面的任一分法和点 的任意取法,当 时,上述和式的极限都存在且相等,则称此极限值为函数 在曲面 上对面积的曲面积分或第一类曲面积分,记
解:假设 在曲面 上连续,应用元素法,在曲面上任取一直径很小的曲面块 ,设 使曲面块 内的一点,则由曲面块 很小, 的连续性可知,曲面块 的质量近似等于 ,这部分质量可近似看作集中在点 上,该点到 轴的距离等于 ,于是曲面对于 轴的转动惯量为: ,所以转动惯量为:
2.按对面积的曲面积分的定义证明公式
解以球心为原点,铅锤直径为 轴建立直角坐标系,则球面方程为 ,且任意点 处的密度为 .
设球壳的质心坐标为 ,由对称性知, .

其中 为上半球面 , ,
于是球壳的质量为
其中 为 在 面上的投影域: .利用极坐标计算上述二重积分,得

故 ,于是半球壳的质心坐标为 .
教材习题解答
1.有一个分布着质量的曲面 ,在点 处它的面密度 ,用对面积的曲面积分表示这曲面对于 轴转动惯量。
【分析】]根据积分曲面 的方程,确定投影区域,计算曲面面积微元 ,将曲面积分转化为投影区域上的二重积分进行计算.
解设 , 为锥面 , ,在 上,
= ,
图4-1
为 上 部分,在 上, ,
在 面的投影区域为 ,所以
+
.
例5计算 ,其中 为 介于 之间的部分.
【分析】积分曲面 如图11-13所示,此积分为对面积的曲面积分,积分曲面 关于 面, 面对称,被积函数是偶函数,则有 = ,故可利用对称性解之.
解设 ,其在 面的投影域为 ,
= =4 .
图4-2
【注】该题不能将积分曲面 向 面作投影,因为投影为曲线,不是区域.
基本题型II:对面积的曲面积分的应用
例6求物质曲面 的质量,其面密度 .
解 在 平面上的投影区域 .
于是,所求质量为
例7试求半径为 的上半球壳的质心,已知其各点的密度等于该点到铅锤直径的距离.

【注】定义中的“ ”是面积元素,因此, .
2.性质
①关于曲面具有可加性,若 ,且 与 没有公共的内点,则

②当被积函数为1时,积分结果在数值上等于曲面 的面积 ,即

3.对面积的曲面Biblioteka 分的计算设曲面 由 给出, 在 面上的投影区域为 ,函数 在 上具有连续偏导数,被积函数 在 上连续,则

同样地

,其中 由 和 组成
证明:因为 在曲面上对面积的积分存在,所以不论把曲面 怎样分割,积分和总保持不变,因此在分割曲面 时,可以永远把 和 的边界曲线作为分割线,从而保证 整个位于 上,于是 上的积分和等于 上的积分和加上 上的积分和,即
令各小块的直径的最大值趋向于0,去极限得到:
3.当 时 面内的一个闭区域 时,曲面积分 和二重积分有什么关系。
(A) ;(B) ;
(C) ;(D) .
解因为曲面是上半球面, 关于 面对称且被积函数 , 都是变量 的奇函数,于是 .类似地, 关于 面对称且 是变量 的奇函数,于是 .而 ,故应选(C).事实上,由对称性, , ,(C)正确.
【方法点击】在计算对面积的曲面积分时,应注意下列技巧:
(1)利用对称性,但要注意,曲面 关于某坐标面对称,被积函数关于相应变量具有奇偶性,两者缺一不可.
解:当 时 面内的一个闭区域 时, 在 上的投影区域即为 , 上的 恒为 ,并且 ,所以 ,即曲面积分与二重积分相等。
4.计算曲面积分 ,其中 为抛物面 在 面上方的部分, 分别如下:
(2) ;(3) .
解(2) = ,其中 为 在 面上的投影区域,即
.
于是
= .
(3)
= .
5.计算 ,其中 是:
(1)锥面 及平面 所围成的区域的整个边界曲面.

4.对面积的曲面积分的应用
设曲面 上任意一点 处的面密度是 ,则
①曲面的质量

②曲面的质心
, .
③曲面的转动惯量
, ,
, .
典型例题与方法
基本题型I:计算对面积的曲面积分
例1填空题
设 ,则 .
解由积分区域的对称性知 ,于是

而积分在 上进行, ,代入上式得,
故应填
例2选择题
设 , 为 在第一卦限中的部分,则有()
解 ,
(4) ,其中 为锥面 被柱面 所截得的有限部分.

7.求抛物面壳 的质量,此壳的面密度为 .
解 ,
8.求面密度为 的均匀球壳 对于 轴的转动惯量.
解由公式
(2)利用积分曲面 的方程化简被积函数.
例3计算曲面积分 ,其中 是平面 被三个坐标面所截下的在第一卦限的部分.
解法一 . 在 平面上的投影是三角形,记为 .
.
解法二 .
【方法点击】在解法二中,将曲面方程代入到了曲面积分里,因为积分曲面是一个三角形,最后用到了三角形的面积公式.
例4计算 , 为立体 的边界.
(2)锥面 被平面 和 所截部分。
解(1)设 中属于锥面部分为 ,上底面部分为 ,而 与 在 面上的投影区域均为
,所以
=
(2)所截的锥面为: ,
所以
6.计算下列对面积的曲面积分:
(1) ,其中 为平面 在第一卦限中的部分.
解 ,
(2) ,其中 为平面 在第一卦限中的部分.
解 ,
(3) ,其中 为球面 上 的部分.
相关文档
最新文档