第十章 对面积的曲面积分
曲线积分与曲面积分重点总结+例题

第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
2.掌握计算两类曲线积分的方法.3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数.4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。
【教学重点】1。
两类曲线积分的计算方法;2。
格林公式及其应用;3。
第一类曲面积分的计算方法;【教学难点】1。
两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3。
应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社。
[2]同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3]同济大学数学系。
《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy面内的一段曲线弧L上,已知曲线形构件在点(x,y)处的线密度为μ(x,y)。
求曲线形构件的质量.把曲线分成n小段,∆s1,∆s2,⋅⋅⋅,∆s n(∆s i也表示弧长);任取(ξi,ηi)∈∆s i,得第i小段质量的近似值μ(ξi,ηi)∆s i;整个物质曲线的质量近似为;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n}→0,则整个物质曲线的质量为.这种和的极限在研究其它问题时也会遇到。
定义设函数f(x,y)定义在可求长度的曲线L上,并且有界。
,将L任意分成n个弧段:∆s1,∆s2,⋅⋅⋅,∆s n,并用∆s i表示第i段的弧长;在每一弧段∆s i上任取一点(ξi,ηi),作和;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n},如果当λ→0时,这和的极限总存在,则称此极限为函数f(x,y)在曲线弧L上对弧长的曲线积分或第一类曲线积分,记作,即.其中f(x,y)叫做被积函数,L叫做积分弧段。
9.4 第一类曲面(对面积的)积分

M = ∫∫ f ( x, y , z )dS
S
当积分曲面是封闭曲面时,常记 当积分曲面是封闭曲面时 常记
f ( x, y, z)dS ∫∫
S
9.4.2 第一类曲面积分的计算法
按照曲面的不同情况分为以下三种: 按照曲面的不同情况分为以下三种:
1. 若曲面Σ :
则
Σ
z = z( x, y)
∫∫ f ( x , y , z )dS
Σ
2 2 其中 Σ 为抛物面 z = x + y (0 ≤ z ≤ 1).
依对称性知: 解 依对称性知:
z
抛物面 z = x 2 + y 2 轴对称, 关于z轴对称,
被积函数| xyz |关于 xoz 、 yoz 坐标面对称
y
x
为第一卦限部分曲面) 有 ∫∫ = 4 ∫∫ 成立,( Σ 1为第一卦限部分曲面
∫∫ f ( x, y, z)dS =∫∫ f ( x, y, z)dS +∫∫ f ( x, y, z)dS. Σ Σ Σ
1 2
Remark: (1)当曲面 Σ 为光滑或分片光滑曲面片 当曲面 为光滑或分片光滑曲面片,f(x,y,z)在Σ 在 续时,f(x,y,z)在 Σ 上必可积 以下恒设此 条 上必可积,以下恒设此 以下恒设此2条 上连 续时 在 件满足. 件满足 (2)第一类曲面积分有如定积分类似的性质 从略 第一类曲面积分有如定积分类似的性质,从略 第一类曲面积分有如定积分类似的性质 从略. (3)第一类曲面积分的物理意义 曲面的质量 第一类曲面积分的物理意义:曲面的质量 第一类曲面积分的物理意义
Σ Σ1
dS = 1 + z ′x 2 + z ′y 2 dxdy
曲面积分

4: z=1-x-y, Dxy: x+y =1, x=0, y=0所围, ds= 3 dxdy ,
I= = 3 xy(1-x-y)dxdy = 3 D
4 xy
1 1-x xdx 0 y(1-x-y)dy 0
3 . 120
8
1 例3. 计算 I = ––––––––– ds , : x2+y2=R2 被 z=0, 2 2 2 x +y +z z 1 z=1所夹的第一卦限部分。(补充) 解: : x R y , x y
1
x
R
dydz; R 0
R
1
R 1 1 dz dy 2 2 2 2 0 R z R y
1 1 z y arctan . R arctan arcsin R R R0 R0 2
10
对坐标的曲面积分(P159)
一、对坐标的(第二类)曲面积分的概念与性质
1. 有向曲面: 指定了侧的曲面叫有向曲面, 其方向
4. 规定: 若 =1+2 ,
则: f(x, y, z)ds= 1 f(x, y, z)ds+ 2 f(x, y, z)ds ;
5. 若f(x, y, z)1,则: f(x, y, z)ds=曲面 的面积;
6. 若为闭曲面, 积分记为: f(x , y , z)ds 。
对面积的曲面积分有与对弧长的曲线积分类似的性 质;
4
1 ds , 其中 是x2+y2+z2=a2 被 z=h 例1. 计算 I = —— z 截出的顶部, 0< h < a 。
解: : z= a2 -x2-y2 , Dxy: x2+y2 a2-h2,
对曲面的积分求面积

高等数学
主讲人: 苏本堂
( x 2 + y 2 )dS 其中Σ是锥面 z = 例3 计算 ∫∫
Σ
x2 + y2
解
与平面 z = 1 所围成的区域的整个边界曲面 z Σ2 : z = 1
2 2
2 故 ∫∫ ( x + y )dS = π 2 Σ
1
( x 2 + y 2 )dS ∫∫
Σ2
Σ1
o
2π 1 2
= 2π a 1 − ln(a 2 − r 2 ) 2 0
∫0
a 2 −h2
rd r a2 − r 2
a2 +h2
山东农业大学
高等数学
主讲人: 苏本堂
例2. 计算
其中∑ 是由平面
z
与
坐标面所围成的四面体的表面. 解: 设 ∑1 , ∑ 2 , ∑ 3 , ∑ 4 分别表示∑ 在平面 上的部分, 则 原式 = ∫∫ + ∫∫ + ∫∫ + ∫∫ x y z dS Σ Σ2 Σ3 Σ4 1
f (ξ k ,η k , z (ξ k ,η k )) ⋅
′ ′ ′ ′ 1 + z x 2 (ξ k , η k ) + z y 2 (ξ k , η k ) (∆σ k ) x y
f (ξ k ,η k , z (ξ k ,η k )) ⋅
(Σ光滑)
1 + z x 2 (ξ k , η k ) + z y 2 (ξ k , η k ) (∆σ k ) x y
山东农业大学
高等数学
主讲人: 苏本堂
而
∫∫(∆σ
∑
k )xy
1 + z x 2 ( x, y ) + z y 2 ( x, y ) dxd y
第十章 曲面积分自测题解答(2)

第十曲面积分自测题及解答(2)一、选择题1.∑设:)0(2222≥=++z a z y x ,在第一卦限的部分为∑∑1,则有( C ) (A )⎰⎰⎰⎰∑∑=14xdS xdS ; (B )⎰⎰⎰⎰∑∑=14xdS ydS ;(C )⎰⎰⎰⎰∑∑=14xdS zdS ; (D )⎰⎰⎰⎰∑∑=14xyzdS xyzdS 。
解:∵01>⎰⎰∑xdS ,01>⎰⎰∑xyzdS ,0===⎰⎰⎰⎰⎰⎰∑∑∑xyzdS ydS xdS ,且在上1∑x ,y ,z 具有轮换对称性,∴1144zdS zdS xdS ∑∑∑==⎰⎰⎰⎰⎰⎰,故应选(C )。
2.设∑是平面x +y +z =4被柱面122=+y x 截出的有限部分,则ydS ∑⎰⎰的值为( A )(A )0 (B )334(C )34 (D )π 3.设∑为平面1=++z y x 在第一卦限的部分,则⎰⎰∑=++2)(z y x dS( A ) (A )23(B )3 (C )23 (D )211.计算⎰⎰∑+dS y x )(22,其中为 ∑锥面1 22=+=z y x z 及所围立体的全面积。
解:21∑+∑=∑,1∑:10 ,22≤≤+=z y x z ,dxdy ds 2=,2∑:1 ,122≤+=y x z ,dxdy ds =,xy D xoy 21面上的投影为在和∑∑:122≤+y x 。
⎰⎰⎰⎰⎰⎰∑∑∑+=+21)(22dS y x dxdy y x dxdy y x xyxyD D ⎰⎰⎰⎰+++=)(2)(2222 dxdy y x xyD ⎰⎰++=)()21(22).21(2)21(10320+π=ρρϕ+=⎰⎰πd d 2.已知物质球面上每点的面密度等于该点到球的某一直径的距离的平方,求其质量。
解:设球面方程为∑:2222R z y x =++, 取某一直径的z 轴上,则面密度为22y x +=μ。
∵∑关于x ,y ,z 具有轮换对称性, ∴⎰⎰⎰⎰⎰⎰∑∑∑==dS z dS y dS x 222,∴⎰⎰⎰⎰∑∑++=+=dS z y x dS y x m )(32)(22222.38432324222R R R dS R π=π⋅==⎰⎰∑3.证明:53108)3(a dS a z y x π≥+++⎰⎰∑,其中∑是球面022222222=+---++a az ay ax z y x 。
10.4第一类曲面积分

dz
o x
y
例8. 求椭圆柱面
位于 xoy 面上方及平面
x 2 a2 x 2 + a 2 dx = x + a 2 + ln( x + x 2 + a 2 ) + C 2 2
z = y 下方那部分柱面 Σ 的侧面积 S . 解: S = ∫∫ dS ∫
Σ
取dS = z ds
z
o x
= ∫ z ds = ∫ y ds
+ ∫ d z∫
0
1
1z
0 1z
1 dx (1+ x)2 1 dy 2 (1+ y)
+ ∫ d z∫
0
1
0
3 3 = + ( 3 1) ln 2 2
3. 计算 ∫∫ ( x + y + z )ds , 其中 Σ 为平面
y + z = 5 被柱面 x + y = 25 所截得的部分 所截得的部分.
2 2
2
π
π
例6. 计算
其中 ∑ 是球面 x2 + y2
+ z = 2(x + y + z).
2
解: 显然球心为 (1 1 1) , 半径为 3 ,, 利用对称性可知
2 4 2 2 2 ∴ I = ∫∫ (x + y + z ) d S = ∫∫ (x + y + z) d S 3 ∑ 3 ∑ ∫∫∑ xd S = ∫∫∑ yd S = ∫∫∑ zd S 利用重心公式
= 4∫∫ xd S = 4 x ∫∫ d S
∑ ∑
∫∫∑ xd S x= ∫∫∑ d S
高等数学同济第五版第10章答案

习题 10-11. 设在xOy 面内有一分布着质量的曲线弧L , 在点(x , y )处它的线密度为μ(x , y ), 用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴、对y 轴的转动惯量I x , I y ; (2)这曲线弧的重心坐标x , y .解 在曲线弧L 上任取一长度很短的小弧段ds (它的长度也记做ds ), 设(x , y )为小弧段ds 上任一点.曲线L 对于x 轴和y 轴的转动惯量元素分别为 dI x =y 2μ(x , y )ds , dI y =x 2μ(x , y )ds . 曲线L 对于x 轴和y 轴的转动惯量分别为 ⎰=Lx ds y x y I ),(2μ, ⎰=Ly ds y x x I ),(2μ.曲线L 对于x 轴和y 轴的静矩元素分别为 dM x =y μ(x , y )ds , dM y =x μ(x , y )ds . 曲线L 的重心坐标为 ⎰⎰==L L ydsy x ds y x x MM x ),(),(μμ, ⎰⎰==L L x dsy x ds y x y MM y ),(),(μμ.2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L 分为两段光滑曲线L 1和L 2, 则⎰⎰⎰+=12),(),(),(LL L dsy x f ds y x f ds y x f .证明 划分L , 使得L 1和L 2的连接点永远作为一个分点, 则∑∑∑+===∆+∆=∆111111),(),(),(n n i i i i ni n i i i i i i i s f s f s f ηξηξηξ.令λ=max{∆s i }→0, 上式两边同时取极限∑∑∑+=→=→=→∆+∆=∆nn i i i i n i i i i ni i i i s f s f s f 11111),(lim),(lim),(lim ηξηξηξλλλ,即得⎰⎰⎰+=12),(),(),(LL L dsy x f ds y x f ds y x f .3. 计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);解⎰+Ln ds y x )(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+102])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) .x d x L ⎰x d x x d x L L⎰⎰+=21⎰⎰'++'+=121022)(1])[(1dx x x dx x x⎰⎰++=1102241x d x dx x x )12655(121-+=.(4)dsey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axaaxdx e dt t a t a edx e220222402202211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧; 解 dt dtdz dt dy dtdx ds 222)()()(++= dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223s i n c o s 11dt e e t e t e ds z y x t tt t⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中 AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3), 故y z d sx y z d s x y z d s x y z d s xCDBCAB2222⎰⎰⎰⎰++=Γ 901020030222301=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解⎰⎰'+'--=Ldt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023c o s 1)c o s 1(2dt t t a 315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解 dt dtdy dtdx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (a t d tt t t a t t t a ds y xL ])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a t d t t a .4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心. 解 建立坐标系如图10-4所示, 由对称性可知0=y , 又 ⎰==Lx x d s aMM x ϕ21⎰-⋅=ϕϕθθϕa d a ac o s 21ϕϕs i n a =,所以圆弧的重心为)0 ,sin (ϕϕa5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心. 解 dt t z t y t x ds )()()(222'+'+'=dt k a 22+=. (1)⎰+=Lz ds z y x y x I ),,()(22ρds z y x y x L))((22222+++=⎰dt k a t k a a ⎰++=π20222222)()43(32222222k a k a a ππ++=.(2)⎰⎰++==LLds z y x ds z y x M )(),,(222ρ⎰++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=,ds z y x x M x L)(1222⎰++=⎰++=π2022222)(c o s 1dt k a t k a t a M2222436k a ak ππ+=,ds z y x y My L)(1222⎰++=⎰++=π2022222)(s i n 1dt k a t k a t a M2222436k a ak ππ+-=,ds z y x z Mz L)(1222⎰++=⎰++=π2022222)(1dt k a t k a kt M22222243)2(3ka k a k πππ++=,故重心坐标为)43)2(3 ,436 ,436(22222222222222k a k a k k a ak k a ak πππππππ+++-+.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明:⎰=L dx y x P 0),(.证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段, 则L : x =a , y =t , t 从b 1变到b 2. 于是00) ,())(,(),(2121⎰⎰⎰=⋅==b b b b L dt t a P dt dtdat a P dx y x P .2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线, 证明⎰⎰=Lba dx x P dx y x P )0 ,(),(.证明L : x =x , y =0, t 从a 变到b , 所以⎰⎰⎰='=baLb adx x P dx x x P dx y x P )0 ,())(0 ,(),(.3. 计算下列对坐标的曲线积分:(1)⎰-Ldx y x )(22, 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以⎰⎰-=-=-Ldx x x dx y x 242221556)()(. (2)⎰Lxydx , 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第 一象限内的区域的整个边界(按逆时针方向绕行); 解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π, L 2: x =x , y =0, x 从0变到2a , 因此⎰⎰⎰+=21L L Lx y d xx y d x x y d x ⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π302232)s i n s i ns i n (a t td tdt a πππ-=+-=⎰⎰. (3)⎰+Lxdy ydx , 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到2π的一段弧;解⎰⎰+-=+L dt t tR R t R t R xdy ydx ]cos cos )sin (sin [20π⎰==20202c o s πt d t R .(4)⎰+--+Ly x dyy x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+Ly x dyy x dx y x 22)()(⎰---+=π202)]cos )(sin cos ()sin )(sin cos [(1dt t a t a t a t a t a t a a⎰-=-=ππ202221dt a a.(5)ydz zdy dx x -+⎰Γ2, 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧; 解⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x233220331)(a k d a k ππθθπ-=-=⎰.(6)dz y x ydy xdx )1(-+++⎰Γ, 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1.⎰Γ-+++dz y x ydy xdx )1(⎰-+++++++=10)]1211(3)21(2)1[(dtt t t t⎰=+=1013)146(dt t .(7)⎰Γ+-ydz dy dx , 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1); 解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0, BC : x =0, y =1-z , z =z , z 从0变到1,CA : x =x , y =0, z =1-x , x 从0变到1, 故y d z dy dx ydz dy dx ydz dy dx ydz dy dx CA BC AB +-++-++-=+-⎰⎰⎰⎰Γ⎰⎰⎰+-+'--+'--=111)]1()1([])1(1[dx dt z z dx x 21=.(8)dy xy y dx xy x L)2()2(22-+-⎰, 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故⎰-+-Ldy xy y dx xy x )2()2(22⎰--+-=113432]2)2()2[(dx x x x x x1514)4(2142-=-=⎰dx x x4. 计算⎰-++Ldy x y dx y x )()(, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧; 解 L : x =y 2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(⎰=⋅-+⋅+=2122334]1)(2)[(dy y y y y y .(2)从点(1, 1)到点(4, 2)的直线段; 解 L : x =3y -2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(11]1)23()23[(21=⋅+-+⋅+-=⎰dy y y y y y(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线; 解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2, L 2: x =x , y =2, x 从1变到4, 故⎰-++L dy x y dx y x )()(dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰14)2()1(4121=++-=⎰⎰dx x dy y .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧. 解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故⎰-++L dy x y dx y x )()(332]2)()14)(23[(1022=⋅--++++=⎰dt t t t t t t .5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m 的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时 场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为 x =R cos θ, y =R sin θ,θ从0变到2π, 于是场力所作的功为R F d R F dx F d W LL||)sin (||||20-=-⋅==⋅=⎰⎰⎰πθθr F .6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1) 沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线, 则重力所作的功为⎰⎰⎰ΓΓ-==++=⋅=21)(0012z z z z mg dz mg mgdz dy dx d W r F .7. 把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的曲线积分, 其中L 为:(1)在xOy 面内沿直线从点(0, 0)到(1, 1);解 L 的方向余弦214cos cos cos ===πβα,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰ ⎰+=Ld s y x Q y x P 2),(),(.(2)沿抛物线y =x 2从点(0, 0)到(1, 1);解 曲线L 上点(x , y )处的切向量为τ=(1, 2x ), 单位切向量为 )412,411()c o s ,(c o s 22xx x++==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰++=Lds xy x xQ y x P 241),(2),(.(3)沿上半圆周x 2+y 2=2x 从点(0, 0)到(1, 1). 解 L 的方程为22x x y -=, 其上任一点的切向量为 )21 ,1(2xx x --=τ,单位切向量为)1 ,2()c o s ,(c o s 2x x x --==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.8. 设Γ为曲线x =t , y =t 2, z =t 3上相应于t 从0变到1的曲线弧, 把对坐标的曲线积分⎰Γ++Rdz Qdy Pdx 化成对弧长的曲线积分.解 曲线Γ上任一点的切向量为 τ=(1, 2t , 3t 2)=(1, 2x , 3y ), 单位切向量为)3 ,2 ,1(9211)c o s ,c o s ,(c o s 22y x yx ++==τγβαe ,ds R Q P Rdz Qdy Pdx L ]cos cos cos [γβα++=++⎰⎰Γ⎰++++=Lds yx yR xQ P 2294132.习题 10-31. 计算下列曲线积分, 并验证格林公式的正确性:(1)⎰++-ldy y x dx x xy )()2(22, 其中L 是由抛物线y =x 2及y 2=x 所围成的区域的正向边界曲线; 解 L =L 1+L 2, 故⎰++-L dy y x dx xxy )()2(22⎰⎰++-+++-=21)()2()()2(2222L L dy y x dx x xy dy y x dx x xy⎰⎰++-+++-=1012243423)](2)2[(]2)()2[(dy y y y y y dx x x x x x301)242()22(101245235=++--++=⎰⎰dy y y y dx x x x , 而 d x d y x d x d y yPx Q DD )21()(-=∂∂-∂∂⎰⎰⎰⎰⎰⎰-=102)21(y y dx x dy301)(42121=+--=⎰dy y y y y , 所以⎰⎰⎰+=∂∂-∂∂l DQ d y P d x d x d y yPx Q )(.(2)⎰-+-ldy xy y dx xy x )2()(232, 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界. 解 L =L 1+L 2+L 3+L 4, 故⎰-+-L dy xy y dx xy x)2()(232dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰⎰⎰⎰⎰+-+-+=20200222222)8()4(dy y dx x x dy y y dx x848202=-+=⎰⎰y d y x d x ,而d x d y xy y dxdy yPx Q DD)32()(2+-=∂∂-∂∂⎰⎰⎰⎰ ⎰⎰+-=20220)32(dy xy y dx 8)48(2=-=⎰dx x ,所以⎰⎰⎰+=∂∂-∂∂l DQ d y P d x d x d y yPx Q )(.2. 利用曲线积分, 求下列曲线所围成的图形的面积: (1)星形线x =a cos 3t , y =a sin 3t ; 解 ⎰⎰-⋅⋅-=-=Ldt t t a t a ydx A π2023)sin (cos 3sin⎰==ππ20224283c o s s i n 3a t d t t a.(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2=144的参数方程为 x =4cos θ, y =3sin θ, 0≤θ≤2π, 故 ⎰-=Ly d x x d y A 21⎰-⋅-⋅=πθθθθθ20)]sin 4(sin 3cos 3cos 4[21d ⎰==ππθ20126d .(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π, 故 ⎰-=Ly d x x d y A 21⎰-⋅-⋅+=πθθθθθ20)]sin (sin cos )cos 1([21d a a a a 2202)c o s 1(2a d a ⎰=+=ππθθ.3. 计算曲线积分⎰+-Ly x xdy ydx )(222, 其中L 为圆周(x -1)2+y 2=2, L 的方向为逆时针方向. 解 )(222y x y P +=, )(222y x xQ +-=. 当x 2+y 2≠0时 y P x Q ∂∂=∂∂0)(2)(22222222222=+--+-=y x y x y x y x . 在L 内作逆时针方向的ε小圆周 l : x =εcos θ, y =εsin θ(0≤θ≤2π),在以L 和l 为边界的闭区域D ε上利用格林公式得0)(=∂∂-∂∂=+⎰⎰⎰-+d x d y yPx Q Q d y P d x D l L ε, 即⎰⎰⎰+=+-=+-lL ldy Pdx Qdy Pdx QdyPdx .因此⎰⎰+-=+-l L y x x d yy d x y x x d yy d x )(2)(22222⎰--=πθεθεθε20222222c o s s i n d ⎰-=-=ππθ2021d .4. 证明下列曲线积分在整个xOy 面内与路径无关, 并计算积分值: (1)⎰-++)3 ,2()1 ,1()()(dy y x dx y x ;解 P =x +y , Q =x -y , 显然P 、Q 在整个xOy 面内具有一阶连续偏 导数, 而且1=∂∂=∂∂xQy P , 故在整个xOy 面内, 积分与路径无关.取L 为点(1, 1)到(2, 3)的直线y =2x -1, x 从1变到2, 则⎰⎰-+-=-++)3 ,2()1 ,1(21)]1(2)13[()()(dx x x dy y x dx y x⎰=+=2125)1(dx x .(2)⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy ;解 P =6xy 2-y 3, Q =6x 2y -3xy 2, 显然P 、Q 在整个xOy 面内具有一 阶连续偏导数, 并且2312y xy xQy P -=∂∂=∂∂, 故积分与路径无关, 取路径 (1, 2)→(1, 4)→(3, 4)的折线, 则⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy236)6496()3642312=-+-=⎰⎰dx x dy y y .(3)⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy .解 P =2xy -y 4+3, Q =x 2-4xy 3, 显然P 、Q 在整个xOy 面内具有一 阶连续偏导数, 并且342y x xQ y P -=∂∂=∂∂, 所以在整个xOy 面内积分与 路径无关, 选取路径为从(1, 0)→(1, 2)→(2, 1)的折线, 则⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx yxy⎰⎰=++-=12135)1(2)41(dx x dy y .5. 利用格林公式, 计算下列曲线积分:(1)⎰-+++-Ldy x y dx y x )635()42(, 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yPx Q , 故由格林公式,得⎰-+++-L dy x y dx y x )6315()42(d x d y yPx Q D)(∂∂-∂∂=⎰⎰ 124==⎰⎰d x d y D.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正向星形线323232a y x =+(a >0);解 x e y x xy x y x P 22sin 2cos -+=, x ye x x Q 2sin 2-=,0)2c o s s i n 2()2c o s s i n 2(22=-+--+=∂∂-∂∂x x ye x x x x ye x x x x yPx Q , 由格林公式⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (2220)(=∂∂-∂∂=⎰⎰d x d y yPx Q D. (3)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223, 其中L 为在抛物线2x =πy 2上由点(0, 0)到)1 ,2(π的一段弧;解 x y xy P cos 223-=, 223sin 21y x x y Q +-=,0)c o s 26()6c o s 2(22=--+-=∂∂-∂∂x y xy xy x y yPx Q , 所以由格林公式0)(=∂∂-∂∂=+⎰⎰⎰++-d x d y yPx Q Q d y P d x DOBOA L , 其中L 、OA 、OB 、及D 如图所示. 故⎰⎰++=+AB OA L QdyPdx Qdy Pdx4)4321(02201022πππ=+-+=⎰⎰dy y y dx . (4)⎰+--Ldy y x dx y x )sin ()(22, 其中L 是在圆周22x x y -=上由点(0, 0)到点(1, 1)的一段弧. 解 P =x 2-y , Q =-x -sin 2y , 0)1(1=---=∂∂-∂∂yPx Q , 由格林公式有0)(=∂∂-∂∂-=+⎰⎰⎰++d x d y yPx Q Q d y P d x DBO AB L , 其中L 、AB 、BO 及D 如图所示. 故⎰⎰++--=+--L OBBA dy y x dx y x dy y x dx y x)sin ()()sin ()(22222s i n 4167)s i n 1(102102+-=++-=⎰⎰dx x dy y .6. 验证下列P (x , y )dx +Q (x , y )dy 在整个xOy 平面内是某一函数 u (x , y )的全微分, 并求这样的一个u (x , y ): (1)(x +2y )dx +(2x +y )dy ; 证明 因为yPx Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整 个xOy 面内的函数u (x , y )的全微分. ⎰++++=),()0,0()2()2(),(y x C dy y x dx y x y x u C y xy x +++=22222.(2)2xydx +x 2dy ; 解 因为yPx x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整个 xOy 面内的函数u (x , y )的全微分. ⎰++=),()0,0(22),(y x C dy x xydx y x u ⎰⎰+=++=y yC y x C x y d x dy 0220.(3)4sin x sin3y cos xdx –3cos3y cos2xdy 解 因为yPx y x Q ∂∂==∂∂2sin 3cos 6, 所以P (x , y )dx +Q (x , y )dy 是某个 定义在整个xOy 平面内的函数u (x , y )的全微分. ⎰+-=),()0,0(2c o s 3c o s 3c o s 3s i n s i n 4),(y x C x d y y x d x y x y x uC y x C x d y y dx x y+-=+-+=⎰⎰3sin 2cos 2cos 3cos 300.(4)dy ye y x x dx xy y x y )128()83(2322++++ 解 因为yPxy x x Q ∂∂=+=∂∂1632, 所以P (x , y )dx +Q (x , y )dy 是某个定 义在整个xOy 平面内的函数u (x , y )的全微分.⎰+++++=),()0,0(232)128()823(),(y x y C dy ye y x x dx xy iy xh y x uC dx xy y x dy ye y xy +++=⎰⎰022)83(12C e ye y x y x y y +-++=)(124223.(5)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++ 解 因为yPy x x y x Q ∂∂=-=∂∂sin 2cos 2, 所以P (x , y )dx +Q (x , y )dy 是 某个函数u (x , y )的全微分⎰⎰+-+=xyC dy y x x y xdx y x u 02)sin sin 2(2),(C y x x y ++=c o s s i n 22.7. 设有一变力在坐标轴上的投影为X =x +y 2, Y =2xy -8, 这变力确 定了一个力场, 证明质点在此场内移动时, 场力所做的功与路径无关. 解 场力所作的功为⎰Γ-++=dy xy dx y x W )82()(2.由于yX y x Y ∂∂==∂∂2, 故以上曲线积分与路径无关, 即场力所作的功 与路径无关.习题10-41. 设有一分布着质量的曲面∑, 在点(x , y , z )处它的面密度为μ(x , y , z ), 用对面积的曲面积分表达这曲面对于x 轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS , 对于x 轴的转动惯量为dS z y x z y I x ),,()(22μ+=∑⎰⎰.2. 按对面积的曲面积分的定义证明公式dSz y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅ ⋅ ⋅, ∆S m ; 划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅ ⋅ ⋅, ∆S m +n , 则∆S 1, ⋅ ⋅ ⋅, ∆S m , ∆S m +1, ⋅ ⋅ ⋅, ∆S m +n 为∑的一个划分, 并且 i i i i nm m i i i i i mi i i i i nm i S f S f S f ∆+∆=∆++==+=∑∑∑),,(),,(),,(111ζηξζηξζηξ.令}{max 11i mi S ∆=≤≤λ, }{max12i nm i m S ∆=+≤≤+λ, } ,max{21λλλ=, 则当λ→0时, 有dSz y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=.3. 当∑是xOy 面内的一个闭区域时, 曲面积分dS z y x f ),,(∑⎰⎰与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,d x d y d x d yz z dS y x =++=221, 故d x d y z y x f dS z y x f D ),,(),,(⎰⎰⎰⎰=∑.4. 计算曲面积分dS z y x f ),,(∑⎰⎰, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下: (1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此d x d y y x dS z y x f xyD 22441),,(++=⎰⎰⎰⎰∑⎰⎰+=πθ202241r d r r d ππ313])41(121[2202/32=+=r .(2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此d x d yy x y xdS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑⎰⎰+=πθ202241r d r r d ππ30149412222=+=⎰rdr r r .(3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此dS z y x f ),,(∑⎰⎰d x d y y x y x xyD 2222441)](2[3+++-=⎰⎰ ⎰⎰+-=πθ2022241)2(3r d r r r d ππ1011141)2(6222=+-=⎰rdr r r .5. 计算dS y x )(22+∑⎰⎰, 其中∑是:(1)锥面22y x z +=及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中 ∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:22y x z +=, D 2: x 2+y 2≤1, dxdy dxdy z z dS y x 2122=++=.dS y x dS y x dS y x )()()(22222221+++=+∑∑∑⎰⎰⎰⎰⎰⎰ d x d y y x d x d y y x D D )()(222221+++=⎰⎰⎰⎰⎰⎰=πθ20103dr r d +⎰⎰πθ20132dr r dπππ221222+=+=.提示: dxdy dxdy yx y y x x dS 21222222=++++=.(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:223y x z +=, D xy : x 2+y 2≤3,d x d y d x d yz z dS y x 2122=++=, 因而πθπ922)()(32202222==+=+⎰⎰⎰⎰⎰⎰∑r d r r d d x d y y x dS y x xyD .提示: dxdy dxdy y x y y x x dS 2])(326[])(326[1222222=++++=.6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z yx 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤,d x d y z z dS y x 221++=d x d y 361=,61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdydxdy dS y x z xyxyD D .(2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,d x d y d x d yz z dS y x 3122=++=,dS z x xxy )22(2+--∑⎰⎰d x d yy x x xxy xyD 3)22622(2--+--=⎰⎰ ⎰⎰--+--=xdy y xy x x dx 30230)22236(3427)9103(3323-=+-=⎰dx x x . (3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分; 解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d yyx a ay x a y x dS z y x xyD 222222)()(----++=++⎰⎰⎰⎰∑)(||22h a a D a a d x d y xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性).提示: dxdy yx a y yx a x dS 22222222)()(1+--++--+=dxdyyx a a 222--=,(4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax 所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax , dxdy dxdy z z dS y x 2122=++=,d x d yy x y x xy dSzx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑⎰⎰++=-θππθθθθc o s202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a)c o s s i n c o s c o s (s i n 24422554⎰-++=421564a =.提示: dxdy yx y y x x dS 2222221++++=.7. 求抛物面壳)10)((2122≤≤+=z y x z 的质量, 此壳的面密度为μ=z .解 ∑: )(2122y x z +=, D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 222211++=++=. 故 d x d yy x y x z d S M xyD 22221)(21+++==⎰⎰⎰⎰∑⎰⎰+=πθ20222121r d r r r d )136(152+=π.8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量. 解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d yyx a a y x dS y x I z 22222022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=πθμ202230adr ya r d a 4034a πμ=.提示: dxdy yx a y yx a x dS 22222222)()(1---+---+=dxdyyx a a 222--=,习题10-51. 按对坐标的曲面积分的定义证明公式:d y d z z y x P z y x P )],,(),,([21±∑⎰⎰d y d z z y x P d y d zz y x P )],,(),,(21∑∑⎰⎰⎰⎰±=. 解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点,λ是各小块曲面的直径的最大值, 则d y d z z y x P z y x P )],,(),,([21±∑⎰⎰yz i i i i i i i ni S P P ))](,(),([lim ,2,110∆±==→∑ζηξζηξλyz i i i i ni yz i i i i ni S P S P ))(,(lim ))(,(lim ,210,110∆±∆==→=→∑∑ζηξζηξλλdydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.2. 当∑为xOy 面内的一个闭区域时, 曲面积分dxdy z y x R ),,(∑⎰⎰与二重积分有什么关系? 解 因为∑: z =0, (x , y )∈D xy , 故d x d y z y x R d x d yz y x R xyD ),,(),,(⎰⎰⎰⎰±=∑, 当∑取的是上侧时为正号, ∑取的是下侧时为负号. 3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为222y x R z ---=, D xy : x 2+y 2≤R , 于是z d x d yy x22∑⎰⎰d x d yy x R y xxyD )(22222----=⎰⎰ ⎰⎰⋅-⋅⋅=πθθθ2022222s i n c o s r d r r R r r d R⎰⎰-=πθθ20052222s i n 41Rdr r r R d 71052R π=.(2)ydzdx xdydz zdxdy ++∑⎰⎰, 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧; 解 ∑在xOy 面的投影为零, 故0=∑⎰⎰zdxdy .∑可表示为21y x -=, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故⎰⎰⎰⎰⎰⎰⎰-=-=-=∑30112221311dy y dy y dz dydz y xdyz yzD∑可表示为21x y -=, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故d z d x x y d z d x zxD 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=301122131dx x dx x dz .因此 y d z d x x d y d z z d x d y ++∑⎰⎰)13(212dx x ⎰-=ππ2346=⨯=.解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为 )0 , ,(1)c o s ,c o s ,(c o s 22y x yx +=γβα,由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy)cos cos cos (γβα++=++∑∑⎰⎰⎰⎰π23)(222222==+=+⋅++⋅=∑∑∑⎰⎰⎰⎰⎰⎰dS dS y x dS y x y y y x x x . 提示:dS ∑⎰⎰表示曲面的面积.(3)dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰, 其中 f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧; 解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为)31,31 ,31()c o s ,c o s ,(c o s -=γβα, 由两类曲面积分之间的联系可得d x d y z z y x f d z d x y z y x f d y d zx z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰ dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰dS z f y f x f ]31)()31()2(31)(⋅++-⋅++⋅+=∑⎰⎰2131)(31===+-=⎰⎰⎰⎰⎰⎰∑∑d x d ydS dS z y x xyD .(4)⎰⎰∑++yzdzdx xydydz xzdxdy , 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧. 解 ∑=∑1+∑2+∑3+∑4, 其中 ∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z , ∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x , ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x , 于是⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑+++=4321xzdxdyx z d x d y4000∑⎰⎰+++= d x d y y x x xyD )1(--=⎰⎰⎰⎰-=--=110241)1(xdy y x xdx. 由积分变元的轮换对称性可知241⎰⎰⎰⎰∑∑==yzdzdx xydydz .因此 ⎰⎰∑=⨯=++812413yzdzdx xydydz xzdxdy .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块; ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x . 显然在∑1、∑2、∑3上的曲面积分均为零, 于是⎰⎰∑++yzdzdxxydydz xzdxdyy z d z d x x y d y d z x z d x d y ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰81)]1)(([3=--++=⎰⎰dxdy y x y x xy xyD .4. 把对坐标的曲面积分d x d y z y x R d z d x z y x Q d y d zz y x P ),,(),,(),,(++∑⎰⎰化成对面积的曲面积分:(1)∑为平面63223=++z y x 在第一卦限的部分的上侧; 解 令63223),,(-++=z y x z y x F , ∑上侧的法向量为: )32 ,2 ,3(),,(==z y x F F F n , 单位法向量为)32 ,2 ,3(51)c o s ,c o s ,(c o s =γβα,于是R d x d y Q d z d x P d y d z ++∑⎰⎰ dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R Q P )3223(51++=∑⎰⎰.(2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧. 解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量 n =(F x , F y , F z )=(2x , 2y , 1), 单位法向量为)1 ,2 ,2(4411)c o s ,c o s ,(c o s 22y x yx ++=γβα,于是R d x d y Q d z d x P d y d z ++∑⎰⎰ dS R Q P )cos cos cos (γβα++=∑⎰⎰dSR yQ xP yx )22(441122++++=∑⎰⎰.10-61. 利用高斯公式计算曲面积分:(1)⎰⎰∑++dxdy z dzdx y dydz x 222, 其中∑为平面x =0, y =0, z =0, x =a ,y =a , z =a 所围成的立体的表面的外侧;解 由高斯公式 原式dv z y x dv zRy Q x P )(2)(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰===Ωaaaa dz dy xdx xdv 040366(这里用了对称性).(2)⎰⎰∑++dxdy z dzdx y dydz x 333, 其中∑为球面x 2+y 2+z 2=a 2的外侧;解 由高斯公式 原式dv z y x dv zRy Q x P )(3)(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ204s i n 3adr r d d 5512a π=. (3)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑为上半球体x 2+y 2≤a 2, 2220y x a z --≤≤的表面外侧; 解 由高斯公式 原式dv y x z d zRy Q x P )()(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ202022s i n adr r r d d 552a π=. (4)⎰⎰∑++zdxdy ydzdx xdydz 其中∑界于z =0和z =3之间的圆柱体x 2+y 2≤9的整个表面的外侧; 解 由高斯公式 原式π813)(==∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰dv dv zRy Q x P . (5)⎰⎰∑+-yzdxdy dzdx y xzdydz 24,其中∑为平面x =0, y =0, z =0, x =1,y =1, z =1所围成的立体的全表面的外侧. 解 由高斯公式原式dv y y z dv zRy Q x P )24()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=-=1010123)4(dz y z dy dx . 2. 求下列向量A 穿过曲面∑流向指定侧的通量:(1)A =yz i +xz j +xy k , ∑为圆柱x +y 2≤a 2(0≤z ≤h )的全表面, 流向外侧; 解 P =yz , Q =xz , R =xy , ⎰⎰∑++=Φxydxdy xzdzdx yzdydzdv zxy y xz x yz ))()()((∂∂+∂∂+∂∂=Ω⎰⎰⎰00==Ω⎰⎰⎰d v . (2)A =(2x -z )i +x 2y j - xz 2k , ∑为立方体0≤x ≤a , 0≤y ≤a , 0≤z ≤a , 的全表面, 流向外侧;解 P =2x -z , Q =x 2y , R =-xz 2, ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv xz x dv zr y Q x P )22()(2-+=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰-=-+=aaaa a dz xz x dy dx 02320)62()22(. (3)A =(2x +3z )i -(xz +y )j +(y 2+2z )k , ∑是以点(3, -1, 2)为球心, 半径R =3的球面, 流向外侧.解 P =2x +3z , Q =-(xz +y ), R =y 2+2z , ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv dv zRy Q x P )212()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰π1083==Ω⎰⎰⎰dv . 3. 求下列向量A 的散度: (1)A =(x 2+yz )i +(y 2+xz )j +(z 2+xy )k ; 解 P =x 2+yz , Q =y 2+xz , R =-z 2+xy ,)(2222d i vz y x z y x zRy Q x P ++=++=∂∂+∂∂+∂∂=A .(2)A =e xy i +cos(xy )j +cos(xz 2)k ; 解 P =e xy , Q =cos(xy ), R =cos(xz 2),)s i n (2s i n d i v2xz xz xy x ye zRy Q x P xy --=∂∂+∂∂+∂∂=A . (3)A =y 2z i +xy j +xz k ; 解 P =y 2, Q =xy , R =xz , x x x zRy Q x P 20d i v =++=∂∂+∂∂+∂∂=A . 4. 设u (x , y , z )、v (x , y , z )是两个定义在闭区域Ω上的具有二阶连续 偏导数的函数, nu ∂∂, nv ∂∂依次表示u (x , y , z )、v (x , y , z )沿∑的外法线方向的方向导数. 证明dS nu v n v udxdydz u v v u )()∂∂-∂∂=∆-∆⎰⎰⎰⎰⎰∑Ω, 其中∑是空间闭区间Ω的整个边界曲面, 这个公式叫作林第二公式. 证明 由第一格林公式(见书中例3)知d x d y d z zvy v x v u )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ d x d y d z zv z u y v y u x v x u dS n v u)(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω, d x d y d zzuy u x u v )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ d x d y d zzvz u y v y u x v x u dS n u v)(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω. 将上面两个式子相减, 即得d x d y d zuy u x u v z v y v x v u )]()([222222222222∂∂+∂∂+∂∂-∂∂+∂∂+∂∂Ω⎰⎰⎰⎰⎰∑∂∂-∂∂=dS nu v n v u)(.。
(整理)高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答

第十章曲线积分与曲面积分习题简答习题10—11 计算下列对弧长的曲线积分: (1)LI xds =⎰,其中L 是圆221x y +=中(0,1)A到B 之间的一段劣弧; 解:(1+.(2)(1)L x y ds ++⎰,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解:(1)3Lx y ds -+=+⎰.(3)22Lx y ds +⎰,其中L 为圆周22x y x +=;解:222Lx y ds +=⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解: 2Lx y z d =⎰2 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥度1ρ=。
解 故所求重心坐标为444,,333πππ⎛⎫⎪⎝⎭.习题10—21 设L 为xOy 面内一直线y b =(b 为常数),证明xyoABC(,)0LQ x y dy =⎰。
证明:略.2 计算下列对坐标的曲线积分: (1)Lxydx ⎰,其中L 为抛物线2y x =上从点(1,1)A -到点(1,1)B 的一段弧。
解 :45Lxydx =⎰。
(2)⎰-++Ldy y x dx y x 2222)()(,其中L 是曲线x y --=11从对应于0=x 时的点到2=x 时的点的一段弧;解34)()( 2222=-++⎰Ldy y x dx y x .(3),Lydx xdy +⎰L 是从点(,0)A a -沿上半圆周222x y a +=到点(,0)B a 的一段弧;解 0.Lydx xdy +=⎰(4)22Lxy dy x ydx -⎰,其中L 沿右半圆222x y a +=以点(0,)A a 为起点,经过点(,0)C a 到终点(0,)B a -的路径;解 22Lxy dy x ydx -⎰44a π=-。
(5)3223Lx dx zy dy x ydz +-⎰,其中L 为从点(3,2,1)A 到点(0,0,0)B 的直线段AB ;解 3223Lx dx zy dy x ydz +-⎰3187874t dt ==-⎰。